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ABSTRACT

We propose a sparsity-based soft decoding approach to re-
store compressed images directly in the transform domain of
compression (DCT domain specifically examined in this pa-
per). Restoring transform coefficients rather than pixel values
prevents the propagation of quantization errors in the image
domain. As natural images are statistically non-stationary
with spatially varying sparse representations, we develop an
adaptive block-wise sparsity-based restoration method that
learns and exploits local statistics. Specially, for each DCT
block, we collect sample blocks via non-local patch grouping
to learn a compact dictionary based on principal component
analysis. The resulting block-specific dictionary is used to
estimate the corresponding DCT coefficients by a technique
of collaborative sparse coding, in which the similarity be-
tween sample DCT patches used in dictionary construction is
further considered. Experimental results are encouraging and
demonstrate that the proposed soft decoding approach per-
forms competitively on restoring compressed images against
existing methods.

1. INTRODUCTION

The past decade has witnessed a rapidly growth of research
works on sparsity-based image analysis and processing. A
number of sparsity-based image restoration techniques were
reported [1-3] to deliver superior performances to previous
techniques on various application problems such as denois-
ing, super-resolution (upsampling), deconvolution, demo-
saicking, etc. However, to the best of our knowledge, there
is few works that applied the sparsity-based restoration ap-
proach to restore compressed images. Ironically, the most
common cause of image degradation in practice is compres-
sion. Modern image sensors, even the consumer grade digital
cameras, offer sufficiently high spatial and spectral resolu-
tions and high signal-to-noise ratio to meet the image quality
requirements of most users without any further processing
of the raw data. But compression is and will continue to
be a vital component of almost all visual communication
and computing systems and products, because the sheer vol-
ume of image data can easily overwhelm the communication
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bandwidth and in-device storage. The relative lack of ad-
vance in sparsity-based restoration of compressed images is
perhaps due to the fact that the compression noises are much
more difficult to model than other degradation sources such
as blurring and imaging device noises. The non-linearity of
quantization operations in image compression systems makes
quantization noises signal dependent, far from being white
and independent as commonly assumed by works on other
image restoration tasks [9].

As motivated above, this work is to investigate if and how
well a sparsity-based image restoration approach can be ap-
plied to remove or alleviate the adverse effects of quantiza-
tion in compressed images. In this case, the degraded in-
put image is the decompressed image, which we call hard-
decoded image; in contrast, the restored image is called soft-
decoded image, and the restoration process is called soft de-
coding. Soft decoding can be expected to improve the fidelity
of a hard-decoded image because all practical image com-
pression methods, including popular international standards
JPEG, JPEG 2000, H.264 etc., are not information theoreti-
cally optimal. In other words, certain statistical redundancies
still exist in the compression code stream. Such residual code
redundancies can be exploited, at least theoretically, at the
decoder side to improve the fidelity of hard-decoded image
by reestimating the original signal based on the knowledge
not used by the encoder. For instance, in block-based cod-
ing methods like JPEG and H.264, correlations exist between
different coding blocks, because natural images have similar
local structures due to self-similarity and because the size of
the coding blocks cannot be too large due to implementation
considerations. These inter-block correlations, which are not
exploited by the encoder, can be used by the soft decoder to
improve the reconstruction fidelity without spending any ex-
tra bits.

In this paper, we focus on soft decoding of DCT domain
compressed images for two reasons: 1. common image and
video compression standards, such as JPEG and H.264, per-
form coding in DCT domain; 2. as explained above, the code
streams of DCT-based compression methods have certain
amount of residual redundancy in the form of inter-block cor-
relation. Unlike most existing image restoration methods, we
design soft decoding algorithm to work directly in the trans-
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form domain instead of pixel domain. This is because inverse
DCT transform is required if the restoration is carried out in
pixel domain, and it will propagate an isolated quantization
error, which is originally confined to a DCT coefficient, to all
pixels of the block being restored.

Considering that natural images are statistically non-
stationary with spatially varying sparse representations, we
perform soft decoding on individual DCT blocks, one at a
time, so that the restoration can adapt to local statistics. The
locally adaptive sparse representation is constructed out of a
dictionary of PCA bases that is learnt using a sample set of
approximately matched patches. Even though each DCT cod-
ing block is restored individually, the inter-block correlations
are accounted for and exploited. This is done by a technique
of collaborative sparse coding, in which the similarity be-
tween sample DCT patches used in dictionary construction is
reused. Specifically, the current DCT block is restored based
on the learnt sparse dictionary jointly with all other blocks
contributing to the underlying PCA analysis.

The performance of the proposed soft decoding method
is further boosted by incorporating the known boundaries of
quantizer cells, which is a strong piece of available side infor-
mation in the DCT code stream, into an objective function of
optimal sparse decomposition as constraints.

