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a b s t r a c t

Multi-camera pedestrian detection is the challenging problem in the field of surveillance video analysis.
However, existing approaches may produce “phantoms” (i.e., fake pedestrians) due to the heavy
occlusions in real surveillance scenario, while calibration errors and the diverse heights of pedestrians
may also heavily decrease the detection performance. To address these problems, this paper proposes a
robust multiple cameras pedestrian detection approach with multi-view Bayesian network model
(MvBN). Given the preliminary results obtained by any multi-view pedestrian detection method, which
are actually comprised of both real pedestrians and phantoms, the MvBN is used to model both the
occlusion relationship and the homography correspondence between them in all camera views. As such,
the removal of phantoms can be formulated as an MvBN inference problem. Moreover, to reduce the
influence of the calibration errors and keep robust to the diverse heights of pedestrians, a height-
adaptive projection (HAP) method is proposed to further improve the detection performance by utilizing
a local search process in a small neighborhood of heights and locations of the detected pedestrians.
Experimental results on four public benchmarks show that our method outperforms several state-of-
the-art algorithms remarkably and demonstrates high robustness in different surveillance scenes.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Pedestrian detection is a key step in many video surveillance
applications, such as pedestrian tracking, crowd analysis and event
detection. In existing studies on pedestrian detection, the most
challenging task is to accurately locate multiple pedestrians in
crowded scenes with heavy occlusions. In this case, it is often
difficult to detect the occluded persons from the 2D view obtained
from a single camera.

Intuitively, a feasible solution to detect the occluded persons in
a crowded scene is to use multiple cameras that can provide
complementary information for the same scene. Here a latent
hypothesis is that two pedestrians overlapped in some views may
become separable in other views. Following this hypothesis,
Sankaranarayanan et al. [1] proposed to project the foreground
of each view onto the same ground plane by homography. As
shown in Fig. 1(a), such projections were then fused and their
intersections were assumed to correspond to locations of the
probable pedestrians. By assuming that all pedestrians have the

same height [2–4], the candidate locations were projected back to
each view for pedestrian detection (as shown in Fig. 1(b)). Similar
to [1], Khan and Shah [5] projected the foreground from each view
to a reference view. Kim [6] utilized lines to represent foregrounds
in each view and projected those lines from each view to the
ground plane.

Generally speaking, these approaches can achieve promising
results in those scenes with weak occlusions. However, they may
fail when the scenes become extremely crowded. In this case, the
projection of one pedestrian may falsely intersect with the
projections from some other pedestrians and such intersections
may lead to phantoms (as shown in Fig. 1(c)). Moreover, the
assumption that all pedestrians have the same height may not
always hold. When projecting back to the camera views, the
changing pedestrians' heights, as well as the synthesis noise from
camera parameters, may lead to inaccurate detection results in all
views (as shown in Fig. 1(d)).

To address these problems, we propose a novel approach for
pedestrian detection in multiple cameras by using multi-view Bayesian
network (MvBN). The overall framework of the proposed approach is
shown in Fig. 2. We first obtain a set of preliminary detection results
using the existing multi-view pedestrian detection methods with some
predefined parameters (e.g., heights of pedestrians). Such results can be
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represented as the pedestrian candidates in all views and the corre-
sponding locations on the ground plane. After that, a Bayesian network
is used to model the occlusion relationship among all candidates in
each camera view, and then multiple Bayesian networks can be further
combined to form a MvBN by the homography from the ground plane
to camera views. The MvBN includes two kinds of nodes that represent
the pedestrian candidates (i.e., P-nodes) and the locations on the
ground plane (i.e., G-nodes), respectively. The edges between P-nodes
are used to model the occlusion relationship, while the edges between
P-nodes and G-nodes represent the homography from the ground
plane to different camera views. In other words, the MvBN is actually
composed of G-nodes and several Bayesian networks, where G-nodes
are used to combine the inference results from different Bayesian

networks. Since phantoms are always concurrent with occlusions, such
phantoms can be efficiently removed by inferring the G-nodes that
demonstrate the highest probabilities of occluding the corresponding
P-nodes.

Note that the preliminary work about MvBN have been published
in [7]. But that version could not handle camera calibration noise and
diverse pedestrians' heights. In order to solve this problem, a height-
adaptive projection (HAP) method is proposed in this study. The HAP
is used to further refine the detection results by utilizing a local search
process in a small neighborhood of heights and locations of the
detected pedestrians. In addition, more extensive experiments are
conducted in this paper to demonstrate the effectiveness of the
proposed approach. We test our approach on four public benchmarks,

Fig. 1. (a) Homography-based multi-camera pedestrian detection method. (b) Projecting the location back with a predefined height to generate a detection result in the
view. (c) The projection of one pedestrian falsely intersects with the projections of other pedestrians, consequently leading to phantoms. (d) An example of the synthesis
noises.

