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a b s t r a c t

Joint video/depth rate allocation is an important optimization problem in 3D video

coding. To address this problem, this paper proposes a distortion model to evaluate the

synthesized view without access to the captured original view. The proposed distortion

model is an additive model that accounts for the video-coding-induced distortion and

the depth-quantization-induced distortion, as well as the inherent geometry distortion.

Depth-quantization-induced distortion not only considers the warping error distortion,

which is described by a piecewise linear model with the video power spectral property,

but also takes into account the warping error correlation distortion between two

sources reference views. Geometry distortion is approximated from that of the adjacent

view synthesis. Based on the proposed distortion model, a joint rate allocation method is

proposed to seek the optimal trade-off between video bit-rate and depth bit-rate for

maximizing the view synthesis quality. Experimental results show that the proposed

distortion model is capable of approximately estimating the actual distortion for the

synthesized view, and that the proposed rate allocation method can almost achieve the

identical rate allocation performance as the full-search method at less computational

cost. Moreover, the proposed rate allocation method consumes less computational cost

than the hierarchical-search method at high bit-rates while providing almost the

equivalent rate allocation performance.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

3D video is an emerging new media for rendering
dynamic real-world scenes. Compared with traditional 2D
video, 3D video is the natural extension in the spatio-
temporal domain as it provides the depth impression of
the observed scenery. Besides the 3D sensation, 3D video
also allows for an interactive selection of viewpoint and
view direction within the captured range [1]. With these

features, 3D video will revolutionize visual media by
enabling 3D-TV and free viewpoint TV (FTV) for 3D
display applications [2].

The acquisition of 3D video typically involves recording
the synchronous multiview video streams. A variety of
multiview video processing technologies from signal
processing, computer vision and computer graphics are
used in 3D video processing. 3D video lives on the
convergence of these disciplines so that there are diverse
and various scene representations for it [3]. In [1], the
authors utilize point samples to represent the 3D
information of scene. Theobalt et al. [4] propose a
model-based representation to facilitate the processing
for acquisition and rendering of 3D video. Similarly,
a polyhedral visual hulls representation [5] provides a
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view-independent rendering with epipolar geometry.
These representations can fulfill the requirements of 3D
video and achieve a good rendering quality. However, they
cannot perfectly provide the backward compatibility with
the existent processing chain of traditional 2D video.

Recently, the 2D video plus depth format has emerged
as an efficient data representation for 3D video because it
allows the rendering of new views with very low
processing costs. With accurate multiview geometry, 2D
video and the associated per-pixel depth can provide high-
quality rendering of new views [6,7]. Though the genera-
tion of depth maps is somewhat complicated, the video
plus depth format is compatible with the current legacy
devices and existent delivery infrastructure of 2D video.
Moreover, this representation is apt to be coded using the
popular standards, such as MPEG-2 and H.264/AVC [8]. To
spur stereoscopic applications, the ISO/IEC 23002-3
standard had specified the video plus depth format [9].
Recently, MPEG group has started the exploration work on
depth estimation and view synthesis for developing the
3D video standard [10].

The N-video plus N-depth is the proper delivery format
for 3D video [11]. To reduce the great bandwidth
consumption in 3D video communication, a lot of multi-
view video coding (MVC) algorithms are proposed to
exploit the inter-view redundancy between the multiple
videos [12–18]. Compared with independent coding of
views with the same video quality, these algorithms can
save 20–50% of the overall bit-rate by [12]. The depth map
can be separately encoded with conventional coding
techniques, such as H.264/AVC, or jointly coded with
MVC [19,20], and it also can be coded with some new
coding methods that consider the special characteristics
of depth maps, such as the method by exploiting depth
smooth properties [21] and the method by jointly
optimizing depth estimation and depth coding in the
wavelet domain [22].

The compression of multiview video and depth has a
great effect on the view synthesis quality [19,23]. The
video and depth compression with different bit-rate
overheads can lead to different synthesis qualities of the
virtual view. For video/depth rate allocation, Daribo et al.
[24] propose a rate-distortion optimized bit allocation
strategy. In [25], Morvan et al. propose a joint bit
allocation method for multiview video and depth coding
to guarantee the optimal view synthesis. Given the bit-
rate constraint, the optimal trade-off between the video
bit-rate and depth bit-rate is exhaustively searched by
full-search and hierarchical-search methods. To measure
the quality of the synthesized view, Morvan et al. assume
that the captured original view at the synthesis position
exists and the view synthesis quality is evaluated by
mean-squared error (MSE) between the synthesized
image and the original image. Such a full-reference
assessment [26] can accurately evaluate the quality of
view synthesis. However, this assumption is not appro-
priate for many practical 3D video applications because
the original view at the synthesized position is not always
available. In practical 3D video systems, due to the
enormous information involved, it is impossible to
capture a scene’s entire information with cameras.

Usually, the scenes are captured with a wide-baseline
camera setup. Especially in free-viewpoint video systems,
for smooth browsing in view dimension, most of the views
need to be interpolated by adjacent views.

To solve the no-reference evaluation problem for the
synthesized view in joint video/depth rate allocation, this
paper proposes a distortion model to characterize the
view synthesis quality without requiring the original
reference image. Three kinds of distortions are mainly
concerned in the proposed additive view synthesis
distortion model: the video-coding-induced distortion,
the depth-quantization-induced distortion, and the in-
herent geometry distortion. Based on the analysis of the
complex behavior of depth-quantization-induced warping
errors, depth-quantization-induced warping error distor-
tion is characterized by a piecewise linear model accord-
ing to the video power spectra property. According to the
multiview geometry, the geometry distortion is approxi-
mated from that of the adjacent view synthesis. Based on
the proposed distortion model, we further propose a joint
rate allocation method to find the optimal quantization
setting for video and depth coding. The proposed rate
allocation method first considers the relationship among
the video’s rate-distortion, the depth’s rate-distortion and
the virtual view synthesis quality, and then utilizes the
view synthesis distortion model to optimize the video/
depth rate allocation.

The rest of the paper is organized as follows. The
distortion model is derived in Section 2. In this section,
we first describe the depth-image-based view synthesis
and then derive the distortion model for the synthesized
view. In the model derivation, we emphasize on
analyzing how the depth loss leads to the view synthesis
distortion. In Section 3, based on the derived distortion
model, the proposed joint video/depth rate allocation
algorithm is described in detail. Section 4 presents the
experimental results. Finally, the conclusion is provided in
Section 5.

