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ABSTRACT

Surface Light Fields (SLF) have previously been proposed
for representing 3D scenes under complex lighting condi-
tions, enabling immersive viewing experiences from arbitrary
observation directions. In this work, we present a new ap-
proach for SLF representation and a framework for SLF
compression. Specifically, the SLF is compactly represented
in a B-Spline wavelet basis. This representation is capable
of modeling diverse surface materials and complex lighting
conditions. The coefficients of the B-Spline wavelet are then
compressed by removing the spatial redundancy over surface
points. Compared with image based light field compression,
the proposed scheme is functionally advanced because it en-
ables rendering objects from arbitrary viewpoints with both
good quality and high efficiency. In terms of bitrate and dis-
tortion, experimental results have shown that the proposed
method can achieve competitive performance but with much
lower decoder computational complexity, indicating its po-
tential in practical virtual and augmented reality applications.

Index Terms— Surface light field, VR, AR.

1. INTRODUCTION

In emerging virtual reality (VR) and augmented reality (AR)
applications, it is important to be able to render a scene from
arbitrary points of view, allowing free-viewpoint navigation
for example. While conventional computer graphics (CG) al-
low synthesis of CG-modeled scenes from arbitrary points of
view, the photorealism of natural scenes using CG models is
elusive, at least without extreme computation, especially in
the presence of complex material and lighting phenomena.

Light Fields (LF) aim to provide photo-realistic render-
ings of 3D scenes from a range of viewpoints even in the
presence of such complex material and lighting phenomena.
An LF is most frequently represented as a 4D function of a
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Fig. 1. Two-plane light field representations [1], where (u, v)
and (s, t) indicate the camera plane and the focal plane.

light ray [1]. There are two types of such an LF representa-
tion, as shown in Fig. 1. A sub-aperture representation is es-
sentially a collection of images captured from different view-
points, while a lenslet representation is essentially a collection
of images (here called view maps) of the color of each point
on a plane as the point appears from different directions.

The LF representation requires a large amount of informa-
tion, hindering transmission, storage, and application devel-
opment. Therefore, LF compression has attracted extensive
attention recently, including standardization efforts in JPEG
and MPEG. Almost all of the recent LF compression methods
target LF images captured with a micro-lens array [2] or with
a dense camera array. Some of them compress the LF repre-
sentation as a natural image by exploiting intra-image simi-
larities [3, 4, 5, 6]. Alternatively, by reordering sub-aperture
images as a video, video coding techniques have been adopted
to remove inter-image redundancies [7, 8, 9, 10, 11, 12, 13].

However, these LF methods make at most limited use of
geometric information, and as a result have significant limi-
tations. For one, since the images are captured by cameras
at a discrete set of positions, view interpolation is necessary,
requiring a dense camera array to avoid occlusion artifacts.
Even more significantly, extrapolation of views outside a nar-
row range of view angles close to the original camera posi-
tions is generally not feasible. This all but eliminates conven-
tional LF approaches for VR and AR applications in which
arbitrary points of view of dynamic scenes must be generated.

A more efficient and flexible representation is the Surface
Light Field (SLF) [14, 15, 16]. The SLF enables synthesis
from an arbitrary viewpoint, interactive rendering, and rudi-
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mentary editing of the LF. Essentially, the SLF defines the
light rays emanating from a point of the 3D scene. The SLF
can be regarded as a function f(ω|p), where p is the loca-
tion in 3D of a surface point, and ω is the direction of a
ray emanating from the point. The SLF can be viewed as a
generalization of the lenslet representation, if one considers
the surface point at p as a point on the (s, t) plane. Since
a SLF is a generalization of a LF, it can represent anything
that a LF can represent. Moreover, it has the potential to be a
more efficient representation. Indeed, for Lambertian or near-
Lambertian objects, the view map at each point p is a con-
stant or near-constant image, reducing f(ω|p) essentially to
a function only of p, like a 2D CG texture map. An alterna-
tive view of an SLF is as a CG texture map whose value at
every point is an image, which can be arbitrarily complex yet
is frequently near-constant. Thus an SLF can also be viewed
as a generalization of a CG texture map. In a sense, SLFs
combine the best of LFs and CG modeling, allowing photo-
realistic rendering from arbitrary points of view.

In this work, we propose a new SLF representation and
method for its compression. In a nutshell, we propose to rep-
resent and compress the 4D SLF function f(ω,p) as a sepa-
rable linear transform F (i, j), where i is an image frequency
index and j is a spatial frequency index. Specifically, first,
for every surface point p, we use a linear transform to trans-
form the view map f(ω|p) into a sequence of image trans-
form coefficients α0(p), α1(p), . . .. Second, for every image
transform coefficient αi(p), we use a spatial transform (i.e., a
transform across the surface) to transform αi(p) as a function
of p into a sequence of spatial transform coefficients.

