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Abstract—In this paper, a novel full-reference (FR) image
quality assessment (IQA) metric based on sparse representation
is proposed. Sparse representation has been widely applied in
many applications such as image denoising and restoration. It
is a high-efficiency way in representing sparse and redundant
natural images. Also it has been shown to be highly related to
the human visual perception, which is characterized by a set of
responses of neurons in visual cortex. In this paper, the sparse
representation is applied in decomposing natural images into
multiple layers depending on the visual importance. Inspired by
these observations, a novel IQA metric called sparse structural
similarity is proposed by measuring the fidelity of the stimulation
of visual cortices. Experimental results on public databases
indicate that the proposed method is effective in predicting
subjective evaluation and as compared to state-of-the-art FR-IQA
methods.

Index Terms—Image quality assessment (IQA), orthogonal
matching pursuit (OMP), sparse representation.

I. INTRODUCTION

Image quality assessment (IQA) has shown its essentiality

in a wide range of applications, such as image acquisition,

compression, transmission, enhancement [1], [2] and analysis

etc. IQA controls the perceptual quality performance of these

systems. Objective IQAs can be classified into three categories

depending on the availability of reference image: full-reference

(FR), no-reference (NR) and reduced-reference (RR) methods.

Pristine reference image is fully available in FR-IQAs, while

NR- and RR-IQAs have no or part of the reference.

This paper will focus on the FR-IQA model. Given a

distorted image and its corresponding reference image, a good

FR-IQA method can effectively and efficiently predict the

subjective perceptual score without any prior knowledge of

specific distortion type. One of the most popular FR-IQA is

mean square error (MSE) or peak signal-to-noise ratio (PSNR).

It is appealing due to its high-efficiency and clear physical

meaning. But it has long been criticized for its poor correlation

with HVS [3]. Thus, more accurate criteria considering HVS

characteristics have been studied, including visual signal-to-

noise ratio (VSNR) [4], internal generative mechanism (IGM)

[5], structure similarity (SSIM) [6] and its variants MS-SSIM

[7], IW-SSIM [8]. SSIM, assuming that HVS tends to perceive

structural information from natural scene, is a typical method

for IQA and has become successful in many applications such

as image/video coding [9], [10].

Sparse representation is efficient in dealing with rich, varied

and directional information contained in natural scene. From

the viewpoint of computational neuroscience, sparse represen-

tation leads to the emergence of receptive fields similar to

the simple cells, which is a better model of visual cortex.

Early work on optimizing sparse representation can be found

in [11]. Sparse representation has shown its power in some

IQA models [12]–[14]. In [15], a sparse feature based metric

is presented and has shown good performance in matching

subjective ratings. An image fidelity assessment algorithm is

proposed by comparing the coefficients in sparse domain in

[16], however it trains the content-adaptive dictionary for each

input picture and has not considered the sparse structure in

image representation.

In this paper, we develop a novel FR-IQA framework

based on sparse representation. An online training algorithm

[17] is applied for obtaining the global sparse dictionary

using extensive natural images as training samples. Then, the

Orthogonal Matching Pursuit (OMP) based algorithm [18] is

employed in sparse representation, which is an effective tool

for decomposing image into several layers with different visual

importance. The proposed IQA method measures the similarity

of sparse coefficients of each layer and weighted by their

importance.

The rest of the paper is organized as follows. In Section II,

we introduce the dictionary training process briefly and analyse

the OMP algorithm in detail. In Section III, we propose the

sparse representation based IQA model. Section IV shows the

performance of the proposed FR-IQA algorithm. Finally, we

conclude this paper in Section V.

II. MULTI-LAYER SPARSE REPRESENTATION FOR

NATURAL IMAGES

Images captured in natural scene are instinctively sparse and

redundant due to the local and non-local similarities among

natural images. Sparse representation mimics the characteris-

tics of human visual system by extracting sparse structures

from images. In this section, the training process of construct-

ing a global dictionary for sparse representation is briefly

introduced, then the typical OMP method applied in sparse

reconstruction is analysed in detail.