The rest of this paper is organized as follows. Section 2
introduces the sparsity model and the proposed adaptive dic-
tionary learning method. In Section 3, we detail the proposed
sparsity-based soft decoding scheme. Experimental results
are given in Section 4. Section 5 concludes the paper.

2. SPARSITY MODEL AND DICTIONARY
LEARNING

In block-wise DCT coding, an image is partitioned into
nonoverlapping blocks (typically 8 x 8 pixel blocks). DCT is
performed on pixel block independently; the resulting DCT
coefficients are scalar quantized according to a quantization
table Q. Let Y be the quantized DCT block, which can be
stacked into a vector y according to the lexicographical order.

2.1. Sparsity Model

Research on image statistics reveals that image patches can
be well approximated by a sparse linear combination of el-
ements from an appropriately chosen dictionary. Using this
observation as a prior for soft decoding, we seek a sparse
representation of each block of DCT coefficients. Let D =
[dy,ds, - -, dg] be the dictionary matrix, where each d; rep-
resents a basis vector in the dictionary. A DCT patch y can be
represented as a linear combination of atoms in the dictionary
D plus some perturbation ¢, that is, y = Da + ¢,a € RF*1.
We say that the model is sparse if we can achieve |||, <
ly|l, and [|al|, < & simultaneously.
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2.2. Adaptive Dictionary Learning

Constructing a good dictionary is critical to the performance
of the above sparsity model. Since natural images typically
exhibit non-stationary statistics, consisting of many heteroge-
neous regions of significantly different geometric structures
or statistical characteristics. Heterogeneous data can be bet-
ter represented using a mixture of sparsity models, one for
each homogeneous subset. Bases for each model are adap-
tive to the particular homogeneous subset. For this reason,
we divide the hard decoded image into a set of overlapped
blocks of size 8 x 8, and perform DCT on these blocks; the
resulting DCT coefficient vectors constitute a training data
set. In the construction of the sparsity dictionary for restor-
ing DCT coding block y;, we take advantage of the non-local
self-similarity of natural images in learning, and collect simi-
lar patches by non-local patch grouping (NLPG) in the train-
ing data set. The NLPG procedure guarantees that only the
similar sample blocks are used in dictionary learning. The
resulting sample set

U, ={y|lly - yill3/k < o*}, (1)

chosen for restoring y;, where o is a selection threshold, is
subject to principle component analysis. PCA generates the
dictionary D; whose atoms are the eigenvectors of the covari-
ance matrix of ;.

3. SOFT DECODING

3.1. Collaborative Sparse Coding

All blockwise DCT-based image/video compression methods
suffer from a common problem, that is, sample blocks are en-
coded independent of each other. Inter-block correlations are
totally ignored. This not only reduces the coding efficiency
in the first place, but also limits the modeling capability of
sparsity-based image prior. The problem is aggravated for
low bit rates as vital structural information of the source im-
age is lost or distorted due to the quantization process.

One way of alleviating the above problem is to impose
structural sparsity constraints in soft decoding. In the restora-
tion problem sample blocks in U; are to be estimated simul-
taneously with y;, with stipulation that similar blocks are en-
coded by similar sparsity patterns. Specifically, we explicitly
introduce a regularization term into the following optimiza-
tion problem to preserve the consistency of sparse codes for
similar local patches:

. L 2 n
min {35y~ Dai? +3 5 il
{ai}i, Li=1 i=1

n n
+y 30 >0 llai —a|l,Wij o,

i=1j=1
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where n is the number of sample blocks in ¥;, W;; measures



Table 1. Performance comparison of tested algorithms in PSNR (dB).

Mehod QF=10 QF=20 QF=30

Butterfly | Lena | Parrots | Bike || Butterfly | Lena |Parrots | Bike || Butterfly | Lena | Parrots | Bike

JPEG 25.32 |27.71| 29.04 [24.06| 27.66 [29.93| 31.61 |26.38|| 29.02 |31.19| 33.05 |27.87

Algorithm [6]| 23.77 |27.35| 28.63 |23.77|| 2591 [29.23| 30.91 |2591| 27.31 |30.45| 32.26 [{27.31

Algorithm [5]|| 25.71 [28.25| 29.32 |24.28|| 27.16 |29.87| 31.01 |25.82| 27.89 |30.67| 31.74 |26.65

Algorithm [7]| 25.21 |27.55| 28.97 |24.01|| 27.52 [29.83| 31.54 |26.35| 28.93 |31.17| 33.06 |27.87

Algorithm [8] || 25.66 [28.22| 29.53 |24.25|| 27.74 |30.17| 31.91 |26.46| 29.06 |31.36| 33.26 |27.93