2. View synthesis distortion model

2.1. Depth-image-based view synthesis

Depth-image-based view synthesis is usually per-
formed as 3D warping [27]. The virtual view synthesis at
the middle of two captured views is shown in Fig. 1.
According to the camera parameters, homography ma-
trices from the adjacent source reference view to the
virtual view can be obtained at different depth values and
further the pixels in virtual view image can be warped
from those in adjacent views. The homography matrix is
usually computed by matching the correspondence points
between two view images integrated with the pinhole
camera model [28]. In Fig. 1, HA-V[Z] and HB-V[Z] are
homography matrices at depth Z from view A and from
view B to the virtual view, respectively. The relation
amongst (uV, vV), (uA, vA) and (uB, vB) is described by

ðuV ;vV ;1Þ ¼ HA!V ½Z�ðuA;vA;1Þ
T
¼ HB!V ½Z�ðuB;vB;1Þ

T . (1)
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Taking into account the occlusion effect, the virtual
view synthesis is expressed as

IV ðuV ;vV Þ ¼

wAIAðuA;vAÞ þwBIBðuB;vBÞ;

if ðuV ;vV Þ is both visible in view A and B

IAðuA;vAÞ;

if ðuV ;vV Þ is only visible in view A

IBðuB;vBÞ;

if ðuV ;vV Þ is only visible in view B

0;

otherwise

;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(2)

where IV(uV, vV), IA(uA, vA) and IB(uB, vB) are the pixel values
of the matching points in different views, and wA and wB

are the distance-dependent blending weights with
wA+wB ¼ 1. In one adjacent view, if there exists one point
corresponding to (uV, vV) and the depth value at this point
also exists, (uV, vV) is taken as visible in this adjacent view.

Because of the occlusion and pixel mapping uncer-
tainty, some pixels in the virtual view have no matching
points in the sources view A and B. They will be inpainted
by the adjacent pixels that have been warped from the
sources reference views. In the pixel mapping, the
mapped pixel sometimes does not locate at an integer
position, and it will be bilinearly interpolated or rounded
to the nearest integer position.

2.2. Modeling of the virtual view synthesis distortion

In 3D video applications, the virtual view is generally
synthesized by compressed video and depth. The com-
pression brings the corresponding view synthesis distor-
tion. Based on the specific analysis on the view synthesis
behavior, we derive the view synthesis distortion model as
follows.

Assume that SV denotes the captured original image at
the synthesis position and ŜV represents the image
synthesized by the compressed images of adjacent views.
According to multiview geometry, the ideal SV should
include partial signal of the left view SA, partial signal of

the right view SB and partial signal in the occluded areas
that cannot be observed from the adjacent views. The
signal in the occluded area is expressed as SO. Let S̄V

represent the image synthesized by the original images of
adjacent views. In ideal cases, SV should be equal to S̄V. At
the present time, however, the geometry information is
not very perfect due to the noise effects when capturing
video and computing depth. Hence there exist some
differences between SV and S̄V.

Let ŜA and ŜB be the compressed images of the left view
and the right view, respectively. In the view synthesis, the
occluded area is inpainted by adjacent pixels and the
synthesized signal in the occluded area is ŜO. Therefore,
the distortion for the synthesized virtual view, in terms of
MSE, can be expressed as

DV ¼ Ef½SV � ŜV �
2g

¼ Ef½SV � S̄V �
2g þ Ef½S̄V � ŜV �

2g

þ 2Ef½SV � S̄V �½S̄V � ŜV �g, (3)

where E{ � } denote the expectation taken over all pixels in
one image.

Generally, one virtual view image comprises of the un-
occluded area and the occluded area. Let nU denote the
number of pixels in the un-occluded area in S̄V, nO the
number of pixels in the occluded area in S̄V, n̂U the number
of pixels in the un-occluded area in ŜV, n̂O the number of
pixels in the occluded area in ŜV, nS the image spatial
resolution, EU{ � } the expectation taken over the pixels in
the un-occluded area and EO{ � } the expectation taken
over the pixels in the occluded area. Because of the effect
of compression, we generally have n̂O4nO and n̂UonU.
Thus,

Ef½S̄V � ŜV �
2g ¼

n̂U

nS
� EUf½S̄U � ŜU �

2g þ
n̂O

nS
� EOf½S̄O � ŜO�

2g,

(4)

where S̄U denotes the un-occluded signal synthesized by
the original images of the adjacent views and ŜU denotes
the un-occluded signal synthesized by the compressed
images of the adjacent views. According to practical 3D
warping, we have

EUf½S̄U � ŜU �
2g

� w2
AðEf½HA�4V ðSAÞ � HA�4V ðŜAÞ�

2g

þ Ef½HA�4V ðŜAÞ � ĤA�4V ðŜAÞ�
2gÞ

þw2
BðEf½HB�4V ðSBÞ � HB�4V ðŜBÞ�

2g

þ Ef½HB�4V ðŜBÞ � ĤB�4V ðŜBÞ�
2gÞ

þ 2wAwBEf½HA�4V ðSAÞ � HA�4V ðŜAÞ�

� ½HB�4V ðSBÞ � HB�4V ðŜBÞ�g

þ 2wAwBEf½HA�4V ðŜAÞ � ĤA�4V ðŜAÞ�

� ½HB�4V ðŜBÞ � ĤB�4V ðŜBÞ�g, (5)

where HA-V() and HB-V() denote the mapping transforms
without any depth loss from view A and view B to the
synthesized view, respectively. ĤA-V() and ĤB-V() denote
the mapping transforms with quantization-induced depth
loss from view A and view B to the synthesized
view, respectively. Eq. (5) is a reasonable approxim-
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Fig. 1. Depth-image-based view synthesis.
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ation for the practical view synthesis (see Appendix A). In
the view synthesis, since n̂U/nSE1, as analyzed in
Appendix A, we have

DV � w2
AðDA þ DDAjdepth_AÞ þw2

BðDB þ DDBjdepth_BÞ

þ 2 �wAwBðDAB þDDABjdepth_ABÞ þ DG (6)

with

DA ¼ Ef½SA � ŜA�
2g,

DB ¼ Ef½SB � ŜB�
2g,

DAB ¼ Ef½SA � ŜA� � ½SB � ŜB�g,

DDAjdepth_A ¼ Ef½HA!V ðŜAÞ � ĤA!V ðŜAÞ�
2g,

DDBjdepth_B ¼ Ef½HB!V ðŜBÞ � ĤB!V ðŜBÞ�
2g,

DDABjdepth_AB ¼ Ef½HA!V ðŜAÞ � ĤA!V ðŜAÞ� � ½HB!V ðŜBÞ � ĤB!V ðŜBÞ�g

and

DG ¼ Ef½SV � S̄V �
2g þ 2Ef½SV � S̄V �½S̄V � ŜV �g

þ
n̂O

nS
� EOf½S̄O � ŜO�

2g.

In Eq. (6), there are three types of distortions. First, the
video-coding-induced distortion includes DA, DB and DAB.

DA and DB are 2D video coding distortions. DAB denotes the
correlation distortion between the pixel intensity errors of
two sources reference views. Second, depth-coding-in-
duced distortion includes DDA|depth_A, DDB|depth_B and
DDAB|depth_AB. DDA|depth_A and DDB|depth_B are depth-quanti-
zation-induced warping error distortions for view A and
view B, respectively. DDAB|depth_AB denotes the depth-
quantization-induced warping error correlation distortion
between two sources reference views. Third, the geometry
distortion includes DOG, DCG and DO, where DOG ¼

E{[SV–S̄V]2}, DCG ¼ E{[SV–S̄V][S̄V–ŜV]} and DO ¼ (n̂O/nS) �
EO{[S̄O–ŜO]2}. DOG reflects the distortion caused by the
inherent geometry errors and pixel-position rounding
errors in 3D warping. The possible geometry errors
include depth estimation errors, the depth quantization
errors in the conversion from depth data to depth map,
and inaccurate camera parameters. DCG denotes the
correlations between the inherent geometry errors and
compression-induced geometry errors. In the synthesized
view, geometry occlusions and pixel mapping ambiguities
cause some holes and DO is the distortion introduced by
inpainting these holes.