Fig. 2. The system framework of our approach. In the framework, the pedestrian candidates in all views and the corresponding locations on the ground plane are obtained by
existing multi-view pedestrian detection methods with some predefined parameters (e.g., heights of pedestrians). Then, a Bayesian network is used to model the occlusion
relationship between all candidates in each single view, while multiple Bayesian networks can be further combined to form a MvBN by considering the homography from the
ground plane to the camera views. Thus phantoms (the white pedestrian candidates in Inference results) can be efficiently removed by inferring the G-nodes in the MvBN.
Finally, the HAP is used to further refine the final detection results in each view, making the proposed method adaptive to diverse pedestrians' heights and robust to
synthesis noises.
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including PETS09 S2L11, PETS09 City Center (CC)2, APIDIS3 and EPFL
Terrace.4 Experimental results show that our approach outperforms
several state-of-the-art approaches (e.g., [3,4,8,9]) remarkably.

The main contributions of the proposed approach are summar-
ized as follows:

1. We propose a multi-view Bayesian network to model pedes-
trian candidates and their occlusion relationship in all views.
Through MvBN inference, phantoms from various views can be
effectively removed.

2. We present a novel parameter learning algorithm for efficient
MvBN inference. By incorporating a set of auxiliary, real-valued,
and continuous variables, the MvBN inference process can be
efficiently simplified.

3. A height-adaptive projection (HAP) method is proposed to
obtain the final detection results in each view. Experiment
results show that such method is robust to synthesis noises and
calibration errors.

The rest of this paper is organized as follows: Section 2 reviews
the related work and Section 3 presents the formulation of the MvBN
model. A learning algorithm for MvBN inference is proposed in
Section 4. Section 5 describes the height-adaptive projection method
and Section 6 shows the experimental results on several benchmarks.
Finally, the paper is concluded in Section 7.

2. Related work

In multi-view pedestrian detection, the main objective is to detect
pedestrians in surveillance videos and estimate their 3D locations by
fusing the visual cues from multiple viewpoints. Toward this end,
existing approaches usually utilize the calibration information of
multiple cameras and project the visual cues obtained from all views
to the same reference plane. The reference plane, which is often
selected as the ground plane, can thus be used to integrate the visual
cues from multiple views for robust pedestrian detection [1]. Actually,
the whole process of multi-view pedestrian detection can be sum-
marized into three major steps: (1) extracting visual cues from all
views and projecting them onto the reference plane; (2) fusing the
cues to infer pedestrians' locations on the reference plane; and
(3) projecting pedestrians' locations back to all views so as to obtain
the final detection results. In this section, we will briefly review
existing approaches mainly from these three steps.

In an early study of multi-view pedestrian detection, Kim and Davis
[6] focused on refining the single-view pedestrian detection results
with multi-view homography. They projected the detection results
from all views to the same ground plane to find their intersection
points, which were treated as the pedestrians' locations. Inspired by
this idea, many approaches proposed to use the intersections on the
ground plane to assist the pedestrian detection. Since it is often
difficult to accurately detect pedestrians from each single view, most
of these approaches only roughly detect the foreground regions from
each view, while complicated analysis is conducted on the ground
plane to locate pedestrians in these foreground regions. For example,
Khan and Shah [5] projected multiple foreground masks (i.e., regions
with motion) from all views to the reference plane by the planar
homography. The overlapping regions of these projections were then
selected as the pedestrian detection results. Franco and Boyer [10] also
utilized homography to project foreground masks frommultiple views
to the ground plane and fuse them by a space occupancy grid.

Generally speaking, these approaches are very efficient and outper-
form many single-view pedestrian detection approaches in the
scenarios with weak occlusions. However, they may fail to process
the scenarios with heavy occlusions. As stated in [11], the detection
results generated by these approaches may contain many phantoms
(i.e., fake pedestrians) in a crowded scene, which should be further
distinguished from real pedestrians.