A. Dictionary Training

In sparse-land model [19], each signal x ∈ R
d can be

represented by a linear combination of a few items (namely

primitives) in D (D ∈ R
d×k). D is an over-complete dictionary

containing k primitives. It is crucial that the dictionary D
should be well designed to adapt with the image content. Such

that ∀x, ∃α ∈ R
k satisfying x ≈ Dα and ‖α‖0 � d, where the

notation ‖•‖0 represents the l0 norm. Let the input image be

X , which can be partitioned into many non-overlapped patches

x1, x2, · · · , xi, i = 1, 2, · · · ,M . The objective function is

formulated as follows,

(D, {αi}) = argmin
D,{αi}

∑
k

‖xi −Dαi‖22, s.t.‖αi‖0 < L, (1)

where L controls the sparse level. The K-SVD algorithm [20]

is a typical method for training the content-adaptive sparse

dictionary, which is performed in an iterative batch way by

accessing the whole training set at each iteration in order to

minimize the cost function under the constraints. However it

cannot effectively handle with the very large training data, and

also the computation complexity is considerable for realtime

applications such as image quality assessment, image/video

coding etc. To address these issues, an online training algo-

rithm [17] is employed for obtaining the global dictionary for

general input natural images in this work.

B. Sparse Representation

Sparse representation is referred to calculating appropriate

coefficients α with respected to the trained dictionary D. Thus

it can be formulated as below:

αi = argmin
αi

∑
k

‖xi −Dαi‖22, s.t.‖αi‖0 < L. (2)

The OMP method [18] is applied to obtain sparse represen-

tation vectors αi for each patch xi, which works in a greedy

fashion, that choosing the primitive from D which is most

similar with the residual at each iteration. Note that the residual

of first iteration is the original patch itself. That is to say, in

the first iteration, OMP chooses the primitive that is highly

correlated with the original signal in a nearest neighbour way.

Then the original signal is subtracted by the chosen primitive

to update the residual.

(a) Patch 1 in Lena image (b) Patch 2 in Lena image

Fig. 1. Sixteen primitives picked by OMP algorithm arranged in raster order.
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Fig. 2. Plot of the average variance Vj in terms of L.

C. Multi-layer Sparse Decomposition

Considering primitives as image blocks, it is intuitive that

the primitive which is most similar with the image patch

is picked first (i.e. Ψ1), and more image details (Ψ2∼ΨL),

e.g. edges and textures, are added for recovering the image.

As shown in Fig. 1, sixteen picked primitives (Ψ1∼Ψ16) are

arranged in raster order. They are picked out to reconstruct

two 8×8 patches of Lena image respectively. The first chosen

primitive, located at the top-left corner, is visually smoother

than other primitives picked in later iterations.

More generally, let Ψ(i, j) denote the jth selected primitive

of the ith patch, and Vj = 1
N

N∑
i=1

V ar(Ψi,j) is the average

variance of all the jth primitives in an image, where V ar(∗)
represents the variance operation and N is the number of

patches. In Fig. 2, the Vj(1 ≤ j ≤ 16) curve of Lena image

is plotted. It is obvious that the average variance of the first

primitive (i.e. V1) is much lower than that of other primitives.

It can be interpreted by the fact that natural images contain

large percentage of smooth area. Such that the first chosen

primitives are always smooth, and the average variance of first

primitives is rather small. And the variances from V2 to V16

are relatively stable and gradually decline as shown in Fig. 2.

This observation is highly related to the visual perception that

the basic component (e.g. what the object is it) is perceived

before details (e.g. what does the object look alike).

The OMP algorithm has shown to be an effective tool in

decomposing image into a hierarchical representation, typically

containing a basic layer and several detail layers as depicted

in Fig. 3. Each layer is constructed by the primitives of

ith iteration and its coefficients. Particularly, the basic layer

utilizes the several previous primitives for reconstruction and

describes the major structural information contained in images.

However, HVS is relatively insensitive with the last detail

layers relating to the non-structural information. Thus we

conclude that the OMP algorithm reconstructs image using a

set of primitives selected one by one from trained dictionary,

and these primitives are naturally ordered by perceptual im-

portance. This greedy characteristic of OMP algorithm is the



Fig. 3. Illustration of multi-layer image decomposition using sparse theory.

foundation of the proposed IQA method.