2.3. View synthesis distortion estimation

Since the captured original image is not available,
several parts in Eq. (6) must be estimated for video/depth
rate allocation application. The video-coding-induced
distortion, including DA, DB and DAB, can be directly
computed during video coding. As for depth-quantiza-
tion-induced distortion and geometry distortion, we
provide the corresponding estimation methods in the
following subsections.

2.3.1. Depth-quantization-induced distortion estimation

Depth-quantization-induced distortion, including
DDA|depth_A, DDB|depth_B and DDAB|depth_AB, can be computed
by twice warping using the original depth and recon-

structed depth. However, this method usually needs
encoding the depth map and synthesizing the view for
many times during the rate allocation. To reduce the
coding times, we propose an estimation method for
DDA|depth_A and DDB|depth_B.

In [29], the distortion due to motion warping error is
characterized by a linear model. It is expressed as

D � jjDnjj2cx, (7)

where Dn is the motion warping error and cx represents
the motion sensitivity factor, which is computed as

cx ¼
1

2 � ð2pÞ2
�

ZZ

ð�p;p�

Sxðo1;o2Þ � ðo2
1 þo

2
2Þdo1do2 (8)

In Eq. (8), Sx(o1, o2) denotes the energy density of the
warping reference frame and (o1, o2) is the two-
dimensional frequency vector. Since the motion warping
error corresponds to linear phase shift in frequency
domain, the distortion introduced by the motion warping
error can be computed as Eq. (7). In depth-based image
warping, depth quantization introduces warping errors in
the warped image. The depth-based image warping is very
similar to the motion warping and hence the depth-
quantization-induced warping error distortion can also be
described by Eq. (7), which is based on the assumption
that the motion error is constant. However, for non-
constant motion errors in one frame, it is also reasonable
that the frame distortion is characterized by Eq. (7) for the
average magnitude of mean-squared motion errors, JDnJ2,
over all samples in the frame [29]. For self-contained
purpose we provide the brief derivation for Eq. (7) in
Appendix B.

In depth coding, the quantization brings the depth loss.
The depth loss further results in the warping error in the
synthesized view image. Fig. 2 shows the relationship
between depth loss and warping error. The left is the
source reference view and the right is the virtual view to
be synthesized. The pixel (uA, vA) in view A corresponds to
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the 3D world point P with depth Z, and it is re-projected
to the pixel (uV, vV) in the virtual view according to
(uV, vV, 1)T

¼ HA-V[Z]m, where m ¼ (uA, vA, 1)T and HA-V[Z]
is the homography matrix at depth Z from the left view to
the virtual view. Due to the quantization of depth map, P

loses DZ and changes into P0. P0 is re-projected to (u0V, v0V) by
(u0V, v0V, 1)T

¼ HA-V[Z]m. Then the warping error Dn is
computed by (Dn, 1)T

¼ HA-V[Z]–HA-V[Z–DZ]m.
Actually, the warping errors in the virtual view

inversely reflect on the sources reference views. Fig. 3
gives the actual warping process with compressed video
and depth. The points P1, P2 and P3 are the actual points in
surface S. Both the pixel at position A of view A and the
pixel at position B of view B correspond to the 3D world
point P2 with depth Z. The point P2 is projected to the pixel
position V1 in virtual view V. Hence, the pixel at position
V1 is interpolated by the pixels at A and B.

In the actual warping, due to the effects of the
compression, the 3D world point P3 with depth ZA1

, which
corresponds to pixel at A1 in view A, loses depth DZA1

and
then changes into P4. The point P4 with depth Z0A1

will
project to the position V1 in the virtual view. Assume that
mV ¼ (uV, vV, 1), where (uV, vV) is the pixel at V1. Then
DnA ¼ ðHV!A½Z� �HV!A½Z �DZA1

�ÞmV , where HV-A[Z] is
the homography matrix at depth Z from the virtual view
to the left view A. Likewise, the 3D world point P1, which
corresponds to the pixel at B1 in view B, loses depth DZB1

and then changes into P5. The point P5 with depth Z0B1
will

also project to the position V1 in the virtual view and
DnB ¼ ðHV!B½Z� �HV!B½Z � DZB1

�ÞmV , where HV-B[Z] is
the homography matrix at depth Z from the virtual view
to the right view B.

For each pixel in the synthesized view image, the
warping error reflected on one source reference image is
expressed as Dni ¼ (Dxi, Dyi)

T, where Dxi is the horizontal
error and Dyi the vertical error. For one image with M�N

resolution, the average magnitude of the mean-squared
warping errors is computed as

jjDnjj2 �

P
ioM�NðDxiÞ

2
þ ðDyiÞ

2

M � N
. (9)

As shown in Appendix B, Eq. (7) is approximated by
first-order Taylor expansion for |1�e�jxDn|2 so that it often
overestimates the warping error induced distortion for

large values of Dn. By comparison, the linear model and
quadratic model are both reasonable approximations to
the actual distortion at low values of Dn [29]. However,
they provide larger estimation errors for large values of
Dn, and the estimation error increases monotonously with
the increasing of Dn. For such a situation, there are two
ways to achieve the further accurate estimation. One is
incorporating more terms of Taylor series expansion for
|1�e�jxDn|2. This method results in high-order polyno-
mials of JDnJ2 in the estimation model, so that the
estimation becomes much more complex. The other
method is introducing a piecewise linear model for large
Dn in terms of the monotonous increment property of
estimation error with increasing of Dn. Since this method
is simple but very effective, we adopt it and establish the
following piecewise linear approximation:

j1� e�jxDnj2 �

jjxDnjj2; if jjDnjj2o2

ða1 � jjxDnjj2 þ b1Þ; if 2 � jjDnjj2o8

ða2 � jjxDnjj2 þ b2Þ; otherwise

8><
>: ,

(10)

where a1 and a2 are linear slopes limited in (0, 1], and b1 and
b2 are constants. These parameters are computed at the
piecewise linear ends of JDnJ2 for small (xDn)2. Quantiza-
tion usually eliminates the high-frequency components, and
therefore (xDn)2 is large only at higher values of Dn. Large
values of Dn have the major effect on |1�e�jxDn|2.

The comparison of linear approximation, piecewise
linear approximation, quadratic approximation and
|1�e�jxDn|2 with increasing JDnJ2 is shown in Fig. 4.
When ||x||2 ¼ 0.78, a1, a2, b1, and b2 are set to 0.65, 0.5,
x2, and 2x2, respectively. These parameters are obtained
by linear fitting with the values of |1�e�jxDn|2 at
JDnJ2

¼ 2 and JDnJ2
¼ 8. Because JDnJ2 is caused by

depth quantization and it is generally less than 15, the
piecewise linear approximation can work well.

