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A Spatio-Temporal Auto Regressive Model for
Frame Rate Upconversion
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Abstract— This paper proposes a spatio-temporal auto regres-
sive (STAR) model for frame rate upconversion. In the STAR
model, each pixel in the interpolated frame is approximated
as the weighted combination of a sample space including the
pixels within its two temporal neighborhoods from the previous
and following original frames as well as the available interpo-
lated pixels within its spatial neighborhood in the current to-
be-interpolated frame. To derive accurate STAR weights, an
iterative self-feedback weight training algorithm is proposed.
In each iteration, first the pixels of each training window in
the interpolated frames are approximated by the sample space
from the previous and following original frames and the to-be-
interpolated frame. And then the actual pixels of each training
window in the original frame are approximated by the sample
space from the previous and following interpolated frames and
the current original frame with the same weights. The weights
of each training window are calculated by jointly minimizing
the distortion between the interpolated frames in the current
and previous iterations as well as the distortion between the
original frame and its interpolated one. Extensive simulation
results demonstrate that the proposed STAR model is able to
yield the interpolated frames with high performance in terms of
both subjective and objective qualities.

Index Terms— Auto regressive model, frame rate upconversion,
self-feedback, training window.

I. INTRODUCTION

HE EXPLOSIVE growth of image sources and
display devices in the consumer market, due to the
rapid development of advanced television and multimedia
techniques, has placed a high demand on the conversion
between various video formats. Frame rate upconversion
(FRUC) is a widely investigated technique to upconvert the
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temporal resolution of video sequences. FRUC has many
applications, among which the most practical one is format
conversion (for example from 24frames/s film content to
30frames/s video content, or from 50 fields to 60 fields/s).
Besides format conversion, FRUC is also applicable to low-
bitrate video coding [1], in which one can reduce the frame
rate to the half or even lower ratio of its original, and then only
encode the low rate frames with better visual quality. At the
decoder side, FRUC can be performed to restore the original
temporal resolution with higher visual quality. In addition,
FRUC may be of great help for slow-motion playback and the
rate allocation policy of a scalable video coding scheme [2].

Numerous FRUC algorithms have been developed to up-
convert the frame rates. A straightforward FRUC is to simply
combine adjacent video frames, e.g., frame repetition or frame
averaging (FA) [1], in which object motion is not taken into
account. Thus, this method works well only if there is little or
no motion between adjacent frames. As the intensity of motion
increases, frame repetition will cause jerk, and the resulting
image will look very choppy or unsmooth. In addition, by
applying FA, the image will look blurred when motion occurs,
and sometimes ghost artifacts can be perceived.

Contrary to frame repetition or FA, another kind of FRUC
methods performs frame interpolation along the motion
trajectory to achieve better visual quality [1]-[19]. This
method is called MC-FRUC (motion compensation-FRUC).
Since the accuracy of motion estimation (ME) plays a
significant role in MC-FRUC, many algorithms have been
developed to derive more accurate motion vectors. Among
them the block-matching algorithm (BMA) has broad
application in MC-FRUC [3], [4]. Since motion vectors
derived by BMA are often not accurate enough, several
approaches for more faithful ME have also been proposed
in recent works [5]-[7], [9]. Haan et al. [9] proposed a 3-D
recursive search (3-DRS) method to obtain accurate motion
vectors. Choi et al. [5] proposed a FRUC algorithm using
bidirectional ME to derive more faithful motion vectors.
A hierarchical MC technique was also proposed in [6] to
achieve better visual quality. Both these methods in [5]
and [6] outperform BMA. However, they are both based on
the assumption of translational motion with constant velocity,
which is not always true. In [7], constant acceleration was
exploited to derive more reliable motion trajectories. However,
the assumption of constant acceleration does not always hold
for all the regions, e.g., for the regions of nonrigid objects.

Different from ME process in video coding [20], ME
is performed with the absence of actual frames in FRUC.
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Hence, the derived motion trajectory may be not consistent
sometimes. To resolve such a problem, many motion vector
postprocessing methods are proposed to smooth the motion
field and improve the subjective perception [3], [7], [8]. What
is more, for the areas with small objects, irregular shaped
objects, and object boundaries, fixed size block MC usually
does not work well. To deal with this situation, variable size
block MC was proposed to reconstruct the edge information
with higher quality [13]. Furthermore, overlapped block MC
(OBMC) [21] is applied to suppress the blocking artifacts
that are usually observed when a block has a significantly
different motion vector compared with its neighboring blocks.
However, OBMC may sometimes oversmooth the edges of
the image and thus degrade the image quality. To reduce the
oversmooth effect of OBMC, Choi et al. [13] proposed an
adaptive OBMC (AOBMC), in which OBMC coefficients were
adjusted according to the reliability of neighboring motion
vectors. However, AOBMC still has poor ability to represent
some complex motions, such as zooming, rotation, and local
deformations.

So far, all these algorithms are still unsatisfactory for FRUC
practical applications due to the aforementioned underlying
problems. Auto regressive (AR) model [22], which is able
to estimate the noise covariance function even on very short
record of data, may give us some inspiration to further improve
the quality of the interpolated frames. AR has been applied
in many image processing applications, such as detecting
and interpolating “dirt” areas in image sequences [23], [24],
ME [25], super-resolution [26], forecasting of spatio-temporal
data [27], as well as backward adaptive video coding [28]. All
these AR models achieved good performance in their corre-
sponding fields, due to the superior properties of exploiting
redundancies in the spatial or temporal domains. Since the
quality of the interpolated frames in FRUC heavily relies on
the extent of redundancy exploiting, it would be very desirable
to apply AR in FRUC.

