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ABSTRACT

Compact locally aggregated binary features have shown great
advantages in image search. As the exhaustive linear search in Ham-
ming space still entails too much computational complexity for large
datasets, recent works proposed to directly use binary codes as hash
indices, yielding a dramatic increase in speedup. However, these
methods cannot be directly applied to variable-length binary fea-
tures. In this paper, we propose a Component Hashing (CoHash)
algorithm to handle the variable-length binary aggregated descrip-
tors indexing for fast image search. The main idea is to decom-
pose the distance measure between variable-length descriptors into
aligned component-to-component matching problems independent-
ly, and build multiple hash tables for the visual word components.
Given a query, its candidate neighbors are found by using the query
binary sub-vectors as indices into their corresponding hash tables.
In particular, a bit selection based on conditional mutual informa-
tion maximization is proposed to reduce the dimensionality of visual
word components, which provides a light storage of indices and bal-
ances the retrieval accuracy and search cost. Extensive experiments
on benchmark datasets show that our approach is 20∼25 times faster
than linear search, without any noticeable retrieval performance loss.

Index Terms— Image Search, Aggregated Descriptors, Variable-
length Binary Codes, Component Hashing

1. INTRODUCTION

The problem of large-scale image retrieval concerns the search of
similar images containing a rigid object in a large set of database im-
ages, given a query image of that object. The key challenge is how
to jointly optimize the retrieval accuracy, the search efficiency and
the compactness of visual descriptors. To this end, patch-level bina-
ry features, such as LDAHash [5], BRIEF [6], ORB [3] and BRISK
[4], provide an attractive alternative to the widely used SIFT [11]
and SURF [12] as they support fast Hamming distance matching as
well as light transmission and storage. Recent works [8][9] proposed
to compress high-dimensional descriptors aggregated from local in-
variant features (e.g., SIFT [11]) into image-level binary signature,
bringing significant speedup without noticeable loss of retrieval per-
formance. For instance, the Compressed Fisher vector (CFV) [8]
and Residual Enhanced Visual Vector (REVV) [9] proposed to as-
sign local features to nearest visual words in a visual vocabulary and
aggregate the statistics of local features (e.g., visual word residuals)
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Fig. 1: Illustration of variable-length binary aggregated descriptors
based on the statistics of local features. Ci: the i-th visual word.
[bq,1,bq,2]: the variable-length binary aggregated descriptor of image
Xq . [br,1,br,3,br,4]: the variable-length binary aggregated descriptor
of image Xr .

into a fixed-length vector representation, followed by element-wise
sign binarization to produce low bitrate binary signature.

Apart from compactness, descriptors should allow length adap-
tation to balance the required performance level and database size
descriptor scalability [1]. Moreover, variable-length compact de-
scriptors can accommodate the bandwidth variation in wireless net-
work for low latency query delivery in mobile visual search scenar-
ios [7]. In particular, this topic relates to an ongoing MPEG stan-
dardization, namely, Compact Descriptors for Visual Search (CDVS)
[1]. Our prior work [13][20] introduces a Rate-adaptive Compact
Fisher Codes (RCFC) to produce a variable-length binary aggregat-
ed descriptors by progressively encoding informative visual words,
till the bit budget has been fully occupied. Another variable-length
aggregated descriptor is the Robust Visual Descriptor (RVD) pro-
posed in [19]. In this paper, we study the problem of fast image
search with binary descriptors, especially the variable-length binary
aggregated descriptors (see Fig.1).