According to Eq. (B1) in Appendix B and Eq. (10), the
distortion caused by depth loss for one source reference
image can be rewritten as

DDjdepth �

jjDnjj2cx; if jjDnjj2o2

ða1 � jjDnjj2Þcx þ c1; if 2 � jjDnjj2o8

ða2 � jjDnjj2Þcx þ c2; otherwise

8><
>: (11)
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Fig. 3. The pixel mapping with compressed video and depth (parallel

camera setup). Fig. 4. The comparison of several approximations for |1�e�jxDn|2.
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with c1 ¼ (1/(2p)2)
R R

(�p, p]Sx(o1, o2) � b1do1do2 and
c2 ¼ (1/(2p)2)

R R
(�p, p]Sx(o1, o2) � b2do1do2. In Eq. (11),

DD|depth is the depth-quantization-induced warping error
distortion for one source reference view. Consequently,
DDA|depth_A and DDB|depth_B can be obtained with Eqs. (9)
and (11).

The effect of JDnJ2 on warping error distortion for
Breakdancers is shown in Fig. 5. The experiment is
performed with the warping from view0 to the virtual
view1. The video is encoded at 200 kb/s bit-rate. The
‘‘measured’’ legend denotes that the distortion is the MSE
between the warped frame using original depth and the
one using compressed depth. The other legends denote
the depth-quantization-induced warping error distortions
with the corresponding models, respectively. As shown in
Fig. 5, the depth-quantization-induced warping error
distortion monotonously increases with the increase of
JDnJ2. From the comparison, it can be seen that the
piecewise linear model can work better than the other
models for larger values of JDnJ2.

In the course of computing JDnJ2, twice warping using
original depth and compressed depth are performed. At the
same time of twice warping, the depth-quantization-caused
warping error correlation distortion between the two sources
reference views, DDAB|depth_AB, can be obtained.

2.3.2. Geometry distortion estimation

In Eq. (6), the geometry distortion includes three parts,
namely DOG, DCG and DO. DOG mainly reflects the inherent

geometry error effects and the pixel-position rounding
effects. Without any priori knowledge, it is very hard to be
accurately estimated. Fortunately, it is independent of the
compression effect on view synthesis. In multiview
camera setup, the same scene is captured by different
cameras and hence the behaviors of geometry noise and
pixel-position rounding for different view syntheses are
very closely related to their baselines. For example, the
view synthesis with wide-baseline has larger value of DOG

than the view synthesis with small baseline.
Assume that the captured view0 (view9), view2

(view11), and view4 (view13) exist, and view1 (view10)
is the virtual view, as shown in Fig. 6. Let DOG_view1 denote
DOG for view1 synthesized by view0 and view2, and
DOG_view2 denotes DOG for view2 synthesized by view0 and
view4. For Breakdancers and Ballet, statistical results show
that DOG_view1/DOG_view2 is approximately equal to 0.7, as
shown in Table 1. As for Book Arrival, DOG_view1/DOG_view2 is
approximately equal to 0.5. Thus, DOG_view1 can be
approximately scaled by the already known DOG_view2.

Though the assistant view synthesis can be found, the
DOG ratio between the current virtual view synthesis and
the assistant view synthesis is not known in advance.
Here, we set it with a constant value according to the
specific relation between the current virtual view synth-
esis and the assistant view synthesis. This leads to a
certain degree of estimation deviation. However, since DOG

is uncorrelated with the compression effect on view
synthesis, it does not affect the identification of the
optimal quantization pair in video/depth rate allocation.

DCG is a part of compression-related distortion, which
mainly reflects the correlations between the inherent
geometry error and the compression-induced geometry
error. Generally, it is a minus value. In small-baseline
camera setup, with the same compression grade for all
sources reference views, statistical results show that the
values of DCG for different view syntheses are proportional
to their spatial relations. Fig. 7 shows the values of DCG for
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Fig. 5. Depth-quantization-induced distortion varies with mean-squared

warping error.

0 1 2

view

(9) (10) (11) (12) (13)

3 4

Fig. 6. The position relations among different views. In the experiments, the views for Breakdancers and Ballet correspond to view0–view4, and the views

for Book Arrival correspond to view9–view13. The arrow denotes the 3D warping.

Table 1
Statistical results of DOG for different view syntheses.

Sequence DOG_view1 DOG_view2 DOG_view1/DOG_view2

Breakdancers 72.08 102.17 0.705

Ballet 93.02 132.51 0.701

Book Arrival 23.20 43.45 0.533
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Breakdancers and Book Arrival. In Fig. 7, the videos are
compressed with QP ¼ 37. It shows that the value of DCG

for view1 is approximately half of that of view2. This just
matches the baseline relation between the view1 synth-
esis and the view2 synthesis. Using this approximate
relation, DCG for synthesizing view1 by compressed view0
and view2 can be estimated from that for synthesizing
view2 by compressed view0 and view4.

In the view synthesis, inpainting the occluded areas
also contributes a part to the total distortion. Though the
holes by pixel mapping or occlusion are not very large, the
distortion introduced by them cannot be neglected. In
multiview camera array, the occlusion between the
adjacent views is related to their spatial relations. Based
on this property, occlusion-processing-induced distortion,
DO, for the virtual view can be obtained using the adjacent
view synthesis. According to multiview geometry, the
occlusion between two views is usually proportional to
their baselines. Correspondingly, the occlusion-incurred
distortion in the synthesized view1 is approximately a
half of that of the synthesized view2. We first synthesize
view2 using compressed view0 and view4, which are
compressed with the same QP as the sources reference
views of the virtual view1, to achieve the occlusion-
processing-induced distortion for view2. Then the occlu-
sion-processing-induced distortion for the virtual view1 is
scaled by this achieved distortion. Since the sources
reference views of the assistant view synthesis have the
same compression grade as those of the current virtual
view synthesis, a part of occlusion-processing-induced
distortion, which is caused by depth-compression-in-
duced ambiguous pixel mapping, is also approximately
scaled.

All parts of geometry distortions are estimated from
the already known assistant view syntheses. With the
multiview camera setup, we are always able to find the
assistant view syntheses, such as synthesizing view2
using uncompressed view0 and view4, and synthesizing
view2 using compressed view0 and view4 in Fig. 6, to
estimate the geometry distortion.

Geometry distortion highly depends on the specific
camera setup. When the virtual view synthesis happens
with a very small baseline, the occluded area is very tiny
and the occlusion-processing-induced distortion can be
neglected. The distance between the assistant view
synthesis position and the virtual view position also has
a great effect on the geometry distortion. At the present

time, we restrict this distance to no more than twice the
interval between two adjacent views. For Breakdancers

and Ballet [6], the cameras are on an arc line with a small
angle and the baseline between two adjacent views is
generally less than 20 cm. For Book Arrival sequence [30],
the cameras are parallel and the baseline is about 6.5 cm.
Since the view synthesis quality becomes worse with the
increase of baseline, our geometry distortion can get the
efficient estimation when the baseline of view synthesis is
no more than twice the interval between two adjacent
views.