III. SPARSE STRUCTURAL SIMILARITY FOR IMAGE

QUALITY ASSESSMENT

In this section, we detail the framework of the proposed

IQA scheme as illustrated in Fig. 4. On the sender side, original

image is firstly partitioned into 8× 8 non-overlapped patches.

And the dictionary for sparse representation is trained by K-

SVD algorithm using these patches. Then two OMP-motivated

methods, namely modified OMP as well as constrained OMP,

are specifically defined for original and distorted images re-

spectively. By these processes, the sparse structures including

the selected primitives and its corresponding coefficients are

extracted. The local quality map (LQM) is calculated by com-

paring the coefficients between original and distorted patches.

Lastly we get the ultimate quality score using the average

weighted by distortion level of each patch.

A. Local Quality Map

Firstly, original and distorted images are partitioned into

several non-overlapped patches, denoted by {xi} and {x′
i}

respectively. For each original patch {xi}, the modified OMP

algorithm is used to approximately reconstruct it by a set

of primitives {Ψi,1, . . . ,Ψi,L} and corresponding coefficients

{αi,1, . . . , αi,L}. This process can be formulated by following

equation:

x̂i =

L∑
j=1

αi,jΨi,j , (3)

where x̂i represents the reconstituted original patch and L
controls sparseness level in OMP algorithm.

For distorted images, the problem can be formulated as a

simplified optimization problem,

α′
i,j = argmin

α′
i,j

∑
k

∥∥xi −Ψrα
′
i,j

∥∥
2

2
. (4)

We call this method as guided decomposition because the

sparse primitives denoted by Ψr is composed of that used for

pristine image,

Ψr � [Ψi,1, . . . ,Ψi,L]
T
. (5)

It is a subproblem in OMP when recalculating the coefficients

at each iteration and can be solved by

α′
i,j =

(
(ΨT

r Ψr)
−1(Ψr)

T
)
xi (6)

Before calculating the similarity term, the normalization

process is typically performed to the sparse coefficients of both

original and distorted images. It is performed by subtracting

the average and dividing the standard deviation as follows,

α̃i,j =
αi,j −AV Gj

STDj
, (7)

where AV Gj =

M∑
i=1

αi,j

M and STDj =

√
(αi,j−AVGj)

2

M .

Accordingly, the local quality Si can be calculated by the

normalized coefficients as follows,

Si =

L∑
j=1

ωj
2α̃i,j α̃

′
i,j+C1

α̃2
i,j+α̃′

i,j
2+C1∑

ωj
, (8)

where C1 is a constant to avoid instability, and ωj denotes the

weighting on each sparse level. Considering the observation

that the visual importance is decreasing with the increasing

value of sparse level L, it is highly recommended that ωj is a

monotonic decreasing function. In this work, ωj is empirically

designed as a Laplacian function as follows,

ωj =
1

2σ
e−

(j−1)2

σ , (9)

where σ is the only model parameter that controls the diver-

gence degree between different sparse level.

B. Pooling Strategy

Pooling process has been considered to be a crucial strategy

and is applied in many popular IQAs, by which an ulti-

mate quality assessment score is obtained by calculating the

weighted average of local quality scores.

Considering the fact that the more degraded image regions

lead to worse subjective experience. The weighting strategy is

modeled as an exponential function of the distortion as follows,

Wi = eC2(1−Si), (10)

where C2 is a parameter that guides the relative importance

on the overall score. The ultimate score, dubbed as sparse

structural similarity (SSS), is a weighted average as follows,

SSS =

N∑
i=1

WiSi∑
Wi

. (11)

IV. EXPERIMENTAL RESULTS

To evaluate the performance of proposed SSS scheme,

we compare our work with some state-of-the-art FR-IQAs,

including PSNR, VSNR [4], SSIM [6], MS-SSIM [7], GSM

[21], IGM [5], GMSM/GMSD [22], VSI [23] and LTG [24],

on public databases. The basic information of these datasets

are given as follows:



Fig. 4. Flowchart of the proposed IQA algorithm which follows the steps: 1) image partition; 2) OMP decomposition for pristine image patches; 3) guided
composition for distorted image patches using the same sparse primitives of original one; 4) pooling strategy for generating the overall quality score.