To solve this problem, the approaches in [12,13] extended the
framework of [5] by projecting foreground masks to multiple
parallel reference planes to distinguish phantoms and pedestrians.
Although multiple reference planes can efficiently help to distin-
guish phantoms and real pedestrians, these approaches may be
sensitive to inaccurate foreground masks (e.g., shadows). Eshel
and Moses [14,15] proposed that the phantoms were tightly
correlated with occlusions. To avoid occlusions, they placed the
cameras at a high elevation, leading to much fewer phantoms.
However, this scenario is quite different from many real scenarios
where cameras are often fixed at a height of several meters.

Beyond these approaches, many recent studies proposed to
formulate the task of multi-view pedestrian detection as an
optimization problem. That is, they tried to integrate the visual
cues from multiple views into an optimization framework to infer
the real pedestrians by machine learning algorithms. For example,
Fleuret et al. [2,3] proposed to construct a Probabilistic Occupancy
Map (POM) for multi-view pedestrian detection by minimizing the
Kullback–Leibler divergence between multi-view observations and
the estimated probabilistic distribution. Alahi et al. [4] formulated
multi-view pedestrian detection as an inverse problem of deducing
an occupancy vector from the noisy binary silhouettes observed as
foreground pixels in each camera. Beyond these methods, some
approaches proposed to extend the classical single view models to
address the detection problem in the multi-view scenarios. For
example, Ge and Collins [8] extended the classical Marked Point
Process (MPP) model [16] by using a stochastic Gibbs sampling
process on the ground plane. Akos and Benedek [17,9] also
extended the MPP model, in which the sampling process was
guided by the features extracted from pedestrians' heads and feet.
In this manner, the samples obtained from all views become more
accurate, leading to a better estimation of pedestrians' heights.
However, this approach is sensitive to the number of cameras and
may fail when the features from heads and feet are inaccurate.

To sum up, the existing multi-view pedestrian approaches can
often outperform single view models by fusing the visual cues from
multiple views. However, one main drawback of these multi-view
approaches is that they may produce many phantoms since some
crucial information may loss during the homography between
camera views and the ground plane. Although some approaches
such as [8] have tried to remove the phantoms independently in
each view, their performances are still not very promising in scenes
with heavy occlusions. Since phantoms are always concurrent with
occlusions [18], a feasible solution to distinguish phantoms from real
pedestrians is to analyze the occlusion relationship between various
pedestrian candidates. Toward this end, we propose a multi-view
pedestrian detection approach in this study, which adopts a multi-
view Bayesian network to infer the phantoms by simultaneously
using the occlusion relationship between pedestrian candidates and
the homography relationship between the camera views and the
ground plane. In the next section, we will introduce the technical
details of the MvBN model.

3. Problem formulation

In this section, we present the formulation of the Multi-view
Bayesian network (MvBN). To facilitate reading, the main notations
are summarized in Table 1. The MvBN encodes the occlusion

1 PETS09 S2L1: http://pets2009.net/
2 PETS09 CC: http://pets2009.net/
3 APIDIS: http://www.apidis.org/Dataset/
4 EPFL Terrace: http://cvlab.epfl.ch/data/pom
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relationship between pedestrian candidates (including pedestrians
and phantoms) in K views as well as their homography relation-
ship from the ground plane to each camera view. The pedestrian
candidates can be produced by many existing methods and the
Dimensionality Reduction method [4] is utilized in this study. It
can obtain the locations of probable pedestrians (i.e., candidate
locations) on the ground plane. After that, they use a fixed height
(1.85 m) to generate pedestrian candidates in each view. In our
method, the height is only a predefined parameter rather than the
heights of final detected pedestrians. A typical detection example
of pedestrian candidates is shown in Fig. 3.

3.1. Bayesian network in a single view

First, we will discuss a special case that aims to infer phantoms
from a single view (i.e., K¼1). Since all phantoms are concurrent
with occlusions [18], we try to estimate the possibility that each
candidate is a pedestrian in the view by analyzing the occlusion
relationship (i.e., PðRk;i ¼ 1jOkÞ).

To model the pedestrian candidates and their occlusion rela-
tionship in the view, a Bayesian network Bk ¼ fVk; Ekg is built. As
shown in Fig. 4, each node (referred to as P-node) in Vk stands for a
pedestrian candidate in view k and a binary variable Rk;i is used to
indicate whether it is a real pedestrian (i.e., Rk;i ¼ 1) or a phantom
(i.e., Rk;i ¼ 0). In Ek, the edges between various P-nodes encode
their occlusion relationship. Rk;i is a parent node of Rk;j if and only
if the pedestrian candidate i occludes the pedestrian candidate j in
view k (i.e., Okði; jÞ ¼ 1).