Even though the Hamming distance can be computed very
quickly, the exhaustive linear scan between the query and each
database image is computational expensive. The efficiency problem
becomes more serious for very large datasets. To alleviate the prob-
lem, hashing techniques such as semantic hashing [17] and spectral
hashing [16] use binary codes as indices of hash table directly. N-
earest neighbors can be found by exploring the hash buckets within
a search radius r around the query. As the number of buckets to be
examined grows near exponentially with the radius, this is only ap-
plicable to short binary codes (less than 32 bits). Recently, Norouzi



et al. [15] presented the Multi-Index Hashing (MIH) to perform fast
image search with longer codes. To ensure optimal search speed,
MIH contiguously partitions the binary vector with l bits into m
disjoint sub-vectors, and indexes them into m different hash tables
respectively. Each sub-vector has log2N bits and m = l/ log2N ,
where N denotes the database size. For visual search, candidate
neighbors are found by using the query sub-vectors as indices into
their corresponding hash tables, followed by a descriptor compari-
son using the entire binary codes to rerank the candidates and return
the exact r-neighbors. Compared to previous hashing techniques,
search cost is dramatically reduced as the search radius for each
hash table is reduced to br/mc, resulting in a small number of buck-
ets to be checked. However, a common issue with these methods
is that they rely on fixed-length binary vectors and consequently
fail to handle variable-length presentations, making it unsuitable
for the emerging rate-adaptive descriptors in mobile visual search
applications.

In this paper, we propose a Component Hashing (CoHash)
of variable-length binary aggregated descriptors for fast image
search. The main idea is to decompose the distance measure be-
tween variable-length binary aggregated descriptors into aligned
component-to-component independent matching problems, and
build multiple hash tables for these components. In the context of
image search, we define the component as visual word obtained by
k-means or Gaussian Mixture Model (GMM) clustering. Given a
query, the online search follows a similar pipeline as MIH on each
component independently. More importantly, if the dimensionali-
ty of components is large, it requires huge amount of memory to
store the hash table as well as incurs more search cost to find the
candidates. A bit selection based on conditional mutual information
maximization is proposed to reduce the dimensionality of compo-
nents. Our results have verified that it provides a light storage of
indices and balances the retrieval accuracy and the search speed. To
the best of our knowledge, this is the first work to study the hashing
algorithm for variable-length vectors in Hamming space.

This paper is organized as follows. We give an introduction to
the variable-length binary aggregated descriptors in Section 2. Sec-
tion 3 presents the proposed CoHash algorithm. Experimental re-
sults are presented in Section 4. Finally, we conclude this paper in
Section 5.

2. VARIABLE-LENGTH BINARY AGGREGATED
DESCRIPTORS

State-of-the-art binary aggregated descriptors typically consist of
three steps: feature coding, feature aggregation and feature com-
pression. Let Xn = {xt}Tt=1 denote a collection of d-dimensional
local features xt from query image Xn, the goal of feature coding is
to embed local features xt in a visual vocabulary space based on an
encoder q(xt): xt ∈ Rd → q(xt) ∈ Q, where Q = {c1, ..., cK}
is a visual vocabulary comprising K visual words. The encoder
q(xt) is to assign each local feature xt to its nearest visual words
NN(xt) ∈ Q in Euclidean space. After that, feature aggre-
gation converts the statistics of local features into a fixed-length
image-level vector representation. Specifically, for each visual
word ck, we derive its statistics gn,k by accumulating the residual
vector u(xt) between ck and the local features xt assigned to it:
gn,k =

∑
xt:NN(xt)=ck

u(xt). The aggregated descriptors gn are
formed by concatenating the sub-vectors [gn,1, ...,gn,K ] of all visu-
al words. Feature compression aims to compress high dimensional
aggregated descriptors gn into binary codes. For instance, the CFV,
RCFC, RVD and REVV proposed to quantize each dimension of
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Fig. 2: Component Hashing of variable-length binary aggregated
descriptors. bq: variable-length binary aggregated descriptor of
query image q. br: variable-length binary aggregated descriptor of
database image r. h(.): function of bit selection, the blue bits are
selected. Ti: the i-th hash table.

gn into a single bit based on a sign function, which converts any
positive value to 1 and any non-positive value to 0. The size of the
binarized aggregated descriptors denoted as bn = [bn,1, ...,bn,K ]
is therefore Kd bits.