2. SURFACE LIGHT FIELD REPRESENTATION BY
B-SPLINE WAVELETS

We aim to determine an SLF representation that is efficient,
robust, and scalable. Efficiency means that the representation
is compact and friendly to compression. Robustness means
that the representation is capable of approximating views
from various directions of various surface materials under
various lighting conditions. Scalability means that the repre-
sentation can approximate simple (near-Lambertian surfaces)
through arbitrarily complex view maps (reflective surfaces)
using a bitrate commensurate with its complexity.

To this end, we propose to approximate the view map at
each point p as a linear combination of basis functions,

f(ω|p) ≈
N−1∑
i=0

αi(p) · gi(ω), (1)

where gi(ω) is the ith basis function and αi(p) is the corre-
sponding coefficient at point p. N is the number of bases.

But the number of cameras to obtain the SLF is always
limited in practical applications. As shown in Fig. 2, the

 

 

  

  

  
  

Fig. 2. Capturing a SLF by a number of cameras.

SLF of the object is captured by several cameras from dif-
ferent viewpoints. For a surface point p, we denote its
pixel values from different camera directions as a vector
c = {c0, c1, . . . , cM−1}, whereM is the number of the obser-
vations. We also eliminate invalid observations caused by oc-
clusions or out of camera view field. The corresponding cam-
era directions ωm are parameterized by spherical coordinates
with azimuth θ ∈ [−π, π] and elevation φ ∈ [−π/2, π/2].
Further, we re-parameterize φ as γ = sin(φ) ∈ [−1, 1],
which ensures that equal areas in the (θ, γ) plane are equal
areas on the sphere. In turn this ensures that any basis that is
orthogonal on the (θ, γ) plane is orthogonal on the sphere.

Since we have only a limited number of cameras to mea-
sure the SLF, the number of valid observations M could be
smaller than the number of basis functions N , making the
problem underdetermined. Thus we regularize the solution.
To be precise, let each element in matrix G ∈ RM×N be
Gi,j = gi (ωj). Then, given the observation vector c at point
p, we determine α(p) as

α(p) = argmin
α
‖c−Gα‖22 + λ‖α‖22, (2)

where λ is a regularization factor. λ is significant for two rea-
sons: 1) When the problem is underdetermined, i.e., M < N ,
λ avoids overfitting and yield compressible coefficients with
reasonable range. 2) λ makes the solution robust to outliers
due to camera noise and other imprecisions.

The design of basis functions is significant, since a good
basis compacts the energy in the coefficients and make them
easier to compress. In this work, we use the 2D separable B-
Spline wavelets for the basis, because it is a good fit for the
local variance characteristics of the SLF in realistic scenarios.
It can be formulated as follows,

gi(θ, γ) = wi0

(
θ

2π

)
wi1

(γ
2

)
, (3)

where wi is the ith offset of the periodicized 1D B-Spline
wavelet function

wi (x) =
∑
m∈Z

ψo (2
sx− i+m2s), (4)

and ψo is the basic B-Spline wavelet with order o and scale s,

2596



Fig. 3. B-Spline Wavelet functions for SLF representation.
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Fig. 4. The proposed SLF compression framework. Green
and blue boxes indicate the processes on encoder and decoder
sides, respectively.

which can be defined by the sum of cardinal B-Splines,

ψo(x) =
3o−2∑
n=0

qnNo(2x− n),

qn = (−1)n
2o−1

o∑
j=0

(
m
j

)
N2o(n− j + 1),

(5)

where No is the cardinal B-Spline function. s0 and s1 are the
scale of θ and γ, respectively, such that i0 = 0, 1, . . . , 2s0−1,
i1 = 0, 1, . . . , 2s1−1, and i = 0, 1, . . . , 2s0+s1−1, indicating
the total number of basis functions is N = 2s0+s1 .

We visualize the B-Spline wavelet basis functions in
Fig. 3. There are 16 basis functions per row (the θ direc-
tion) and 8 basis functions per column (the γ direction). The
top-left basis function is constant, so the corresponding coef-
ficient is termed the DC coefficient as it represents the mean
value. From the top-left to the bottom-right corner, the basis
functions are able to describe more high-frequency signals.

3. SURFACE LIGHT FIELD COEFFICIENT
COMPRESSION

Fig. 4 illustrates the pipeline of the proposed SLF compres-
sion. The input data include a point cloud that represents
object geometry and a number of images captured from dif-
ferent points of view. The geometry of the point cloud, i.e.,
the 3D position of each point p is compressed as a Sparse
Voxel Octree (SVO) [17, 18]. The SLF compression consists
of the following substeps: 1) representation of the view map
f(ω|p) at each point p by a linear combination of B-Spline
wavelet basis functions with coefficientsα(p) 2) independent

compression of each wavelet coefficient αi(p) by utilizing its
spatial coherence across p, and 3) decompression, reconstruc-
tion, and rendering of the SLF from arbitrary points of view.