Since phantoms are always concurrent with occlusions, an intui-
tive way to infer whether Rk;i ¼ 1 is to measure how it is occluded by
other P-nodes. For the sake of simplicity, we use Ik;i ¼ fi1;…; ijIk;ijg to
represent the indices of P-nodes that occlude the ith P-node. Conse-
quently, the probability that the ith P-node corresponds to a pedes-
trian has relationship with the prior probability of itself and its parent
nodes:

PðRk;i ¼ 1jOkÞ ¼ PðRk;i ¼ 1jRk;i1 ;…;Rk;ijIk;i j
Þ

¼ f ðPðRk;i ¼ 1Þ; PðRk;i1 ¼ 1Þ;…; PðRk;ijIk;i j
¼ 1ÞÞ; ð1Þ

where PðRk;i ¼ 1Þ is the prior probability of that Rk;i is a pedestrian.
Intuitively, P-nodes with heavy occlusions have high probabilities of
being phantoms, then f ð�Þ can be defined as

f ðPðRk;i ¼ 1Þ; PðRk;i1 ¼ 1Þ;…; PðRk;ijIk;i j
¼ 1ÞÞ

¼ PðRk;i ¼ 1Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
prior probability

1
jrk;ij

∑½υArk;i�I ∏
in AIk;i

1�½υArk;in �IPðRk;in ¼ 1Þ
 !

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
occlusion term

:

ð2Þ
where υA foreground and jrk;ij is the number of foreground pixels
in rk;i, ½e�I ¼ 1 if event e holds, otherwise ½e�I ¼ 0. As shown in (2),
the probability of that Ri;k ¼ 1 is composed of two compo-
nents: its prior probability and occlusion term. The occlusion term
decreases PðRi;k ¼ 1jOkÞ when the pedestrian candidate is occluded by
others because phantoms are always occluded by real pedestrians.
Although (1) can infer phantoms in a single view, yet it will not hold in
the following situations:

1. Some phantoms may not be occluded by any pedestrian.
2. Some pedestrians are occluded by other pedestrians.

The case 1 will lead that some phantoms may be treated as
pedestrians while the case 2 will cause that some pedestrians have
a low probability by (2).

3.2. Multi-view Bayesian network

In order to address these two problems, we have to integrate the
cues frommultiple views. To this end, a group of virtual nodes fXigNi ¼ 1
(called as G-nodes) are introduced, where Xi denotes the ith candidate
location on the ground plane. Then these Bayesian networks from
multiple views can be combined together as a Multi-view Bayesian
network (MvBN) B¼ ffXigNi ¼ 1; fBkgKk ¼ 1g. The MvBN is actually com-
posed of K Bayesian networks fBkgKk ¼ 1 and N G-nodes fXigNi ¼ 1, where
each G-node is used to combine the inference results for each

Table 1
Notations.

N The number of pedestrian candidates in each view
K The number of cameras
Rk;i A boolean variable standing for the ith pedestrian candidate in view k (1 for pedestrian and 0 for phantom)
rk;i The bounding box of the ith pedestrian candidate in view k
Xi A boolean variable standing for the ith pedestrian candidate(1 for pedestrian and 0 for phantom)

O¼ fOkgKk ¼ 1
The occlusion relationship between pedestrian candidates in all views, where Ok is an N � N matrix with Okði; jÞ ¼ 1 if the ith pedestrian candidate occludes
the jth one in view k, and Okði; jÞ ¼ 0 otherwise

Hk The homography from the ground plane to view k, where Hk is an N � N matrix with Hkði; jÞ ¼ 1 if the ith candidate location corresponds to the jth
pedestrian candidate in view k by homography, and Hkði; jÞ ¼ 0 otherwise

υ A pixel in the foreground image
Dk The foreground image in view k

Fig. 3. Several detection examples of pedestrian candidates which include most of pedestrians and a lot of phantoms. The last column denotes the candidate locations on the
ground plane.
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potential pedestrian from fBkgKk ¼ 1. Considering that fH1;…;HK g is a
universal set about homography, the conditional probability of each G-
node based on the occlusion relationship, which is the desired result
for our model, can be estimated as (3) by the total probability formula:

PðXi ¼ 1jOÞ ¼ ∑
K

k ¼ 1
PðHkÞPðXi ¼ 1jO;HkÞ; ð3Þ

where PðHkÞ is the weight value of view k. In our study, all cameras are
regarded as equally important:

PðH1Þ ¼⋯¼ PðHK Þ ¼
1
K
: ð4Þ

Note that there are one-to-one correspondences between pedestrian
candidates in camera k and locations on the ground plane through
homography (i.e., Hkði; iÞ ¼ 1 and 8Hkði; jÞ ¼ 0ðia jÞ). Therefore, we
assume Xi is equivalent to Rk;i when Hk is knowable:

PðXi ¼ 1jO;HkÞ ¼ PðRk;i ¼ 1jO;HkÞ: ð5Þ

Considering that 8OlðlakÞ is the occlusion relationship in the other
views and Hk is the homography from the ground plane to the camera
view, hence 8OlðlakÞ and Hk are independent with Rk;i. Then (5) can

be further simplified as follows:

PðXi ¼ 1jO;HkÞ ¼ PðRk;i ¼ 1jOkÞ: ð6Þ
Then substituting (1), (4) and (6) into (3), the desired possibility of
each G-node will be expressed as follows:

PðXi ¼ 1jOÞ ¼ ∑
K

k ¼ 1
PðHkÞPðRk;i ¼ 1jOkÞ

¼ 1
K

∑
K

k ¼ 1
f ðPðRk;i ¼ 1Þ; PðRk;i1 ¼ 1Þ;…; PðRk;ijIk;i j

¼ 1ÞÞ: ð7Þ

It is a challenge to solve (7) because the prior probabilities of
P-nodes are unknown. Considering the homography from the
ground plane to the camera views, we can simplify (7) from
K�N unknown variables to N variables by the hypothesis:

PðR1;i ¼ 1Þ ¼ PðR2;i ¼ 1Þ ¼⋯¼ PðRK ;i ¼ 1Þ ¼ δi; δiA ½0;1�; ð8Þ
where fδ1;…; δNg are a set of independent variables, which are
presented as parameters of the MvBN. For the sake of simplicity,
we utilize δ to denote fδ1;…; δNg. Substituting the parameters that
PðRk;i ¼ 1Þ ¼ δi to (7), the desired probability PðXi ¼ 1jOÞ can be
future represented as

PðXi ¼ 1jOÞ ¼ δi
K

∑
K

k ¼ 1

1
jrk;ij

∑½υArk;i�I ∏
in AIk;i

1�½υArk;in �Iδin
 !

: ð9Þ

Recalling the two problems of the Bayesian network in the
single view, these can be effectively solved by (9) because:

� To the phantoms which occlude pedestrian in some views, we
can decrease the corresponding prior probabilities.

� To the pedestrians which are occluded by other pedestrians in a
single view, it is impossible that he (or she) is occluded
completely in all views.

Notice that the phantoms which occlude pedestrians always cannot
match the foregrounds as well as the pedestrians who are occluded
by them (as shown in Fig. 5). Based on this fact, we try to solve the
prior possibilities of P-nodes by finding the parameters that make
the MvBN inference results best explain image observations (fore-
ground masks):

δn ¼ arg min
δ

LðPðX1 ¼ 1jOÞ;…; PðXN ¼ 1jOÞÞ; ð10Þ

where Lð�Þ is the loss function. The calculation details and learning
algorithm about (10) will be presented in the following section.

4. MvBN learning

After the MvBN inference procedure, the phantoms removal
could be transformed to a parameter learning problem about δ.
This section aims at solving two problems of (10): how to model
the loss function and its learning algorithm.

4.1. Loss function

In the proposed approach, the loss function (10) is calculated by
combining the loss functions of all foreground and background
pixels from all views:

LðPðX1 ¼ 1jOÞ;…; PðXN ¼ 1jOÞÞ

¼ ∑
K

k ¼ 1

∑υADk
γυlðυ; PðX1 ¼ 1jOÞ;…; PðXN ¼ 1jOÞÞ

jDkj
: ð11Þ

where γυ is the weight value of a pixel (1.0 for a foreground pixel and
0.4 for a background pixel) and lð�Þ is the loss function for each pixel.
Background subtraction is a commonly used technology to obtain
foreground masks. Supposing that the background model is good

Fig. 5. The phantom (i.e., the large rectangle) always cannot match the foregrounds
as well as the pedestrian (i.e., the small rectangle) who are occluded by them.