Since commonly there are many outlier local features detected
in images, it is beneficial to reject noisy visual words where we ex-
pect low reliability. A visual word reliability can be estimated by the
distance distribution from local features to this visual word. For ex-
ample, the RCFC [20] computes the reliability score sk as the max-
imum probability of local features xt being generated by Gaussian
k, while the RVD [19] calculates it as the number of local features
associated with the kth visual word weighted at each rank of neigh-
borhood. In an extreme case, if no local feature is assigned to visual
word ck, the corresponding reliability score sk = 0 and all the ele-
ments of the corresponding sub-vector gn,k are zero. It means that
the visual word is less informative for describing visual content of
the image. Finally, the variable-length binary aggregated descriptors
b

′
n are formed by a selected subset of visual words (K

′
< K), sub-

ject to a bitrate constraint K
′
d. Accordingly, the resulting bitstream

has an overhead of K bits to indicate which visual word representa-
tions are used [19][20].

Problem definition. With ultra-fast Hamming distance compu-
tation (XOR operation and bit count), the distance measure between
two variable-length binary aggregated descriptors(representing
query image Xq and database image Xr) can be simply computed
as the accumulation of aligned component-to-component distances:

d(b
′
q,b

′
r) =

K∑
k=1

bq,kbr,kh(bq,k,br,k), (1)

where h(·, ·) is the Hamming distance between binarized sub-
vectors. bq,k = 1 if the sub-vector bq,k of the kth component (i.e.,
visual word) is selected; otherwise, bq,k = 0.

On the one hand, the computation cost of this exhaustive search
increases linearly with the dimensionality d, the number of visual
words K and the database image size. This still entails too much
computational complexity, hashing techniques are required to index-



ing the feature vectors for fast search. On the other hand, existing
hashing algorithms like Locality Sensitive Hashing (LSH) [14] and
MIH assume that the lengths of feature vectors are fixed, which can-
not directly apply to the variable-length binary vectors.

3. COMPONENT HASHING

In this section, we firstly present the proposed CoHash algorithm
showing how to offline construct the hash tables for variable-length
binary aggregated descriptors, and then introduce the online search-
ing strategy (see Fig. 2). Finally, we analyze the complexity of
CoHash.

Hash table construction. Given N database images {Xn}Nn=1,
their variable-length binary aggregated descriptors b

′
n, n = 1, ..., N

are traversed to construct multiple index tables T based on the com-
ponents. We treat each d-dimensional visual word as a component
and set up a hash table Tk(1 ≤ k ≤ K) for each component. Each
hash table, following an inverted table structure, is built up as fol-
lows: for the variable-length binary aggregated descriptors b

′
n of

the nth database image, bn,k denotes the binary codes of its kth

component, we add its descriptor-ID n into the corresponding buck-
et of Tk(bn,k). Note that bn,k is ignored (i.e., bn,k = NULL) if
the kth visual word is not selected in the nth database image.

There exist 2d buckets in each hash table, hence the number of
buckets increases exponentially with the dimension d, resulting in
heavy storage required for indices. Meanwhile, the search radius in-
creases as well and leads to a huge number of buckets to be checked,
even slower than linear scan. There is a need to reduce the dimen-
sionality of components when d is large. In this work, we employ a
bit selection approach based on conditional mutual information max-
imization [18]. For each component, the goal is to select d

′
(d

′
< d)

elements that carry as much information as possible, which provides
best separability between hamming distances for matching and non-
matching image pairs of binary aggregated descriptors. We denote
the selected bits from binary sub-vector bn,k as b

′
n,k.

Online searching. Given a query image Xq , the online search
obejective is to generate a shortlist of nearest neighbor images. First,
when scanning component hash tables T , we adopt a voting scheme
to vote the database images based on the conflict with the compo-

nents of b
′
q , yielding a subset of candidates {b

′
n}N

′

n=1, N
′
<< N .

An exhaustive search based on Hamming distance is subsequently

performed within {b
′
n}N

′

n=1 to rerank the candidate images, yielding
the shortlist.