3. Joint video/depth rate allocation based on view
synthesis distortion model

The video plus depth representation is able to provide
the high quality view synthesis for 3D video and free-
viewpoint video applications. As for the 3D broadcast
application, the virtual viewpoint position is usually fixed
and already known in advance at server side. In free-
viewpoint video applications, the viewpoint position
information can also be obtained in real time from the
client side. Under the channel bandwidth constraint,
either in 3D video application or in free-viewpoint video
application, the rate allocation between 2D video and
depth has a great influence on the view synthesis quality.
Since the proposed distortion model can evaluate the view
synthesis quality, it can be used to select the optimal
combination of quantized video and depth to maximize
the view synthesis quality.

The rate allocation problem for multiview video and
depth coding is first addressed by Morvan et al. [25],
which proposes to seek the optimal quantization para-
meter pair, (qv

opt, qd
opt), under the total bit-rate constraint

Rc. Here, qv
opt and qd

opt are the optimal quantization
parameters for video and depth. Let Rv, Rd, qv, qd denote
the 2D video bit-rate, depth map bit-rate, 2D video
quantization parameter, depth map quantization para-
meter, respectively. Then this problem is formulated as

ðqopt
v ; qopt

d Þ ¼ arg min
qv ;qd2Q

Dvirtual_viewðqv; qdÞ

subject to Rvðq
opt
v Þ þ Rdðq

opt
d Þ � Rc , (12)

where Dvirtual_view(qv, qd) is the view synthesis distortion
with qv for video and qd for depth, and Q is the candidate
quantization parameter set.

ARTICLE IN PRESS

Breakdancers

-30

-25

-20

-15

-10

30

E
rr

or
 c

or
re

la
tio

n
View1
Half of view2

Book Arrival

-20

-15

-10

-5

0

30

E
rr

or
 c

or
re

la
tio

n

View10
Half of View11

Depth QP
35 40 45 50 55

Depth QP
35 40 45 50 55

Fig. 7. The values of DCG (error correlation denotes DCG value).

Y. Liu et al. / Signal Processing: Image Communication 24 (2009) 666–681672



Author's personal copy

According to Eq. (12), if the video has low quality, the
final synthesis will have low quality no matter whether
the depth is in low or high quality. Contrarily, if the depth
map has low quality, the final synthesis will also have low
quality no matter whether the video has low or high
quality. In practical 3D video applications, depth map is
only side information for view synthesis. However, 2D
video is different from it and usually needs maintaining
higher quality for the purpose of being compatible with
2D video display or reusing for other virtual view
synthesis. Consequently, the joint video/depth rate alloca-
tion optimization problem can be re-defined as

ðqopt
v ; qopt

d Þ ¼ arg min
qv ;qd2Q

Dvirtual_viewðqv; qdÞ

subject to
Rvðq

opt
v Þ þ Rdðq

opt
d Þ � Rc

Rvðq
opt
v Þ � Rthreshold

;

8<
: (13)

where Rthreshold is usually set to Rc/2 for the practical
applications. Based on Eqs. (6) and (13), we propose a
model-based rate allocation strategy for video/depth-
based 3D video coding.

3.1. Two statistical relationships

In our proposed view synthesis distortion model, JDnJ2

and DDAB|depth_AB can be computed in 3D warping using
the original depth map and the compressed depth map.
However, it involves 3D warping and depth coding before
rate allocation. To avoid these complicated works, we

propose two statistical relationships to estimate JDnJ2

and DDAB|depth_AB.

3.1.1. Relationship between JDnJ2 and qd

In the experiment, we observe that the relationship
between JDnJ2 and depth distortion Dd for the whole
frame is approximated as a linear model. It is expressed as

jjDnjj2 ¼ a � Dd, (14)

where a is a constant. At two already known depth coding
points, JDnJ2 can be obtained by twice warping using the
original depth and reconstructed depth, and correspond-
ingly a can be computed. Fig. 8 shows the Dd–Dn model
for Breakdancers with a ¼ 0.17 and Book Arrival with
a ¼ 0.018. In the figure, 2D video is encoded with QP ¼ 37.

The relationship between distortion and quantization
parameter q (D–Q model) is described as Dd ¼ 2552/
10((k � q+n)+10) [31], where k and n are constants. Therefore,
we have the following Dn–qd model:

jjDnjj2 ¼ a � 2552

10ððk�qdþnÞþ10Þ
. (15)

According to the Dn–qd model, JDnJ2 can be estimated
with qd.

3.1.2. Relationship between DDAB|depth_AB and qd

DDAB|depth_AB is caused by the depth compression.
When the video compression grade is fixed, the absolute
value of DDAB|depth_AB increases with the increase of qd.
Statistics show that the relationship between DDAB|depth_AB

and qd_step can be taken as linear, as shown in Fig. 9. Here,

ARTICLE IN PRESS

80

60

40

20

0
0 5 10

M
S

E

M
S

E

Breakdancers

||Δn||2 ||Δn||2
0 0.2 0.4 0.6 0.8 1

60

45

30

15

0

Book Arrival

Fig. 8. Dd–Dn model.

35
30
25
20
15
10

0 50 100 150 200
qd_step qd_step

ΔD
A

B
 | 

de
pt

h_
A

B

ΔD
A

B
 | 

de
pt

h_
A

B

Breakdancers
0

-1
-2
-3
-4
-5
-6

0 50 100 150 200 250

Book Arrival

Fig. 9. The linear relationship between DDAB|depth_AB and qd_step.

Y. Liu et al. / Signal Processing: Image Communication 24 (2009) 666–681 673



Author's personal copy

qd_step denotes the quantization step size. In H.264/AVC,
the relation between qd and qd_step is that qd_step ¼ 2ðqd�4Þ=6.
Hence, the relationship between DDAB|depth_AB and qd can
be expressed as

DDABjdepth_AB ¼ a3 � 2
ðqd�4Þ=6

þ b3, (16)

where a3 and b3 are constants. In Fig. 9, a3 ¼ 0.145 and
b3 ¼ 13.57 for Breakdancers, and a3 ¼ �0.025 and
b3 ¼ 0.12 for Book Arrival.

To guarantee the virtual view synthesis quality, the left
source reference depth and the right source reference
depth generally have the same quantization grade. There-
fore, DDAB|depth_AB can be estimated with qd.

3.2. Model-based rate allocation algorithm

The proposed view synthesis distortion model can
facilitate the rate allocation between video and depth.
Hence, we propose a model-based rate allocation method,
which can be performed as the following steps.

First, find the proper quantization parameter ranges for
2D video and depth map. Given the bit-rate constraint Rc,

the possible bit-rate range of 2D video, [Rv_min(qv_max),
Rv_max(qv_min)], is first found. Here, Rv_min(qv_max) is set to
Rthreshold and Rv_max(qv_min) is set to an upper bound value.
Because Rd_min(qd_max) ¼ Rc–Rv_max(qv_min) and Rd_max

(qd_min) ¼ Rc–Rv_min(qv_max), the possible bit-rate range
[Rd_min(qd_max), Rd_max(qd_min)] and qd range [qd_min,
qd_max] for depth map can be obtained. After that, depth
map is encoded at two bit-rate ends, qd_min and qd_max.