Fig. 4. An example of Bayesian network in a single view. (a) 4 pedestrian
candidates in one view. rk;2 and rk;3 are pedestrians, while rk;1 and rk;4 are
phantoms. Since phantoms are always concurrent with occlusions, we try to
remove phantoms by analyzing the occlusion relationship. (b) The corresponding
Bayesian network. Each node indicates a pedestrian candidate, while each edge
encodes the relationship between two candidates. For example, rk;3 occludes rk;4,
then Rk;3 is a parent node of Rk;4; rk;1 occludes rk;2, rk;3 and rk;4, hence Rk;1 is the
parent node of all other nodes.

P. Peng et al. / Pattern Recognition 48 (2015) 1760–17721764



enough, all pedestrians should appear at the positions of foregrounds
and all foreground pixels originate in pedestrians. Therefore, there are
three clues about pixel and pedestrian:

1. If υ is a foreground pixel, it means that there is at least one
pedestrian appearing at the position of υ.

2. If υ is a background pixel, it is likely that there is no pedestrian
at the position of υ.

3. In the bounding box of a pedestrian, there are more foreground
pixels distributing in the part close to the central axis because
of the body, while less in the area far from the central axis (as
shown in Fig. 6).

Fig. 6. (a) If a background pixel locates in the middle part of a bounding box of a pedestrian candidate (the left one), the pedestrian candidate is always fake; while a
background pixel locates in the around part of a bounding box of a pedestrian candidate (the right one), the pedestrian candidate is likely a pedestrian. (b) Foreground pixels
of a pedestrian do not distribute in the rectangle uniformly.

Fig. 7. (a) Before the robust height-adaptive detection method, all pedestrians have a same fixed size. (b) By the HAP method, the detection results are adaptive to diverse
pedestrians' heights.

Fig. 8. (a) Projecting the original location directly will be influenced by synthesis noises easily. (b) An example of “projected locations”. In our method, we generate detection
results in single views by projecting the corresponding “projected locations,” which are nearby the original location.

P. Peng et al. / Pattern Recognition 48 (2015) 1760–1772 1765



According to these clues, the loss function of a pixel could be
defined as follows:

lðυ; PðX1 ¼ 1jOÞ;…; PðXN ¼ 1jOÞÞ

¼
1� max

fijυA rki g
fϕðdiÞPðXi ¼ 1jOkÞg; if υA foreground;

max
fijυA rki g

fϕðdiÞPðXi ¼ 1jOkÞg; if υAbackground:

8>><
>>: ð12Þ

where di is the distance from υ to the middle vertical axis of rik,
ϕðdiÞA ½0;1� and p ð1=diÞ. In order to make (10) to be a derivable
differentiable problem, we utilize the softmax function [19] (NOR in
our experiments) as an approximation of the max function in (12).

4.2. Learning algorithm

The optimization problem of learning δ has been given by (10)
and (12). Like in the combinatorial optimization, here a set of
auxiliary, real-valued, and continuous variables ε¼ fε1;…; εNg are
used to replace δ¼ fδ1;…; δNg with the sigmoid function:

δi ¼
1

1þexpð�εiÞ
; εiAð�1; þ1Þ: ð13Þ

Thus, substituting these variables into (10) yields the optimization
problem as follows:

εn ¼ arg min
ε

LðεÞ: ð14Þ

Obviously, LðεÞ is a derivable function, despite it is difficult to
derive its gradient formulation. Thus we can estimate the gradient
value of LðεÞ approximately by

∂L
∂εi

¼ LðεiþΔεiÞ�LðεiÞ
Δεi

; ð15Þ

where Δεi is a very small number such as 0.001. In the following,
we use ∇L to denote the gradient vector of LðεÞ about variables ε.
Then the gradient descent method is utilized to solve (14)
approximately. This algorithm is summarized in Algorithm 1.

Algorithm 1. MvBN learning.

Input: L0; L1; εi ¼ 0ði¼ 1;…nÞ;

Output: εn

while jL0�L1j4ΔðΔ is a constantÞ do
L0 ¼ LðεÞ;
∇τ-LinesearchðL; εÞ;
ε¼ εþ∇τ ∇lðεÞ

j∇LðεÞj1;

L1 ¼ LðεÞ;

66666664
return εn ¼ ε;

After the learning procedure, we put εn to (13) and (9) to obtain
the final MvBN inference results of each G-nodes and choose the
pedestrian candidates where PðXi ¼ 1jOÞ4threshold as final
detected pedestrians. In our experiments, Algorithm 1 will be
terminated after at most 15 iterations.