The voting scheme aims to recall most of the reference images
from the database based on conflict. For the kth query sub-vector
b

′
q,k 6= NULL, we enumerate all the binary component-wise vec-

tors having less than v-bit differences (v < d
′
) with b

′
q,k, say {hv},

and count the number of conflicts between b
′
q,k and each database

image through the buckets Tk(hv) of the corresponding hash table
Tk. The voting score s(q, n) for the nth database image is formulat-
ed as follows:

s(q, n) =

v∑
i=0

#n,i (2)

where #n,i ∈ [0,K] denotes the number of components having i-bit
differences between query and the nth database image. If s(q, n) >
τ , we add b

′
n into the candidate set, where τ is a threshold to control

the size of candidate set.
Complexity analysis. We analyze the time and space complexi-

ty for both the offline component-based hash tables construction and

Table 1: Time and space complexity analysis. Cj
i denotes the com-

bination number. K,N, d
′
, v denote the number of visual word com-

ponents, the number of database images, the reduced dimensionality
of component and the number of bit differences, respectively.

Time complexity space complexity
Hash table

construction O(KN) O(K ∗ 2d
′
+KN)

Online searching
O(K ∗

∑v
i=0 C

i
d
′ ∗ N

2d
′ )

+O(N
′
)

0

the online searching, as listed in Table 1. The offline hash table con-
struction does not affect the retrieval efficiency. Its space complexity
is moderate. For a database with 1 million images(N = 256, d

′
=

16), the memory cost of hash tables is about 1.5G bytes. The time
complexity for conflict image voting, O(K ∗

∑v
i=0 C

i
d
′ ∗ N

2d
′ ), can

be ignored when v is small, while the search time mainly depends

on the cost of exhaustive search in the candidate subset {b
′
n}N

′

n=1.
Section 4 will discuss the search time in detail.

4. EXPERIMENTS

Datasets and evaluation protocols. We evaluate the retrieval per-
formance of CoHash over the MPEG CDVS benchmark datasets [2]:
(1) Graphics dataset depicts CD/DVD/book cover, text documen-
t and business card. There are 1,500 queries and 1,000 reference
images; (2) Painting dataset contains 400 queries and 100 refer-
ence images of paintings. (3) Frame dataset contains 400 queries
and 100 reference images of video frames. (4) Landmark dataset
contains 3,499 queries and 9,599 reference images from building
benchmarks. (5) UKbench dataset contains 2,550 objects, each con-
taining 4 images taken from different viewpoints. A FLICKR1M
dataset containing 1 million images is use as distracters, merging
with the reference datasets to evaluate the performance over a large-
scale database.

The retrieval performance is measured by mean Average Pre-
cision (mAP) and Recall@N

′
, where N

′
denotes the number of

database images in the candidate set.
Implementation details. In this work, SIFT descriptor is adopt-

ed as the local feature. The dimensionality of raw SIFT is reduced
from 128 to d = 32 using Principal Component Analysis (PCA), like
the state-of-the-arts works [8][10]. We employ the RCFC [20][13]
as the variable-length binary aggregated descriptors with the num-
ber of Gaussians K = 256. For query image, the size L of RCFC
is varied with respect to the rate constraint, e.g., ranging from 292
bytes to 632 bytes. However, we fix the length of RCFC for database
images at L = 632 bytes.

Impact of parameters. We first study the impact of varying
number of selected bits d

′
and v-neighbors on the average search

time (s) and retrieval accuracy in terms of Recall@N
′

over all
queries with L = 292 bytes, as shown in Fig. 3 (a) and (b) respec-
tively. With v fixed, we found that the search time and Recall@N

′

increase when d
′

reduces from 20 to 8, the reason is that the number
of buckets of each hash table is dramatically reduced, leading to
a larger set of candidate images. A similar trend is observed as v
increases when d

′
is fixed. It has been empirically shown that the

optimal v-neighbors depends on the length of hash codes d
′
. In

the next experiments, we use v = 3, d
′
= 16 to obtain a tradeoff
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Fig. 3: Impact of parameters. (a) Search time vs. different selected bits d
′

and v-neighbors (# Nearest neighbors). (b) Recall@N
′

vs.
different selected bits d

′
and v-neighbors. (c) mAP vs. speedup ratio with different thresholds τ .