Second, estimate DOG. With the virtual view position,
the assistant view synthesis by uncompressed views can
be determined. DOG can be estimated using the method
provided in Section 2.3.2.

Third, encode 2D videos at qv, where qvA[qv_min, qv_max]
and then compute DA, DB, DAB and the motion sensitivity
factor cx. After that, through 3D warping at two depth rate
ends, two statistical relationships described in Section 3.1
can be established and consequently the model para-
meters a, a3 and b3 for the current 2D video bit-rate point
can be obtained.

Fourth, determine qd for the current 2D video bit-rate
point. According to the bit-rate constraint, we can obtain a
proper bit-rate for depth map. Since the relationship
between the bit-rate R and the reciprocal of quantization
step 1/Qstep can be taken as linear in H.264/AVC [31], qd for
depth map with the known bit-rate can be estimated. The
R–Qstep model is

R ¼
d1

Qstep
þ d2, (17)

where d1 and d2 are constants, which can be computed by
the known R–Q points, Rd_min(qd_max) and Rd_max(qd_min).
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Fifth, estimate the virtual view synthesis distortion
Dvirtual_view(qv, qd) for the current video/depth quantization
pair. Based on the assistant view synthesis with
compressed views, DCG and DO can be first estimated for
the current video/depth quantization pair. Using the
statistical relationships established in the third step,
JDnJ2 and DDAB|depth_AB are then computed for the current
video/depth quantization pair. Subsequently, based on
Eq. (7), DDA|depth_A and DDB|depth_B can also be computed
for the current video/depth quantization pair. With already
obtained DOG, DA, DB and DAB, Dvirtual_view(qv, qd) for the
current video/depth quantization pair can be calculated.

Sixth, let qv ¼ qv+1. If qvrqv_max, go to the third step.

At last, select the optimal (qv
opt, qd

opt) with ðqopt
v ; qopt

d Þ ¼

arg min
qv ;qd2Q

Dvirtual_viewðqv; qdÞ from all quantization pairs.

Compared with the full-search method, we can
summarize that the proposed algorithm has the following
advantages. (1) It involves only one searching-iteration
(2D video iteration) to find the optimal quantization

setting pair. (2) It reduces the depth coding times from
N to 2, where N ¼ qd_max–qd_min. (3) It avoids the view syn-
thesis for M� (N–3)–1 times, where M ¼ qv_max–qv_min. In
model-based rate allocation, the assistant view syntheses
using compressed videos and depth maps are performed
for M times to obtain DCG. In addition to that, one assistant
view synthesis with uncompressed videos and depth
maps for DCG, and the view syntheses for 2M times in
order to determine a, a3 and b3 are also needed. Thus, the
total number of view syntheses is 3M+1 in model-based
rate allocation compared with M�N in full-search
method. (4) It does not need the original viewpoint image
as reference to guide the rate allocation.

Though model-based rate allocation method has the
above merits, it introduces the estimation of the power
spectrum density and consequently incurs additional
computations. Also, its performance is related to the
accuracy of the proposed distortion model. However, the
introduced computational complexity is similar to that of
the view synthesis. Even taking into account the addi-
tional assistant view syntheses, model-based method can
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also save much computational complexity compared with
the full-search method.

4. Experimental results

This section provides the performance analyses of
view synthesis distortion model and rate allocation. The
3D video sequences of Breakdancers, Ballet and Book

Arrival (1024�768) are used in the experiments. As
shown in Fig. 6, the views from 0 to 4 for Breakdancers

and Ballet, and the views from 9 to 13 for Book Arrival are
used. The multiview videos and depth maps are both
coded with simulcast coding using MVC software
JMVM6.0. The specific coding conditions are shown in
Table 2.

4.1. View synthesis distortion model performance

4.1.1. Verification of distortion model

Eq. (6) has been derived as the mathematical des-
cription of virtual view synthesis distortion model in

Section 2.2. It can accurately characterize the virtual view
synthesis distortion, as illustrated in Fig. 10, which shows
the comparisons between the actually measured distor-
tion and the computed distortion for Breakdancers and
Book Arrival. The computed distortion is obtained by
Eq. (6). In Fig. 10, the captured original view at the virtual
view position is assumed to be existed. The sources
reference videos and depth maps are coded with QP ¼ 37
and 35, respectively.

4.1.2. Distortion model estimation accuracy

Since several parts in the view synthesis distortion
model must be estimated, this subsection verifies the
estimation accuracy of the proposed view synthesis
distortion model. Fig. 11 shows the comparison between
the estimated distortion and the measured distortion for
view1 (view10) synthesized by view0 (view9) and view2
(view11). The measured distortion is evaluated by MSE
between the synthesized image and the original image. In
Fig. 11, the virtual view is synthesized by the video
compressed with QP ¼ 37 and depth compressed with
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QP ¼ 35. The geometry distortion is estimated from that
of the synthesized view2 (view11) by view0 (view9) and
view4 (view13).

In the estimation, the geometry distortion is not
sufficiently described so that the estimated distortion
curve takes on a little jitter. However, the estimated curve
shows the similar trend as the measured curve. Since two
items of the geometry distortion, DOG and DCG, are
obtained using the adjacent view synthesis, the multiview
geometry noise effects and pixel-position rounding effects
characterized by them are only approximately estimated.
Actually, if we can get very perfect geometry information
so that SVES̄V, DOG and DCG will disappear. Once these two
parts of distortions are both removed, the accuracy of the
proposed view synthesis distortion model can be greatly
improved. Additionally, the current model does not
consider the impacts of illumination and color incon-
sistencies among views on the view synthesis. These

factors also affect the actual view synthesis and make the
estimated distortion with a little deviation from the actual
distortion.

Fig. 12 illustrates the estimated PSNR performances at
different depth QP points of the sources reference
views. The source video QP is unchanged with QP ¼ 37.
Fig. 12 shows that the average estimation error, in terms of
PSNR, is less than 0.6 dB. From Fig. 12, it can also be
observed that both the estimated distortion and the
measured distortion monotonously decline with the
increasing of depth QP. This monotonous changing
property of the estimation model can assist the video/
depth rate allocation.

Fig. 13 shows the comparison of the estimated PSNR
and measured PSNR for different rate pairs at the fixed
total rate point (here, Rthreshold ¼ 0). In Fig. 13, the
distortion model overestimates the actual distortion so
that the estimated PSNR curve is lower than the measured
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PSNR curve. Since our distortion estimation for rate
allocation only involves identification of the optimum
quantization parameter combination between video and
depth, a certain degree of inaccuracy in the estimated
distortion can be tolerated. It can be observed that the
distortion model can differentiate different qualities for
the synthesized view with different video/depth quanti-
zation combinations.

4.2. Rate allocation performance

In this section, we provide the performance analysis of
the proposed model-based rate allocation. The sequence-
level rate allocation performance is verified in the
experiments. Three anchors are used in the experiments.
The first is full-search rate allocation method. This
method iteratively searches the possible video/depth
quantization pairs to find the optimal rate allocation.
The second is hierarchical-search rate allocation method.
This method performs a coarse-to-fine searching in all
candidate video/depth quantization pairs through a
hierarchical-search pattern. Either full-search method or
hierarchical-search method, the search-based method
selects the optimal quantization pairs via constructing a
joint video and depth rate-distortion surface. The third is
constant rate allocation with the predefined ratio of 5:1
between 2D video bit-rate and depth bit-rate [11].