Algorithm [4]| 26.03 |28.43| 29.58 |24.43|| 27.79 |30.26| 31.94 |26.51| 29.06 |31.38| 33.28 |27.94

Algorithm [9] || 26.25 [28.55| 29.79 [24.60|| 28.73 |30.75| 32.36 |27.12|| 30.08 |31.90| 33.55 |28.93

Ours 26.96 |28.98| 30.48 [25.15| 29.02 |30.92| 32.62 |27.53| 30.31 |32.12| 33.83 |29.09
the similarity between a patches pair (y;,y;), which is de- The above dictionary learning and sparse reconstruction
fined as: procedure can be carried out iteratively, by using the recon-
llyi — yj||2 struction results. of the.previous iteration. as the initial esti-

W;; = exp {_0'3} , 0s>0. (3)  mates to learn dictionaries for the current iteration.

The additional regularization term forces that similar blocks
have similar sparse representation coefficients.

In addition to the sparsity image prior, the DCT image
code stream contains strong pieces of side information on the
original image that should be exploited to improve restoration
performance. For each DCT coefficient x(u, v), v and v being
the indices of the corresponding 2D subband in DCT domain,
we know its quantization interval (g, ., ¢5 ). i.e.,

“

These inequalities can be incorporated into (2) to further con-
fine the solution space and improve the restoration perfor-
mance. Finally, we formulate our problem of soft decoding
as the following constrained convex optimization problem:

qﬁ,v < CC(U,’U) < q’l[li'l)'

. n 2 n
wmin {z lys - Dad? + A3 il
{0‘71}1:1 =1 =1
n n 5
n Y ||ai—aj||1wij}, ©)
i=1j=1
s.t., qLéDaiéqU,i:{1,~--,n}

where < denotes the operation of element-wise comparison,
q” and qV are vectors containing bound values of the quan-
tization interval.

Upon solving (5) and obtaining the optimal sparse coding
vectors {af,--- ,a’}, we restore the current coding block y;
to be the weighted average of all reconstructed blocks in the
group U: .

y=-— (6)
n

where W is the weight measuring the similarity between the
current coding block and other blocks in ¥, computed in the
same way as in Eq.(3).

n
*
WjDaj,

j=1
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4. EXPERIMENTAL RESULTS

In this section, experimental results are presented to demon-
strate the performance of the proposed soft decoding ap-
proach. Our algorithm is compared with existing JPEG
deblocking methods: Liu et al.’s algorithm [6], Fohoum et
al.’s algorithm [5], Lee et al.’s algorithm [7], Zhai et al.’s
algorithm [4], and Zhai et al.’s algorithm [8]. These methods
are included in the comparison group because they can be
considered as soft decoding methods for DTC-compressed
images. Also included is the well-known denoising algorithm
BM3D [9], because the restoration of compressed images can
be viewed as a denoising problem, in which the noises are
quantization errors.

Table 1 tabulates the PSNR results of the above algo-
rithms on four widely used test images, which are coded by
a JPEG coder with quality factors (QF) 10, 20, and 30, re-
spectively. The proposed algorithm has the best PSNR per-
formance for all test images and over all quality factors. Note
that the BM3D algorithm needs the knowledge of the variance
of noises, and in experiments, we feed the BM3D algorithm
the true values of quantization error variances, although in
practice this may not always be possible. In this regard, the
results of BM3D shown in Table 1 should only be treated as a
performance upper bound.

Also, to evaluate the visual qualities of the tested soft de-
coding algorithms, the Butterfly images restored by the above
algorithms are presented in Fig. 1 for readers to judge. It
should be clear that the image reconstructed by algorithm
[6] is too blurry. The images reproduced by algorithm [5]
and algorithm [7] have highly visible noises that accompany
edges and textures. Algorithm [8] works better than algorithm



Algorithm [4]

Algorithm [9]

Fig. 1. Comparison of tested methods in visual quality at QF=10.

[5] and [7], however, there are still noticeable artifacts along
edges. Algorithm [4] and [9] can suppress most of block-
ing artifacts and some of the edge-related artifacts, but it still
produces some ghosting artifacts along edges, which are par-
ticularly visible near corners. The images restored by our soft
decoding method are much cleaner, in which the structures
and sharpness of edges and textures are well preserved. The
proposed method can also remove DCT blocking artifacts in
smooth areas completely, and is largely free of the staircase
and ringing artifacts along edges.

5. CONCLUSION

We proposed a new sparsity-based soft decoding approach for
the restoration of compressed images in DCT domain. The
main contribution of this work is the exploitation of inter-
block correlations by a technique of collaborative sparse cod-
ing. The experimental results are encouraging, opening up
the possibility of significantly improving the quality of DCT-
compressed images in a postprocess.
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