Based on the inspirations mentioned above, in this paper
a spatio-temporal AR (STAR) model is proposed to perform
FRUC. By extending our previous work [29], in the STAR
model each pixel in the interpolated frame is approximated
as the weighted combination of a sample space including
the pixels within its two temporal neighborhoods from the
previous and following original frames as well as the avail-
able interpolated pixels within its spatial neighborhood in
the current to-be-interpolated frame. In addition, an iterative
self-feedback weight training method is proposed to derive
accurate STAR weights. In each iteration, first the pixels
of each training window in the interpolated frames are ap-
proximated as a weighted combination of the sample space
including the pixels within its two temporal neighborhoods
from the previous and following original frames as well as
the available interpolated pixels within its spatial neighbor-
hood in the current to-be-interpolated frame. Then the actual
pixels of each training window in the original frame are
approximated by the sample space from the previous and
following interpolated frames and the current original frame
with the same weights. The STAR weights for each training
window are finally derived by jointly minimizing the distortion
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between the interpolated frames in the current and previous
iterations as well as the distortion between the original frame
and its approximated frame. Due to the property of the
self-feedback weight training, more accurate weights can be
obtained. Consequently, the STAR model is able to consider
the nonstationary statistics of video signals, and thus can
resolve the challenging problems, such as zooming, panning
and nonrigid objects, quite well. In addition, the temporal
qualities of the interpolated frames are improved, since the
interpolated pixels are generated as a weighted summation of
the pixels within a spatio-temporal neighborhood with more
accurate weights and thus can make the interpolated frames
much smoother.

The remainder of this paper first gives a brief introduction
of the related works in Section II, including traditional MC-
FRUC methods as well as AR models. In Section III, the
detailed description of the proposed STAR model is presented.
The self-feedback weight training method is presented in
Section IV. The experimental results and analysis are provided
in Section V. Finally, this paper is concluded in the last
section.

II. RELATED WORKS

In this section we will give a brief introduction on the
related works: MC-FRUC and auto regressive model.

A. MC-FRUC

MC-FRUC outperforms the frame repetition and FA meth-
ods due to the exploiting of motions between successive
frames. In MC-FRUC, each frame to be interpolated is divided
into blocks, and then each block is motion-compensated using
the motion information related to the previous and following
frames. According to the type of motion compensation, MC-
FRUC can be categorized into motion compensation interpo-
lation (MCI), OBMC [14], and AOBMC [13].

Let ﬁt (x,¥), Fi—1 (x,y), and F;41 (x, y) denote the pixels
in the interpolated frame, the previous, and the following
frames located at spatial location (x, y), respectively. Then,
the interpolation by MCI can be expressed as

A 1
Ft(xay)ZE(Ft—l (x+vmy+vy)
+Frq1 (x — vy, y —vy)) (1)

where v, and v, represent the motion vectors pointing to
the previous frame in the horizontal and vertical directions,
respectively. From (1), we can see that in MCI, each block
is assumed to experience a translational motion. However,
since some objects in video sequences may be irregular and
the adjacent blocks may have significantly different motion
vectors, serious blocking artifacts may be perceived in the
interpolated frames generated by MCIL

To reduce the blocking artifacts, OBMC [14] was proposed
by positioning overlapped blocks from a reference frame using
a weighting window. As illustrated in Fig. 1, suppose the
top left four neighboring blocks V1, V2, V3, and V4 have
separate motion vectors (le, vly), (DZX, uzy), (v3x, 1)3),), and
(v4x, 1)4),), respectively. Then, the pixels in region A, which
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overlaps the four blocks V1, V2, V3, and V4, are interpolated
by
4

F, (x,y) = (Z Fi (X + 0ix, Y +Uiy)

i=1
+ Fi41 ()C —Vix, Yy — Diy))/g- )

The pixels in region B, which overlaps two blocks V3 and
V4, are interpolated by

4

ﬁt (x,y)= (ZFI—I ()C +Uix’y+0iy)

i=3
+ Fry1 ()C —Vix, Yy — Uiy))/4- 3

The pixels in region C, which only overlaps one block V4,
are interpolated by

Fy (x,9) = (Fi=1 (x + vax, y + vay)
+Fi1 (x —V4x, Yy — U4y)) /2~ 4

When motion activities are low, OBMC can effectively re-
duce blocking artifacts and provide good visual quality. How-
ever, OBMC may yield blurring or oversmoothing artifacts if
the adjacent blocks have substantially different motions.

To overcome the shortcomings of OBMC, Choi et al. [13]
proposed an AOBMC, in which the weighting coefficients
are adjusted adaptively according to the reliabilities of the
neighboring motion vectors. In their work, the reliability of
the neighboring motion vector v; 4, j+, for the prediction of
the current block B; ; is defined as

. _ SBAD[Bij,v;]
Bijlvivri+al = SpAD [Bij vitp.j+q]

(&)

where SBAD [B,; i ui,j] represents the sum of bilateral ab-
solute difference when applying v; ; for current block B; ;. It
achieves better visual quality than that generated by OBMC
for the majority of cases. However, for some complex motions,
such as zooming, rotation, and local deformation, AOBMC is
still not able to represent them well.