Fig. 14 shows the performance comparisons for
different rate allocation methods. In Fig. 14, the PSNR
represents the distortion of the synthesized view. Since
the coding structure, the coded frame number, the total
bit-rate description (x-axis in Fig. 14), and especially the
view synthesis position, are different from those in Ref.
[25], the RD curve in Fig. 14 has some differences from
that in [25].

From Fig. 14, it can be seen that model-based method
has almost the identical rate allocation performance as
search-based (full-search and hierarchical-search) meth-
ods. In model-based rate allocation, the distortion model
sometimes only finds the sub-optimal quantization
pairs because the estimation is not accurate enough at
those points and it hence has a little performance loss
compared with the full-search method. The full-search
method finds the optimal balance between video and
depth bit-rates for each bit-rate point of the synthesized
view, by traversing all quantization combinations of video
and depth. Evidently, the full-search method is more
robust.

For the three sequences, it can be seen that search-
based or model-based method improves the compression
performance about 0.3–1 dB over the fixed ratio 5:1
method. It illustrates that the joint video/depth rate
allocation optimization can achieve a compression per-
formance improvement over the constant video/depth
ratio rate allocation. In Fig. 14(c), since the original
estimated depth maps are not very perfect, the depth
compression has a smaller effect on the virtual view
synthesis quality compared to that of video compression.
Hence, the fixed ratio 5:1 rate allocation method presents
better compression performance.

4.3. Computational complexity analysis

To compare the complexities of different rate alloca-
tion methods, we execute different methods on a PC with
3.2 GHz Single Core Pentium(R) CPU and 1 GB RAM. Fig. 15
shows the computational time comparisons between
model-based method and search-based method. Here,
2D video and depth are offline encoded for 100 frames,
and the computational time of rate allocation does not
include the coding time.

Compared with full-search method, model-based
method does not need encoding all quantization pairs.
The computational time of model-based method is far less
than that of full-search method. It is worth noting that the
time required by full-search method depends on the
number of iterations. The more iterations are performed,
the more view synthesis operations are involved. In the
experiment, the iteration number of full-search method is
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M�N, where M ¼ qv_max–qv_min ¼ 28 and N ¼ qd_max

–qd_min ¼ 28. In Fig. 15, at low bit-rate, the bit-rate range
is reduced due to the low bit-rate constraint so that the
iteration number is reduced, and thus the timing cost at
low bit-rate is lower than that at high bit-rate.

For model-based method, it only needs M iterations.
For each iteration, it only needs power spectra density
estimation and the assistant view synthesis. The video
power spectra density estimation involves finding the
Fourier transform of a windowed autocorrelation estimate
[32] so that it is also a time-consuming work. In our
experiment, the view synthesis has the similar complexity
with the power spectra density estimation. The assistant
view synthesis needs to be performed M+1 times. If we
regard the power spectra density estimation as one view
synthesis in the sense of complexity, the total number of
view synthesis in model-based method is also far less
than that of full-search method. As a result, model-based
rate allocation can save much more computations than
full-search method.

In the experiment, hierarchical-search method makes
use of the 3�3 search pattern [25] to reduce the search
points by a coarse-to-fine mode. However, it also involves
two-dimensional recursive searching. For a full-search
with M�N iterations, hierarchical-search usually per-
forms about M�N/4 iterations. By comparison, model-
based method performs about M iterations. In hierarch-
ical-search method, one view synthesis is needed in each
iteration. Taking into account the cost of power spectra
density estimation, the assistant view synthesis and the
twice warping for estimating the statistical models,
model-based method will consume about 3M+1 view
syntheses. At low bit-rate, since N is smaller than 12, the
model-based method consumes more time than the

hierarchical-search method. However, at high bit-rate,
N is much larger than 12, and model-based method has
less computational complexity than the hierarchical-
search method, as illustrated in Fig. 15.

In sequence-level rate allocation experiments, though
the coding iterations in model-based method are greatly
reduced, the coding still consumes a huge amount of time
compared to the rate allocation process. In model-based
rate allocation, the ratio of coding time to rate allocation
time is approximately equal to 14:1. Since our experi-
ments aim at rate allocation complexity reduction, the
coding is not optimized for speed. When fast video
encoding with multi-core chips is adopted, the proposed
rate allocation method will present the significant effect
on the total complexity reduction.

5. Conclusion

This paper proposes a joint video/depth rate allocation
method based on view synthesis distortion model for 3D
video coding. The proposed view synthesis distortion model
takes into account three types of dominating distortion
contributions in the view synthesis, namely the video-
coding-induced distortion, the depth-quantization-induced
distortion and the geometry distortion. With the distortion
model, the actual distortion for the intermediate view can be
approximately estimated in absence of the original reference
view. Given the channel rate constraints, the proposed rate
allocation method can find the optimal trade-off between
depth bit-rate and video bit-rate to maximize the view
synthesis quality. Experimental results indicate that, com-
pared with full-search method, the proposed method can
optimize the joint video/depth rate allocation with less
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computational complexity. At high bit-rate, the proposed
method also consumes less computational cost than hier-
archal-search method while providing almost the same rate
allocation performance.

The proposed distortion model is sufficiently accurate
for sequence-level rate allocation. However, it needs to
further promote the estimation accuracy to increase the
rate allocation reliability. For real-time 3D video application
on variable bit-rate (VBR) channel, the GOP-level or frame-
level rate control is very important for guaranteeing the
service quality. In the future, we shall consider promoting
the model accuracy with more precise geometry informa-
tion and investigate the efficiency of the proposed method
for 3D video GOP-level rate allocation on VBR channel.

Acknowledgements

This work was supported in part by the National Basic
Research Program of China (973 Program) under Grant
2009CB320905, and National Natural Science Foundation of
China under Grant 60736043 and 60833006. The authors
would like to thank Microsoft Research for providing the 3D
video sequences of Ballet and Breakdancers, and thank
Fraunhofer HHI for providing the 3D video sequence of Book

Arrival. The authors also would like to thank the editors and
anonymous reviewers for their valuable comments.

Appendix A. Proof of Eq. (5)

To facilitate understanding, we first provide some
nomenclatures for the virtual view synthesis in Fig. 1. ŜA

and ŜB are the compressed images of the left view and the
right view, respectively; SUA

and SUB
are the partial original

signals come from the left view and the right view,
respectively; ŜUA

and ŜUB
are the partial compressed

signals come from the left view and the right view,
respectively; n̂U denotes the number of pixels in the un-
occluded area in the virtual view image synthesized by
the compressed images of the adjacent views, n̂O denotes
the number of pixels in the occluded area in the virtual
view image synthesized by the compressed images of the
adjacent views; nS denotes the image spatial resolution;
EU{ � } denotes the expectation taken over the pixels in the
un-occluded area; E{ � } denotes the expectation taken
over all pixels in one image.