5. Height-adaptive projection (HAP)

As mentioned above, the MvBN can distinguish pedestrians
from phantoms on the ground plane. The pedestrians' locations
produced by MvBN inference are represented by fðxi; yiÞgMi ¼ 1,
where ðxi; yiÞ is the world coordinate on the ground plane and m
is the number of the detected pedestrians. Given by the predefined
pedestrians' height h0, the detection results in each view can be
generated by projecting fðxi; yiÞgMi ¼ 1 from the ground plane to the
camera views. However, there are two problems which will cause
detection errors in this process: First, the predefined height value
h0 does not handle the diverse pedestrians' heights (as shown in
Fig. 7); Second, such projection procedure is easily influenced by
the noisy inputs, e.g., errors in calibration and synchronization (as
shown in Fig. 8(a)).

In order to solve these two problems, a novel height-adaptive
projection (HAP) method is proposed here. In this method, each
detected pedestrian is expressed as

fðxi; yiÞ;hi; ðxk;i; yk;iÞk ¼ 1;���;Kgi ¼ 1;���;M ; ð16Þ

where ðxi; yiÞ denotes the pedestrian's original location and hi is used
to describe the pedestrian's height. ðxk;i; yk;iÞ, which is in the

Fig. 9. (a) Synthesis noises influence detection results in each view independently. The detection results of pedestrian A are accurate in View 1, 5 and 8. But it has some
deviation in View 6. The detection results of pedestrian B are accurate View 5 and 8, but have some deviations in Views 1 and 6. (b) Detection results refined by the proposed
HAP method.
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neighborhood of ðxi; yiÞ, is the “projected location” of the pedestrian for
view k. In this method, detection results in a single view are generated
by projecting the corresponding “projected locations” instead of the
original locations (as shown in Fig. 8). Given ðxk;i; yk;iÞ and hi, the
bounding box rk;i of the ith pedestrian in view k would be generated.
Note that the “projected locations” are different among these views
because the synthesis noises usually influence the detection results in
different views independently. A typical sample is shown in Fig. 9.

Formally, the HAP method aims at finding P¼ fðxk;i; yk;iÞk ¼ 1;���;K ;
higi ¼ 1;���;M which can make the final detection results frk;igk ¼ 1;���;K

i ¼ 1;���;M
explain image observations (foregrounds) best. Hence, it can be form-
ulated as a constrained optimization problem:

Pn ¼ arg max
P

HðPÞ;

s:t:ðxk;i�xiÞ2þðyk;i�yiÞ2oCð8 i; kÞ; ð17Þ

where C is a distance constraint (1.0 m in our experiments setting).
Here HðPÞ is used to depict how well the final detection results
explain foregrounds from different views, which is calculated by
combining the loss functions of all pixels in all views:

HðPÞ ¼ � ∑
K

k ¼ 1

∑υADk
γυLhðυ;PÞ
jDkj

; ð18Þ

where γυ is the weight value of a pixel (1.0 for foreground pixels and
0.3 for background pixels). Lhðυ;PÞ is the loss function of the pixel υ
about P, which is defined as

Lhðυ;PÞ ¼
∏

fijυA rk;ig
ð1�ϕðdiÞÞ; if υA foreground;

1� ∏
fijυA rk;ig

ð1�ϕðdiÞÞ; if υAbackground:

8>><
>>: ð19Þ

where di is the distance from υ to the middle vertical axis of rk;i and
ϕðdiÞ is same to (12).

Also it is difficult to derive the gradient formulation of (18).
Similarly, we can estimate the gradient value approximately as (15).
In the following, we use ∇H to denote the gradient vector of (18).
Thus the algorithm for (17) is summarized in Algorithm 2. It will be
terminated after approximately 8 iterations in our experiments.

Algorithm 2. Height adaptive projection.

Input: H0;H1; fxi;k ¼ xi; yi;k ¼ yi;hi ¼ h0g8 i;k;
Output: Pn

while jH0�H1j4ΔðΔ is a constantÞ do
H0 ¼HðPÞ;
ifðxi;k�xiÞ2þðyi;k�yiÞ2ZC; ð8 i; kÞthen

∂H
∂xi;k

¼ 0; ∂H
∂yi;k

¼ 0;
j
∇τ-LinesearchfH;Pg;
P¼Pþ∇τ ∇H

j∇Hj1;

H1 ¼HðPÞ;

66666666666664
return Pn ¼P.

6. Experiments

6.1. Experimental settings

In this section, we evaluate the performance of our approach on
four benchmark datasets, named PETS2009 S2L1, City Center, APIDIS
and EPFL Terrace. They all contain crowded images from multiple
calibrated cameras. The foreground masks are obtained by [20].