B. MC-FRUC Auto-Regressive Model

AR model has been widely investigated in image and video
applications. In [23], [24], AR was exploited to detect and
interpolate the missing data in images based on its property of
handling the fine detail and accounting for intensity variation.
In [25], [26], AR was exploited to perform ME and super-
resolution, where each pixel was predicted to be a linear
combination of pixels in a spatial neighborhood in the same
frame. AR was also used in data acquisition: e.g., an AR model
concerning spatio-temporal data with a short observation his-
tory was proposed for forecasting data [27], in which each
pixel was predicted as the linear combination of neighboring
pixels in the previous frame. In [28], Li proposed a backward
adaptive video coding exploiting AR model, where each pixel
was predicted not only from the pixels in the previous frames
but also from the pixels in the current frame.

1291

1% V2
v | Bl €
V4

Fig. 1. Tllustration of OBMC.

All these an AR models have made a great success in the
above-mentioned fields. And it seems to be a good choice to
apply an AR model to enhance the quality of the interpolated
frame in FRUC. However, if we apply an AR model in
FRUC, two problems must be solved: how to approximate the
actual pixels in the interpolated frames by more efficiently
exploiting the information in the spatio-temporal domains,
and how to derive more accurate weights with the absence
of the actual pixels in the interpolated frame. For the first
problem, we propose that each pixel in the interpolated frame
is approximated as a weighted combination of a sample space
including the pixels within its two temporal neighborhoods
from the previous and following original frames as well as the
available interpolated pixels within its spatial neighborhood in
the current to-be-interpolated frame. For the second problem,
a self-feedback weight training method is proposed to derive
more accurate weights.

III. SPATIO-TEMPORAL AUTO-REGRESSIVE MODEL

In the proposed STAR model, each to-be-interpolated frame
is divided into nonoverlapped training windows, each of which
is trained separately and different weights are applied to
different training windows. In each training window with the
size W, x W,, the pixel located at (k, /) will be interpolated
by the STAR model as

Roi(h)= D> Ralk+u,l+0v)x W, (u,v)

—L<(u,0)<L

+ ZZ Ry (k4 u,l +0v) x Ws (u,0)

—L<(u,0)<L

+ ZZ Ri_ k+u,l +v) x W (u,v)
{v<0,—L<u<L}
U{o=0,u <0}

(6)

where R,_; (k, I) represents the interpolated pixel at (k, /) in
the training window Iét_ 1, Ri—p (k,1) and R; (k,[) represent
the actual pixels in the original low rate frames at time
instances ¢ —2 and t, respectively, and L is the spatio-temporal
order of the STAR model. Here W, (1, v) and Wy (u, v) repre-
sent the STAR weights corresponding to the temporal neigh-
borhoods, denoted by the solid circle in Fig. 2, in the previous
and following frames, respectively. W;(u,v) represents the
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t+1 Rt+2

Fig. 2. STAR model with spatio-temporal order L = 1. The solid circle and
triangle represent the actual pixel and interpolated pixel, respectively.

Rt—l Rt Rt+1

Fig. 3. Self-feedback interpolation for the weight training. The hollow circle
represents the already interpolated pixel within the to-be-interpolated frames
t—1 and 741, and the solid triangle represents the approximated pixel within
the original frame ¢.

STAR weight corresponding to spatial neighborhood, denoted
by the solid triangle in Fig. 2, in the current to-be-interpolated
frame. Note that due to the piecewise stationary characteristics
of natural image, the STAR weights are assumed to be the
same for all the pixels within each training window Ié;_l.

According to (6), the quality of the to-be-interpolated frames
heavily relies on the accuracy of the STAR weights. The op-
timum STAR weights can be easily computed by minimizing
the mean square error between the actual and the interpolated
pixels according to

ce=F (Rt_] - I%;_])

Wy Wy

= ZZ E |:(Rt—l (k’ l) - Rt—l (k, l))2i| (7)

k=0 =0

where R,_; (k, I) represents the interpolated pixel within the
training window I?,_l and R;_p (k,l) represents the corre-
sponding actual pixel in the original frame r — 1. However,
due to the absence of the corresponding actual pixel in the
original frame #—1 in FRUC, (7) cannot be used to derive these
optimum STAR weights. To address this issue, a self-feedback
weight training algorithm is proposed in the following section.

IV. SELF-FEEDBACK WEIGHT TRAINING

The self-feedback weight training consists of two stages. In
the first stage, the pixels in the training windows Ri—; and
ﬁt+1, as the solid triangles shown in Fig. 2, are interpolated
according to (6). Then in the second stage, the actual pixels in
the corresponding window in frame ¢ are also approximated
by the pixels in the two already interpolated training windows
Ii’[_ 1 and Ié,+ 1 as well as the available interpolated pixels in
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TABLE I
SUMMARY OF THE PROPOSED SELF-FEEDBACK WEIGHT TRAINING
ALGORITHM

initialize RY_| and R,
fori =0 to iMaX—l )
Compute A’ and B' according to (18a) and (19a);

Compute the weight vector wi according to (9);
1 1

Compute 1%;"_'1 and 1@;1’1 according to (6) by W';
Compute Ii’;‘H according to (8) by wi;
Compute D (i) according to (10);
if D (i) < Threshold
break;
end if
end for

the current training window R; with the same weights as in the
first stage (see Fig. 3). This approximation can be described
as follows:

Rik,y= D> Ry (k+u,l+v) x W, (u,0)

—L<(u,v)<L
+ 2.2 Rk+ul+0) x Wy (u,0)
—L<(u,0)<L

22

{v<0,—L<u<L}
U {v=0,u <0}

Re (k+u,l +0v) x Wy (u,0).