• The LIVE database [25] has 29 reference images and 779

distorted images, undergone 5 different distortion types

including JPEG2000, JPEG, white noise, Gaussian blur,

and fast fading channel distortion.

• The LIVEMD database [26] is the first image database

for multiple distortions. It has two image subsets which

are created by adding different levels of noise/JPEG

to blurred images, respectively. There are 225 images

generated from 15 pristine images in each subset.

• The CSIQ data base [27] totally consists of 866 images,

which are created from 30 original images by using six

types of distortions at four to five distortion levels. In this

work, the 750 distorted images are selected for evaluation

excluding the contrast distortion type. Actually the images

with contrast changes are not really distorted and even

more pleasing to human eyes.

• The TID2008 database [28] is the largest database includ-

ing 1700 distorted images generated from 25 references

with 17 distortion types at 4 distortion levels. Here, we

pick 300 images corrupted by three common distortion

types including: a) Gaussian blur; b) JPEG compression;

c) JPEG2000 compression.

Five criteria are employed in evaluating the performance of

IQAs, which are Pearson linear correlation coefficient (PLCC)

for measuring prediction accuracy, Spearman rank-order cor-

relation coefficient (SRCC) and Kendall rank-order correlation

coefficient (KRCC) for measuring prediction monotonicity,

Mean Absolute Difference (MAD) and Root mean squared

error (RMSE) for measuring prediction consistency. A good

IQA model is expected to acquire one for PLCC, SRCC and

KRCC, while acquire zero for MAD and RMSE.

In order to quantify the accuracy of predicted quality, we

use a five-parameter logistic function for non-linear mapping:

p (o) = β1

(
1

2
− 1

1 + eβ2(o−β3)

)
+ β4o+ β5, (12)

where o and p represent the objective score and predicted

subjective score respectively.
The simulation results are reported in Tab. I&II. It has been

shown that the proposed scheme outperforms other state-of-

the-art FR-IQAs on CSIQ database, and shows competitive

performance on other databases. It can be proven that the

SSS algorithm can accurately estimate the perceptual quality

of natural scenes for most typical distortions. Also the scatter

plots of several IQAs and the proposed SSS on CSIQ database

are plotted in Fig. 5. Those algorithms include PSNR, SSIM,

MS-SSIM, IW-SSIM [8], GSM, GMSM and VSI. It can be

concluded that the convergency and monotonicity of the SSS

overmatches other methods.
The computational complexity is mainly dominated by the

OMP algorithm, whose cost is O(Ldk) [18]. Such that the

overall complexity of the proposed algorithm is O(LdkN),
where N is the number of the image patches. The time can

be further saved with parallel implementation because image

patches are independent to each other.
Moreover, Fig. 6 gives the relationship between the PLCC

score and the iteration L evaluated on different databases,

from which it can be observed that the PLCC increases

monotonously and converges quickly to the maximum with

the iteration times L. It reveals that the coefficients at latter

iterations have almost no contribution to the PLCC improve-

ment. It accords well with the discussions in Section II that

the structural information is mostly recovered by the first few

layers, and the distortions in latter non-structural layers are

negligible to subjective perception.



TABLE I
PERFORMANCE COMPARISON BETWEEN THE PROPOSED SSS AND OTHER COMPETING FR-IQAS ON LIVE AND LIVEMD DATABASES. THE BOLDFACE

FONTS IN EACH COLUMN INDICATE THE TOP 5 METHODS.