To compress the SLF coefficients α(p) for each point p
accross the surface, the key issue is how to remove the spatial
redundancy between neighboring points. We propose to apply
the Region Adaptive Hierarchical Transform (RAHT) coding
[17]. Since the distribution of points on a point cloud can be
rather sparse compared to the whole space, RAHT adaptively
applies the 2-point Haar transform to two spatially neighbor-
ing points and progressively groups them. After transforma-
tion, scalar quantization is applied to each coefficient given a
quantization step size Q,

F̂i = Round

(
Fi

Q

)
Q, (6)

where Fi denotes the coefficients transformed by RAHT and
F̂i the quantized transformed coefficients. Then, the quan-
tized coefficients F̂i are entropy encoded. On the decoder
side, the coefficients can be recovered by entropy decoding,
inverse quantization, and inverse RAHT.

We denote the recovered SLF coefficients as α̂. Given α̂,
the SLF can be easily reconstructed at the decoder side as

f̂(ωv|p) =
N−1∑
i=0

α̂i(p) · gi (ωv), (7)

where ωv is the direction of the virtual camera. Accordingly,
free-view rendering can be achieved efficiently.

4. EXPERIMENTAL RESULTS

For evaluation, we use the dataset proposed in [15], contain-
ing two objects, Elephant and Fish. They have rich texture,
specular surface and complex light illuminance. They are
captured by 316 and 582 cameras, respectively, with 640 ×
480 pixels. We use half of the cameras as input to represent
the SLF and the other cameras as evaluation.

4.1. Reconstruction from Arbitrary Viewpoints

First, we evaluate the ability of the proposed scheme to re-
construct scenes from arbitrary viewpoints. This is one of the
most significant advantages of the scheme over image-based
or depth+image-based LF compression. Figs. 5 and 6 show
reconstructions of Elephant and Fish from virtual viewpoints.
It can be seen that the proposed scheme is adaptive and robust
to different surface materials and light conditions.

4.2. Comparison with Image Based LF Compression

A fair comparison with image based LF compression is not
straightforward, since the SLF representation is able to re-
construct viewpoints that are far from the original camera po-
sitions, while an image based LF cannot. However, we can
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Fig. 5. Rendering Fish from arbitrary viewpoints.

Fig. 6. Rendering Elephant from arbitrary viewpoints.

fairly compare our SLF compression scheme with an alterna-
tive scheme, which we call Image-plus-Geometry Compres-
sion (IGC), as illustrated in Fig. 7. At the encoder side, IGC
compresses the captured images using a video codec. Like
SLF compression, IGC also compresses the geometry using
the same method. At the decoder side, instead of directly
decoding the SLF representation and then rendering, IGC de-
codes the images, constructs the SLF representation from the
decoded images, and finally uses the SLF representation to
render arbitrary points of view. Thus the major difference is
that the SLF representation is performed at the encoder in our
scheme, and at the decoder in IGC. The latter increases the
complexity of the decoder. The running time of decoder side
between the proposed scheme and the IGC is compared in
Tab. 1, where one can see that the proposed scheme is much
faster than IGC. For encoder side, the complexity will in-
crease because of the SLF representation. But considering
practical applications, the decoder complexity is much more
significant, and the codec can be further optimized.

Though IGC is not very practical, nonetheless we can
compare the rate-distortion (RD) performance of IGC with

Table 1. Decoder running time comparison.
Running Time (s) IGC Proposed

Geometry Decompression 0.12 0.12
SLF Coef. Decompression - 5.19

Images Decompression 1.92 -
SLF representation 35.13 -

Rendering 0.51 0.51
In Total 37.68 5.82
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Fig. 7. The framework of IGC. Green and blue boxes indicate
the processes on encoder and decoder sides, respectively.
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Fig. 8. RD performance comparisons between SLF and IGC.

that of the proposed SLF compression scheme to gain some
insight. We compress the input images for IGC as a video
sequence using the reference software HM-16.2 of High-
Efficiency Video Coding (HEVC) [19]. Experimental results
of the performance comparison are shown in Fig. 8, where
one can see that the proposed SLF compression has RD
performance competitive with or superior to IGC.

5. CONCLUSIONS

In this work, we propose a surface light field (SLF) compres-
sion framework for VR and AR applications. The advantage
of SLF over image-based LF is that occlusions are more accu-
rately modeled, thereby reducing the camera density needed
for capture, and making the view maps easier to compress.
We are able to achieve a compact and robust representation
by approximating the view maps as a linear composition of
B-Spline wavelets, and compressing the coefficients by re-
moving the spatial redundancy over the surface. The pro-
posed scheme is able to efficiently and robustly reconstruct
images from a wide range of view directions. Experimental
results indicate that the proposed method achieves competi-
tive rate-distortion performance with low decoder complexity
compared to an image-plus-geometry compression (IGC).
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