®

One direct way to derive the optimal weight is to minimize
the distortion between the actual pixels and the corresponding
approximated pixels within the training window R;. However,
it will result in groups of multiple quadratic equations, which
is a nonlinear optimization problem (see Appendix A for
detailed discussion).

To get rid of the problem of multiple quadratic equations, we
instead devise an iterative method using a linear least square
method. If we rewrite the STAR weights in a 1-D manner,
then the weight vector after the ith iteration can be defined

as Wi = [W;,, W}, W;]T Here W;, represents the weight
vector of the previous temporal neighborhood, W]’} represents
the weight vector of the following temporal neighborhood, and
Wsi represents the weight vector of the spatial neighborhood.
Assume we have obtained the interpolated pixels Iéi_l (k, 1)
and IéfH (k, 1) within the training windows ﬁ,_l and Iét+]
prior to the ith iteration. Wi can be computed by the closed-
form of the least-square algorithm as

Wi = (A")_1 x (B") )

where A’ is a matrix, and B’ is a column vector (see
Appendix B for details on computing A’ and BY).

After we obtain Wi, the newly interpolated pixels
ﬁ;f} (k, 1) and Ié;ﬂ (k, 1) are computed according to (6), and
Ié;“ (k, 1) is computed according to (8). To make a decision
whether the FRUC will be terminated in the current iteration,
we compute the distortion of the interpolated pixels within
the training windows Ié,_l and IQH | between two successive
iterations as well as the distortion between the actual and
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—o— Ist_iteration
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3rd_jteration
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Fig. 4.
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—o— Ist_iteration
0.1+ —#— 2nd_iteration
3rd_iteration
-0.15 4th_iteration
+51h Lteratmn
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lustration of spatio-temporal adaptation over iterations for the second interpolated frame of Mobile (CIF). (a) Second interpolated frame of Mobile

indicated by training windows A and B with and without occlusions. (b) and (c) STAR weight profiles for training windows A and B. In (b) and (c), the
vertical axis represents the weight value, and the horizontal axis represents the serial number of the weights in the two temporal neighborhoods and the
spatial neighborhood, which are arranged in the concatenated and lexicographically order. The two solid regions denote the previous and following temporal

neighborhoods, and the dashed region denotes the spatial neighborhood.

interpolated pixels within the training window R;. In other
words, the total distortion is jointly obtained as follows:
k=0 =0

kD) }
W, Wy

k=0 [=0
W, Wy

+>>E [(R’“ k1) — R, (k, 1)) } (10)

k=0 =0

V

Wy
DH=>>E [(R’“ (k1) —

where R!_| and R''! represent the interpolated training
windows prior to and after the ith iteration, respectively. If
D (i) is smaller than a preset threshold, or i is larger than
the predefined maximum iteration number, the iteration is
terminated and W' is set to be the ultimate weight vector of
the STAR model. Thus, the interpolated pixels generated by
Wi are considered to be the final interpolated pixels within
training windows Rt_ 1 and Rt+ 1. Otherwise, i is increased by
1 and the self-feedback weight training algorithm is moved to
the next iteration.

The summary of the proposed self-feedback weight training
algorithm is illustrated in Table I. The initial values Ié?_l and

Ié?+ | can be computed by several methods, such as FA, MCI,
OBMC, AOBMC etc., and the influences of different initial
values will be analyzed in Section V.

Most of the computational complexity is concentrated on the
calculation of matrix A’ when computing Wi. In the proposed
self-feedback weight training method, O (L*x Wy * W)
arithmetic operations are required to compute A' if im-
plemented straightforwardly. Such prohibitive computational
cost is the major disadvantage of the self-feedback weight
training method. However, the symmetric property of matrix
A’ can be exploited to reduce the computational complexity.
Furthermore, there exist fast algorithms for calculating A’ by
exploiting the overlap of the blocks between adjacent pixels.
For instance, the fast algorithm proposed by Wu [22] can
greatly reduce the computational complexity of matrix A’.
With fast algorithms and more powerful computing resources,
the running time of the self-feedback weight training can be
further reduced.

V. EXPERIMENTAL RESULTS AND ANALYSIS
Various standard video sequences with different sizes
(QCIF, CIF, 4CIF, and 720P) have been tested in an attempt
to shed some light on the quality of interpolated frames.
To compare the performance, every other frame from test
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PSNR versus Iterations
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PSNR versus Iterations
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%%1 r —a— AOBMC initial
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Number of iterations
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Fig. 5. PSNRs of the interpolated frames versus iteration numbers under different initial values k?—l and Ié?—H' (a) Second interpolated frame of Mobile

(CIF) and (b) first interpolated frame of Flower (CIF).