Table 2: Comparison of CoHash and the-state-of-the-arts in terms of mAP and search time (s) over the various types of datasets with varying
size L (bytes) of RCFC.

Dataset Method mAP Search Time (s)
L = 292 L = 352 L = 372 L = 632 L = 292 L = 352 L = 372 L = 632

Graphics

CoHash 0.748 0.786 0.792 0.865 0.057 0.067 0.079 0.140
MIH 0.742 0.788 0.832 0.877 0.295 0.412 0.495 0.911
LSH 0.751 0.782 0.787 0.875 0.329 0.452 0.461 0.875

Linear Search 0.754 0.795 0.800 0.883 1.120 1.341 1.435 2.874

Painting

CoHash 0.755 0.778 0.786 0.862 0.064 0.069 0.075 0.144
MIH 0.758 0.787 0.796 0.865 0.432 0.488 0.469 0.855
LSH 0.762 0.791 0.797 0.862 0.451 0.443 0.511 0.885

Linear Search 0.769 0.791 0.802 0.874 1.345 1.440 1.467 2.762

Frame

CoHash 0.867 0.883 0.890 0.921 0.060 0.065 0.072 0.142
MIH 0.872 0.891 0.891 0.925 0.321 0.512 0.567 0.928
LSH 0.863 0.885 0.897 0.923 0.331 0.472 0.519 0.938

Linear Search 0.872 0.894 0.894 0.931 1.294 1.327 1.411 2.810

Landmark

CoHash 0.560 0.582 0.584 0.624 0.074 0.081 0.086 0.183
MIH 0.565 0.587 0.591 0.635 0.412 0.451 0.497 1.211
LSH 0.561 0.592 0.593 0.631 0.386 0.442 0.483 0.961

Linear Search 0.560 0.593 0.594 0.645 1.185 1.292 1.430 2.901

UKbench

CoHash 0.600 0.642 0.656 0.714 0.059 0.061 0.065 0.152
MIH 0.611 0.653 0.655 0.717 0.341 0.356 0.517 0.986
LSH 0.615 0.655 0.662 0.721 0.325 0.348 0.498 0.991

Linear Search 0.616 0.660 0.665 0.721 1.255 1.346 1.461 2.843

between the retrieval accuracy and search time.

Fig. 3 (c) presents the impact of varying threshold τ ∈
{0, 1, 3, 7, 15, 31, 63, 127} on the search performance in terms
of mAP and speedup ratio over various datasets. The number of
candidate images reduces as τ increases, yielding remarkable search
speedup. The results show that the search is ∼25 (τ = 15) times
faster than linear scan with comparable retrieval accuracy. How-
ever, when the speedup ratio exceeds 30, the mAP starts to drop
significantly for all datasets.

Variable-length binary descriptors. Table 2 shows the search
accuracy (mAP) and search time (s) of CoHash and the-state-of-arts
algorithms with varying size of the binary aggregated descriptors
RCFC. Under the same search accuracy, the proposed CoHash algo-
rithm is significantly faster than others over all datasets at all query
code sizes. Compared with the linear search, CoHash is 20∼25

times faster while without any noticeable retrieval performance loss.
MIH[15] and LSH[21] achieved about 5 times speed up while were
still slower than Cohash. Note that for MIH and LSH, since they
can’t directly handle the varaible-length binary code, all the elements
of sub-vector corresponding to the rejected visual words are assigned
to 0.

5. CONCLUSION

In this paper, we proposed a novel component hashing algorithm to
address the problem of fast image search with variable-length bina-
ry aggregated descriptors. Our approach significantly outperforms
other the-state-of-the-arts methods and achieves about 20∼25 times
speedup than linear search. The results have demonstrated the effi-
ciency and effectiveness of CoHash.
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