According to the specific view synthesis process, the
un-occluded area in the virtual view is generally blended
by the partial signals of sources reference views. There-
fore, the compression-induced view synthesis distortion
in the un-occluded area is

EUf½S̄U � ŜU �
2g

¼ EUf½wAHA!V ðSUA
Þ þwBHB!V ðSUB

Þ

�wAĤA!V ðŜUA
Þ �wBĤB!V ðŜUB

Þ�2g

¼ EUf½wAðHA!V ðSUA
Þ � ĤA!V ðŜUA

ÞÞ�2g

þ EUf½wBðHB!V ðSUB
Þ � ĤB!V ðŜUB

ÞÞ�2g

þ 2wAwBEUf½HA!V ðSUA
Þ � ĤA!V ðŜUA

Þ�

� ½HB!V ðSUB
Þ � ĤB!V ðŜUB

Þ�g

¼ w2
AEUf½HA!V ðSUA

Þ þ HA!V ðŜUA
Þ

� HA!V ðŜUA
Þ � ĤA!V ðŜUA

Þ�2g

þw2
BEUf½HB!V ðSUB

Þ þ HB!V ðŜUB
Þ

� HB!V ðŜUB
Þ � ĤB!V ðŜUB

Þ�2g

þ 2wAwBEUf½HA!V ðSUA
Þ þ HA!V ðŜUA

Þ

� HA!V ðŜUA
Þ � ĤA!V ðŜUA

Þ�

� ½HB!V ðSUB
Þ þ HB!V ðŜUB

Þ

� HB!V ðŜUB
Þ � ĤB!V ðŜUB

Þ�g, (A1)

where, as defined in Section 2.2, HA-V() and HB-V()
denote the mapping transforms without any depth loss
from view A and view B to the synthesized view,
respectively. ĤA-V() and ĤB-V() denote the mapping
transforms with quantization-induced depth loss from
view A and view B to the synthesized view, respectively.

In Eq. (A1), HA!V ðSUA
Þ � HA!V ðŜUA

Þ and HA!V ðŜUA
Þ �

ĤA!V ðŜUA
Þ are independent errors, and HB!V ðSUB

Þ �

HB!V ðŜUB
Þ and HB!V ðŜUB

Þ � ĤB!V ðŜUB
Þ are also uncorre-

lated. Also, HA!V ðSUA
Þ � HA!V ðŜUA

Þ and HB!V ðŜUB
Þ �

ĤB!V ðŜUA
Þ are uncorrelated. HB!V ðSUB

Þ � HB!V ðŜUB
Þ and

HA!V ðŜUA
Þ � ĤA!V ðŜUA

Þ are uncorrelated. As a result, Eq.

(A1) can be rewritten as

EUf½S̄U � ŜU �
2g

¼ w2
AðEUf½HA!V ðSUA

Þ � HA!V ðŜUA
Þ�2g

þ EUf½HA!V ðŜUA
Þ � ĤA!V ðŜUA

Þ�2gÞ

þw2
BðEUf½HB!V ðSUB

Þ � HB!V ðŜUB
Þ�2g

þ EUf½HB!V ðŜUB
Þ � ĤB!V ðŜUB

Þ�2gÞ

þ 2wAwBEUf½HA!V ðSUA
Þ � HA!V ðŜUA

Þ�

� ½HB!V ðSUB
Þ � HB!V ðŜUB

Þ�g

þ 2wAwBEUf½HA!V ðŜUA
Þ � ĤA!V ðŜUA

Þ�

� ½HB!V ðŜUB
Þ � ĤB!V ðŜUB

Þ�g. (A2)

In the actual view synthesis, for the general scene with
little self-occluding objects, n̂O/nS generally less than 0.05
in small-baseline camera setup so that n̂U/nSE1. Thus

EUf½HA!V ðSUA
Þ� HA!V ðŜUA

Þ�2g � Ef½SA � ŜA�
2g, EUf½HB!V ðSUB

Þ

�HB!V ðŜUB
Þ�2g � Ef½SB � ŜB�

2g, EUf½HA!V ðŜUA
Þ � ĤA!V ðŜUA

Þ�2g

� Ef½HA!V ðŜAÞ � ĤA!V ðŜAÞ�
2g and EUf½HB!V ðŜUB

Þ � ĤB!V

ðŜUB
Þ�2g � Ef½HB!V ðŜBÞ � ĤB!V ðŜBÞ�

2g, we can get

EUf½S̄U � ŜU �
2g

� w2
AðEf½HA!V ðSAÞ � HA!V ðŜAÞ�

2g þ Ef½HA!V ðŜAÞ � ĤA!V ðŜAÞ�
2gÞ

þw2
BðEf½HB!V ðSBÞ � HB!V ðŜBÞ�

2g þ Ef½HB!V ðŜBÞ � ĤB!V ðŜBÞ�
2gÞ

þ 2wAwBEf½HA!V ðSAÞ � HA!V ðŜAÞ� � ½HB!V ðSBÞ � HB!V ðŜBÞ�g

þ 2wAwBEf½HA!V ðŜAÞ � ĤA!V ðŜAÞ� � ½HB!V ðŜBÞ � ĤB!V ðŜBÞ�g.

(A3)

Appendix B. Proof of Eq. (7)

Assume that due to the constant motion error, the
block signal fx with Fourier spectrum Px(x) turns into
fy with Fourier spectrum Py(x). Since motion error
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corresponds to linear phase shift in frequency domain, we
have Py(x) ¼ Px(x)e�jxDn, where x ¼ (o1, o2) is the
frequency vector, and Dn the motion error vector.
According to the Parseval’s theorem, the total squared
error DS for fx caused by motion error is given by

DS ¼
1

ð2pÞ2

ZZ

ð�p;p�

SxðxÞ � j1� e�jxDnj2do1do2, (B1)

where Sx(x) is the energy density of fx. Via the first-order
Taylor series expansion approximation for |1�e�jxDn|2 in
(xDn)2 yields

DS �
1

ð2pÞ2

ZZ

ð�p;p�

SxðxÞðxDnÞ2do1do2

� ðDxÞ2c1 þ ðDyÞ2c2 þ ðDxDyÞc1;2 (B2)

with c1 ¼ (1/(2p)2)
R R

(�p, p]Sx(o1, o2) �o1
2do1do2, c2 ¼

(1/(2p)2)
R R

(�p, p]Sx(o1, o2) �o2
2do1do2 and c1,2 ¼ (2/(2p)2)R R

(�p, p]Sx(o1, o2) �o1o2do1do2.
Expressing Dn in polar coordinates, Eq. (B2) changes

into Ds ¼ JDnJ2cx(yDn), where cx(yDn) ¼ c1cos2(yDn)
+c2sin2(yDn)+c1,2cos(yDn)sin(yDn), and it represents the
motion sensitivity at the orientation of yDn. Since a natural
image often exhibits isotropic power spectra, the sensi-
tivity to motion error can be represented by the average
sensitivity cx over all motion error orientations. That is
cx ¼ (1/(2p))

R
�p

pcx(yDn)dyDn ¼ (c1+c2)/2. Therefore, for
small and constant motion errors, we have

Ds ¼ jjDnjj2cx. (B3)
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