TABLE 11
PSNRS OF INTERPOLATED FRAMES BY DIFFERENT METHODS

Resolution | Sequences fri‘;rf;‘:/s fg‘r‘;f;:/ts 3DRS | MCI (4x4) | MCI(8x8) | OBMC | AOBMC | STAR
oCIF Mobile 15 30 33.170 33472 33.360 33791 | 34251 | 36192
Foreman 15 30 34.051 37.721 38.600 38756 | 38778 | 39.666

City 15 30 25.987 32.603 33.940 34353 | 34562 | 34.833

Flower 15 30 19.779 30.571 31.530 31986 | 31.890 | 33.354

CIF Mobile 15 30 25310 26.778 27.460 28164 | 28738 | 29.487
Tempete 15 30 30.046 30.210 30.400 30.603 | 30741 | 30.861

Bus 15 30 18.778 25.801 26.132 26684 | 26999 | 27.269

City 30 60 26.269 28.516 28226 28.864 | 28923 | 30.132

4CIF Flower 125 25 18.495 28292 28.160 28473 | 28521 | 28.704
Mobile 12,5 25 20.724 25475 25.822 26220 | 26365 | 26,747

Spincalendar 30 60 25.858 26.971 27.630 28241 | 28281 | 29512

720p Sheriff 30 60 37.352 37.798 37.946 38.149 | 38.166 | 38.081
City 30 60 30.554 30.019 30.267 30563 | 30.639 | 31.664

sequences is skipped and interpolated by the STAR model
as well as by 3-DRS, traditional MCI method, OBMC, and
AOBMC. The interpolated frames are then compared with the
accurate ones skipped in original sequences.

A. Weight Analysis

In this section we use a typical test sequence Mobile (CIF)
to illustrate the spatio-temporal adaptation behaviors of the
algorithm for regions with and without occlusions. The spatio-
temporal order L is set to be 1 and the MCI results are used
to generate the initial interpolations in this experiment. Two
training windows are highlighted in Fig. 4(a). Training window
A is the occluded area where temporal prediction does not
work, and B is located in non-occluded areas. We can find in
Fig. 4(b) that the self-feedback weight training method assigns
larger weights to the previous temporal neighborhood and the
spatial neighborhood and smaller weight values to the follow-
ing temporal neighborhood. This is because training window A
can be totally observed in the previous frame while only a part
of it can be observed in the following frame due to the move-
ment of the rolling ball. In contrast, we can find in Fig. 4(c)
that larger weights are assigned to the previous and following
temporal neighborhoods, and smaller weights are assigned to

spatial neighborhood. This is because training window B can
be entirely observed in both the previous and following frames.
Such observations illustrate the adaptation of the self-feedback
weight training method to spatial and temporal coherences.

Another observation is that the fluctuation of the majority
weight values both in Fig. 4(b) and (c) moves toward the
same direction across iterations. For example, in Fig. 4(b)
the weights located at 4, 8, 11, 12, and 17 become smaller
and smaller, while the weights located at 7, 10, 14, and 15
become larger and larger with iteration. Similarly, in Fig. 4(c)
the weights located at 4, 5, 11, 16, 17, and 18 become smaller
and smaller, while the weights located at 2, 3, 14, and 20
become larger and larger with iteration. The observations in
Fig. 4(b) and (c) indicate that the fluctuation trend of the
majority weights is the same, which can verify, to some extent,
that the weights tend to converge with iteration.

B. Convergence Study

In this section, several experiments are conducted to study
the effects of the initial pixel values ﬁ?_ , and IQ?H on
the convergence of the proposed self-feedback weight train-
ing method. The convergence of the proposed self-feedback

weight training method was evaluated using different initial
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Fig. 6.
STAR model.

values Ii’to_l and IQ?H under the same training windows and
the same spatio-temporal orders.

Four methods: FA, MCI, OBMC [14], and AOBMC [13],
are performed to generate the initial values Ié?_l and ﬁ? 41- In
MCI, the bilateral ME as described in [14] is first performed,
and then the motion vector postprocessing is applied to smooth
the motion field, and finally the intermediate frame is inter-
polated by the smoothed motion vectors. Here the integer-
pixel full search is first conducted, and then the half-pixel and
the quarter-pixel accuracy search are processed and thus the
motion vector of MCI is of quarter-pixel accuracy.

The PSNRs of the interpolated frames, by the proposed
STAR model with different initial values, against the number
of iterations are plotted in Fig. 5. It is observed that except for
FA, the experiments with IQ?_I and ﬁ? +1 generated by MCI,
OBMC, and AOBMC, all tend to converge with iteration. The
PSNRs of the interpolated frames by FA are not improved with
the iteration. This is because the initial values generated by FA
are unreliable due to the neglect of motions between successive
frames. This also reflects that the proposed weight training
method will achieve bad performance if the initial values are
too unreliable. However, if proper initial values are given,
e.g., generated by MCI, OBMC, or AOBMC, the performance
will be improved with iteration and the improvement be-
comes trivial after several iterations. The elegant performance
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(b)
()]

Residual frame of the 16th frame within Mobile (QCIF) interpolated by different methods: (a) MCI, (b) OBMC, (c) AOBMC, and (d) proposed

is largely attributed to the self-feedback properties of the
proposed weight training method, where the accuracy of the
weights can be improved according to the feedback from the
previous iteration, and thus is able to approach the optimum
weights with the iteration. This provides empirical evidence on
the convergence of the proposed self-feedback weight training
method and an indication on the rationality of the initial values
Ié?_l and Ié?_H.