LIVE database (779 images) [25] LIVEMD database (450 images) [26]

IQA metrics PLCC SRCC KRCC MAD RMSE PLCC SRCC KRCC MAD RMSE

PSNR 0.8723 0.8756 0.6865 10.5093 13.3597 0.7414 0.6771 0.5003 10.2256 12.6920

VSNR [4] 0.9236 0.9279 0.7624 8.0446 10.4760 0.8123 0.7719 0.5769 8.7654 11.0308

SSIM [6] 0.9042 0.9104 0.7311 9.2279 11.6694 0.6683 0.6459 0.4633 11.7764 14.0687

MSSSIM [7] 0.9489 0.9513 0.8044 6.6969 8.6181 0.8747 0.8363 0.6442 7.4754 9.1650

GSM [21] 0.9512 0.9561 0.8150 6.5787 8.4323 0.8808 0.8454 0.6550 7.1738 8.9562

IGM [5] 0.9570 0.9581 0.8250 6.0101 7.9242 0.8859 0.8562 0.6681 7.1120 8.7744

GMSM [22] 0.9556 0.9595 0.8242 6.1976 8.0486 0.8787 0.8442 0.6574 7.1813 9.0278

GMSD [22] 0.9603 0.9603 0.8268 5.7892 7.6214 0.8810 0.8448 0.6547 7.0778 8.9492

VSI [23] 0.9482 0.9524 0.8058 6.8593 8.6812 0.8577 0.8121 0.6189 7.8094 9.7221

LTG [24] 0.9536 0.9585 0.8212 6.4729 8.2231 0.8774 0.8444 0.6570 7.2111 9.0740

SSS 0.9533 0.9541 0.8086 6.5897 8.2497 0.8811 0.8490 0.6569 7.2516 8.9447

TABLE II
PERFORMANCE COMPARISON BETWEEN THE PROPOSED SSS AND OTHER COMPETING FR-IQAS ON CSIQ AND TID2008 DATABASES. THE BOLDFACE

FONTS IN EACH COLUMN INDICATE THE TOP 5 METHODS.

CSIQ database (750 images) [27] TID2008 database (300 images) [28]

IQA metrics PLCC SRCC KRCC MAD RMSE PLCC SRCC KRCC MAD RMSE

PSNR 0.7970 0.8019 0.6005 0.1210 0.1591 0.6165 0.6438 0.4772 0.7892 1.0725

VSNR [4] 0.7979 0.8092 0.6214 0.1176 0.1588 0.6692 0.7032 0.5289 0.7033 1.0121

SSIM [6] 0.8158 0.8397 0.6364 0.1166 0.1524 0.6829 0.6663 0.4904 0.7885 0.9950

MSSSIM [7] 0.9009 0.9160 0.7432 0.0866 0.1143 0.8603 0.8736 0.6814 0.5501 0.6945

GSM [21] 0.8979 0.9133 0.7413 0.0842 0.1160 0.8605 0.8747 0.6930 0.5161 0.6939

IGM [5] 0.9292 0.9422 0.7906 0.0714 0.0974 0.9034 0.9055 0.7297 0.4515 0.5842

GMSM [22] 0.9132 0.9303 0.7653 0.0776 0.1074 0.8505 0.8655 0.6754 0.5492 0.7165

GMSD [22] 0.9536 0.9568 0.8127 0.0592 0.0793 0.8830 0.8983 0.7160 0.4903 0.6395

VSI [23] 0.9273 0.9426 0.7859 0.0715 0.0986 0.8841 0.9101 0.7302 0.4806 0.6365

LTG [24] 0.9531 0.9592 0.8179 0.0589 0.0798 0.8947 0.9167 0.7406 0.4630 0.6085

SSS 0.9609 0.9577 0.8194 0.0578 0.0755 0.8834 0.8663 0.6865 0.5045 0.6382

V. CONCLUSION

In this paper, a novel FR-IQA scheme based on sparse

representation is proposed. Sparse representation is an emerg-

ing and powerful tool in describing structural and directional

information from natural scenes. We demonstrate the process

of OMP method in image reconstruction, by which image is

decomposed into multiple layers with different visual impor-

tance. Based on this observation, a novel IQA method, dubbed

sparse structural similarity (SSS) is proposed. Image quality is

estimated by calculating the fidelity of sparse coefficients in

different layers. The pooling stage employs a distortion guided

weighting strategy to generate the ultimate objective score.

Experimental results on public databases show competitive

performance with several state-of-the-art FR-IQAs. Our future

work will focus on developing a general IQA framework based

on this work that can be used for both full-reference and

reduced-reference IQAs.
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