A check mechanism can be applied to see whether the
proposed STAR model converges or not. In each iteration, the
distortion D(i) is compared to that in the previous iteration. If
D(i) becomes larger, we simply take the STAR model as not
converging. In this case, the MCI results are taken as the final
interpolated results. Note that if (9) has no solution, in case
when A(i) is a singular matrix, the MCI results are also used
as the final interpolated results. Obviously, results generated
by other interpolation methods, e.g., OBMC and AOBMC, can
also be used to replace the STAR model when it fails.

C. Parameter Selection

As indicated in the previous section, if we choose proper
initial values R?_l and R?H, e.g., generated by MCI, OBMC,
and AOBMC, the proposed weight training method tends to

converge when the iteration number is big enough, and thus
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Fig. 7.
AOBMC, and (d) proposed STAR model.

in the following experiments the MCI results are set to be
the initial values RO | and Rt 1 before the iteration of the
self-feedback welght training begins. Four parameters of the
STAR model: the size of training window, the spatio-temporal
order, the maximum iteration number, and the total distortion
preset threshold, should be set properly. If the size of training
window is too small, there are not enough pixel samples to
derive more accurate weights. On the other hand, if the size
of training window is too large, it does not take into account
the variation properties of image signals. By our observation,
the size of training window is set to be 16 x 16 for QCIF
sequences, and for the higher resolution (CIF, 4CIF, 720P)
sequences it is set to be 32 x 32 empirically in our experiments.
The total distortion preset threshold is set to be 50.

Another observation is that the spatio-temporal order is
closely related to the motion in the training window. That
is because a smaller spatio-temporal order will achieve good
performance for stationary regions; however, for the moving
regions larger spatio-temporal order is necessary. Since the
MCI results are set to be the initial values RO | and Rt 1 the
motion vector in MCI can be utilized to measure the motion
in the training window. In our experiment, the spatio-temporal
order of the STAR model is computed by

L= blOrgflxe {abs (| moxviock ; |) » abs (|moypiock ; |)} + 1
(11)

where R represents the training window, moxplock i and
Mo Yblock ; represent the horizontal and vertical motion vectors
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Visual comparisons of part of the original frame and interpolated frames of the 18th frame within Mobile (CIF). (a) Original frame, (b) OBMC, (c)

of the jth block when performing MCI, and || is the floor
operator, which maps movxpjock j Or Mmoyblock ; with sub-pixel
accuracy to the next full-pixel position. It should be noted that
for sequences with fast motion, the spatio-temporal order will
be quite large according to (11), and thus it may introduce
outliers into the optimization process, which may prevent the
training algorithm from finding the correct weighting vector.
To avoid this, the maximum L is set as 6 in the experiment.

We also found that when the maximum iteration number
exceeds 4, the improvement is usually very trivial. Therefore,
in our experiment the maximum iteration number is set as 4
empirically.

D. Objective and Subjective Evaluation

To demonstrate the performance of the proposed STAR
method, we compare it with 3-DRS method [9], traditional
MCI method, OBMC [14], and AOBMC [13].

In 3-DRS, motion vectors are estimated by the 3-D recursive
block matching [9], and the holes and overlapping regions
are processed using the method in [10] and [11]. To show
the impact of the block size in MCI, we implemented the
MCI method with the block size 4 x 4 and 8 x 8, respectively
(shown in Table II). We found that, different from the video
coding [20], smaller block size, e.g., 4 x 4, does not ensure
better performance. Theoretically, small block sizes should
yield better performance. However this requires very accurate
ME, called “true ME.” But finding a “true ME” is a major
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Fig. 8.
(c) AOBMC, and (d) proposed STAR model.

problem in itself, especially in FRUC, where the actual pixels
in the to-be-interpolated frame are not available. Based on
such observations, the block size is set to 8 x 8 for MCI, and
correspondingly, the block size for OBMC and AOBMC is also
set to 8 x 8. For each test sequence, 50 frames are skipped
and interpolated by the STAR model and all the compared
methods. The resolution, input frames/s, output frames/s, and
average PSNRs of the interpolated frames generated by the
STAR model as well as other methods are depicted in Table II.
It can be seen that except for City (720p), 3-DRS method has
worse performance than other methods, partly due to the feet
that there are fewer positions searched for 3-DRS compared
with other methods. For all the test sequences, OBMC outper-
forms MCI due to the application of multihypothesis and thus
can alleviate the artifacts caused by MCI. Except for Flower
(CIF), AOBMC achieves higher PSNR than OBMC, since it
is capable of adjusting the weights adaptively according to the
reliability of neighboring blocks. However, the improvement of
AOBMC against OBMC is insignificant for some sequences,
i.e., Foreman (QCIF) and Spincalendar (720p), for which the
PSNR gain is less than 0.1 dB. On the contrary, except for
Sheriff (720p), the performance improvement of the STAR
model is significant when compared with other methods. Espe-
cially for Mobile (QCIF) and Flower (CIF), the PSNR gains,
compared with MCI, are up to 2.832 and 1.824dB, respec-
tively. Besides, for City (4CIF) and Spincalendar (720p), the
PSNR gains are up to 1.9dB. This is because Flower (CIF) is
full of nonrigid objects and consequently could not be approx-
imated well based on the assumption that all the pixels within

(@

Visual comparisons of part of the original frame and the interpolated frames of the 14th frame within City (CIF). (a) Original frame, (b) OBMC,

one block have unique motion, which is the foundation of tra-
ditional FRUC methods. And for the other three test sequences,
there are a lot of camera motions, i.e., rotation in Mobile
(QCIF), panning in City (4CIF), and spinning in Spincalendar
(720p), which are very hard to be represented by traditional
FRUC methods, e.g., 3-DRS, MCI, OBMC, and AOBMC.

Fig. 6 depicts the residual frames of the 16th interpo-
lated frames within Mobile (QCIF) yielded by MCI, OBMC,
AOBMC, and the proposed STAR model. It is easy to observe
that the residual energies yielded by both MCI and OBMC are
large although OBCM is able to yield less residual energy.
AOBMC has less residual energy compared to the former two
methods; nevertheless, the improvement is still not significant
enough. In contrast, the proposed STAR model provides the
least residual energy for most regions. Especially for the
regions marked by the red rectangle the contour of number
“1” can be easily perceived in the residual frame yielded
by MCI, OBMC, and AOBMC methods. However, it is hard
to be perceived in the residual frame yielded by the STAR
model. Besides, for the region marked by the ellipse, there
are significant energies in the residual frames yielded by MCI,
OBMC, and AOBMC methods. Nevertheless, the residual
energies in the region marked by the ellipse are greatly reduced
by the STAR model.

Fig. 7 illustrates part of the original frame and the interpo-
lated frames of the 18th frame within Mobile (CIF) by OBMC,
AOBMC, and the proposed STAR model. The interpolated
frame by OBMC exhibits the worst visual quality, where
some numbers in the calendar cannot be observed clearly, e.g.,
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numbers “5,” “14,” and “18,” as marked by the dashed circles
in Fig. 7(b). It is mainly due to the fact that the contours of
the numbers are not aligned with the block, and even OBMC
cannot alleviate the ghost artifacts. The interpolated frame by
AOBMC has better visual quality than the one interpolated by
OBMC, e.g., numbers “5,” and “14,” as marked by the dashed
circles in Fig. 7(c), can be easily perceived. This is mainly
attributed to the ability of adaptively adjusting the weights in
AOBMC. Nevertheless, number “18,” marked by the dashed
circle in Fig. 7(c), still cannot be perceived. This is because
the neighboring motion vectors around number “18” are not
reliable and consequently the ability of adjusting the weights
is impaired. On the other hand, the proposed STAR model
alleviates the ghost artifacts more efficiently and provides the
best image quality, e.g., besides numbers “5” and “14,” number
“18,” as marked by the dashed circles in Fig. 7(d), can also
be easily perceived. This mainly benefits from the proposed
STAR model’s ability of tuning the STAR weights according
to the characteristics of its spatio-temporal neighborhoods.

Fig. 8 exhibits the visual performance of part of the 14th
interpolated frame within City (CIF). The proposed STAR
model achieves the best visual quality compared with OBMC
and AOBMC methods. Especially, for the regions marked by
the red ellipse, prominent blocking artifacts can be perceived
in the frames yielded by OBMC and AOBMC, whereas no
obvious blocking artifacts are observed in the part of frame
yielded by the STAR model. That is because the motion
vectors in the marked region are too irregular, and even OBMC
cannot effectively suppress the blocking artifacts. AOBMC can
alleviate the blocking artifacts to some extent; nevertheless,
it could not remove the blocking artifacts thoroughly since
the motion vector reliabilities of neighboring blocks are not
high enough. In contrast, due to the ability of adaptively
tuning STAR weights according to the local spatio-temporal
characteristics, the interpolated frame yielded by the STAR
model exhibits the best visual quality.

VI. CONCLUSION

In this paper, a spatio-temporal auto regressive (STAR)
model has been proposed for frame rate upconversion. In
the STAR model, the spatio-temporal interactions among pix-
els were exploited, where each pixel is interpolated as the
weighted summation of the pixels within its spatio-temporal
neighborhoods. To derive more accurate STAR weights with
the absence of actual pixels in the to-be-interpolated frame, a
self-feedback weight training method was proposed. Applying
the self-feedback weight training method, the proposed STAR
model is able to take advantage of the nonstationary statistics
of video signals, and thus can resolve the challenging problems
such as zooming, panning, and nonrigid objects quite well.

Extensive experiments have been performed on various test
sequences with different resolutions to demonstrate the validity
of the proposed STAR model. Both subjective and objective
evaluations of the proposed STAR model were carried out.
Experimental results have demonstrated that the proposed
STAR model has superior performance to traditional FRUC
methods in terms of both objective and subjective criterions.
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The shortcoming of the STAR model is the high computation
complexity compared with other FRUC methods. Neverthe-
less, the complexity can be reduced by fast algorithms. Be-
sides, it is applicable for offline FRUC applications to achieve
high-quality interpolated frames.

APPENDIX A

For simplicity of discussion, the spatial weight vector of
the STAR model is assumed to be zero. The optimal weight
vector derivation process by directly minimizing the actual
and the interpolated pixels within training window R; can be
described as follows. First, the interpolated pixels within the
training windows R, and I@H_l can be expressed as

Ri—1 = AR,_»AT + BR,B" (12)
Riy1 = ARAT + BR,B". (13)
c c
Here, A= | Dy and B=| Dp | with
E E
1 0 . ]
0 0 0
C =
0 1 0 0 |
0 oW 0 1]
0 0 0
E =
0 0 1 0 |
and
(a1 a azr+1 0 ]
0 0 .. 0
DA: a a azr+1
| 0 0 aj a arL+1 |
[ b by brehr, O . . 0 ]
0 b b b 0 .. 0
DB _ 1 2 2L+1
B 0 .. .. 0 b1 b2 b2L+l i

where C and E are L x (Wx ° Wy) matrices. D4 and Dp are
(WX oW, — 2L) X (Wx ° Wy) matrices.

The approximation of the actual pixels within the training
window ﬁt can then be written as

R, = AR_1AT + BR,;B". (14)
Incorporating (12) and (13) into (14), ﬁ, can be expressed as
R=A (AR,_2AT + BR,BT) AT

+B (AR[AT + BR,+ZBT) BT (15)
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Matrices A and B can be computed by assuming The element a;’ q (m,n) of A 1’;’(1, 0 < p,q <1, located at
R P (m, n), can be computed as
t = Iy
—A (ARt_zAT + BR,BT) AT dpq (m,n) =
T T Ve &
+B(ARAT + BR2BT). (16) S Reantiop () X Rt G, )
However, it will result in groups of multiple quadratic equa- k=0 ZZOW
tions, which is a nonlinear optimization problem. If we take Wi O . o . o
into account the spatial weight vector, the situation will be + ZZRI—(—U” (i, 1) x Rl—(—l)" (i, 72)
more complicated. k=01=0
Wx W,V
APPENDIX B + Z Z Rl+2>(p (I’;l, ﬁ) X Rl+2><q (’/ha ﬁ) .
k=0 [=0
Define the spatio-temporal order to be L, and let the weight (18a)

vector of the ith iteration be Wi = [Wi, W}, WwilT, with } '
The element a; , (m,n)of A ' ,,0 < p < 1,located at (m, n),

- . . p,2’
W;, (-L,-L), W;, (-L,—L+1),..., can be computed as
. Wi(=L,L), ;
wi=| Wk ,~ aj o (mn) =
Wy (L4 1,=L), s Wy (—L+ L L), e W,
W, (L, L) D> Ricaxq—p) (i, it) x RI_ (i, i)
- , k=0 I=0
Wi (=L, =L), W} (—L,=L+1),..., —
; (=L, L D 5i ~ = -~
W} = Wf ( L), ) + Z Z R;_(_l)l? (m,n) x Ry (m, n)
VV}(—L—I—1,—L),...,W}(—L+l,L),..., k=0 =0
Wi (L, L) Wi .
.- P e~
and +]§)§Rt+m (i, it) x R, (7, i) . (18b)
_W;(_La_L)sWsl(_lﬂ_L'i'l)as i i
; The element ay , (m,n) of A e 0 < g < 1, located at (m, n),
wi — Wx (=L,L), . can be computed as
C | Wi(-L+1,-L),...,Wi(-L+1,L),..., l_
Wi, —1) “2q (1) =
’ Wy W}'
According to the least square method, the equation to compute Rl (i, 1) X Ri—ax(1—q) (i, 1)
W' can be formulated as g; -t rmexma)
AW = B (17) Wi Wy .
o ) , + DD R (i, i) x RI_(_yq G, 1)
where A" is  a(2x 2x L+ 17+ (2L*+2L)) x ==
(2x (2xL+1)2+ (2L*+2L)) matrix and B’ is a w, W,
column vector with length 2 x (2 x L + 1)% + (ZL2 + 2L). + ZZ I%£+1 (1, 1) X Riyaxg (i, 7). (18¢)
For presentation convenience, we set *=0 1=0
' Af)’o Af)’] Af),z The element az"’2 (m, n) of Azi,z’ located at (m, n) can be
A = All,o All,l A’L2 computed as
Ayy Ay A 612{2 (m,n) =
Wy W)’
and I GRS A CRD
- k=0 /=0
B":[ B, B BI ] : we Wy N
U . + > D" R (. i) x R} (i, i)
Here the size of sub-matrices A, Ay ;. Aj o and Al k=0 1—=0
is 2x L+1)% x 2x L+ 1)? the size of A, and Al , we Wy
is (2L2+2L) x (2 x L+ 1)%. The size of A}, and Al + D D R, i) x R, (R, (18d)
is @xL+1)% x (2L2+2L) and the size of Ab, is k=0 1=0

(2L% +2L) x (2L2+2L). B), and B;} are row vectors of with i = k — L +m/(2xL+1) and i = k — L +
length 2 x L + 1)2. B! is a row vector with length 2L2+42L. n/(2 x L+ 1). The element located at (0, m x 2L + n) in
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B), and B} can be computed as

Wy W,V

bl (O,m x 2L +n)=> > Ri—ax(i-r) (a ﬁ) x Ri_, (k.I)
k=0 =0
Wx W,V

3 DRy (mon) xRy
k=0 1=0
"Vx W}'

+ z Z Rivoxr (;1, ;7\) x IQ;H (k, D).
k=0 =0 (193,)

Here, when r is set to be 0, it represents the element of B;,
and when r is set to be 1, it represents the element pf B}.

The element located at (0,m x 2L 4+ n) in B, can be
computed as

Wy W,V
B mx2L+n) =3 S R (m,n) x R, (k. 1)
k=0 [=0
Wy WY

+> >R, (%2) x Ry (k, 1)

k=0 [=0

Wy Wy n. SR ~
+ 3D Rl () x Riyy k)
k=0 =0
(19b)

withm=k — QL +1)+m and n=k — 2L + 1) +n.
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