� PETS09 S2L1 is one of the most popular challenging benchmark
datasets to evaluate the performance of multi-view pedestrian
detection algorithms. It contains seven sequences from seven
outdoor cameras and each sequence consists of 795 frames.
Four camera views are used in the experiments, including one
far field view (View 1) and three eye-level views with frequent,
severe occlusions (Views 5, 6 and 8).

� The second dataset is also from the PETS09 datasets. We
selected the City Center (CC) images containing approximately
1 min of recordings (400 frames total) in an outdoor environ-
ment. Although this dataset comes from the same cameras as
those in PETS S2L1, the main difference is that the chosen
2 cameras in PETS CC are all far field views (Views 1 and 2). An
area-of-interest of size 12:2 m� 14:9 m is used in the experi-
ments. It is visible from all two cameras as shown in Fig. 11.

� APIDIS comes from seven indoor cameras monitoring a basket-
ball game. It is much more challenging compared with
PETS2009. For example, there are more frequent severe occlu-
sions and strong shadows caused by the reflection of the
players on the floor. Persons in APIDIS are not “normal”
pedestrians but basketball players with abrupt changes of
behavior. They run, jump or change their motion pathes
suddenly. The proposed algorithm was tested in Views 1, 2,
4 and 7 on the left-half of the basketball court.

� The fourth dataset is EPFL Terrace, which is 3 min and 20 s long
(5000 frames total). It was recorded in a controlled outdoor
environment. Several pedestrians walked in a small space on a
terrace. As same as [9], two cameras (Views 1 and 2) which all
have eye-level views were selected, and an area-of-interest as a
5.3 m�5.0 m rectangle is used in the experiments. It is visible
from all two cameras as shown in Fig . 11.

These sequences vary with respect to the viewpoints, types of
pedestrian movement, surveillance environments and amount of

Table 2
Comparison of different datasets.

Dataset View types Indoor or outdoor Detection targets

PETS09 CC Far field Outdoor Pedestrians
PETS09 S2L1 Far field þ eye-level Outdoor Pedestrians
APIDIS Far field Indoor Basketball players
Terrace Eye-level Outdoor Pedestrians

Table 3
Evaluation results on different datasets. MODA/MODP is the mean value of MODA/
MODP for all used views in this dataset.

The ground plane Image views

RECALL PRECISION MODA MODP

(a) PETS CC
Pe-candidate 0.93 0.41 �0.11 0.77
MvBN only 0.90 0.97 0.82 0.76
MvBNþHAP 0.90 0.97 0.87 0.78

(b) PETS S2L1
Pe-candidate 0.96 0.38 �0.59 0.71
MvBN only 0.95 0.94 0.81 0.73
MvBNþHAP 0.95 0.94 0.87 0.75

(c) APIDIS
Pe-candidate 0.94 0.39 �0.53 0.69
MvBN only 0.87 0.94 0.75 0.70
MvBNþHAP 0.87 0.94 0.83 0.75

(d) TERRACES
Pe-candidate 0.86 0.51 �0.51 0.69
MvBN only 0.81 0.94 0.71 0.68
MvBNþHAP 0.81 0.94 0.82 0.73
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Fig. 10. Evaluation results on different datasets based on different prior pedestrians' heights. The horizontal axis indicates the prior pedestrians' height (m). The vertical axis
is the mean value MODA/MODP for all used views in that dataset.
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occlusions. The differences between these datasets are summar-
ized in Table 2.

On these four datasets, three experiments are conducted. In
the first experiment, the main objective is to demonstrate the
effectiveness of different components of our approach. To be
more specific, the experiment is used to validate the MvBN
model and the HAP method respectively. Then, we will validate
the robustness of the detection results against the prior pedes-
trians' height, which is a predefined parameter for MvBN. The
last experiment will show our advantages by comparing with
four state-of-the-art algorithms, including POM [3], Multiview
Sampler [8], 3DMPP [9] and O-Lasso [4]. POM is a remarkable
method of multi-view pedestrian detection and one of the top-
performers as reported in Winter-PETS2009 [21]. Multiview
Sampler is one of the latest and most effective methods which
have evaluation results on PETS S2L1. The latest evaluation
results of APIDIS were presented in O-Lasso to our knowledge.
3DMPP showed the latest results in the PETS CC and EPFL
Terrace.

Recalling that the objective of multi-view pedestrian detection
is to detect pedestrians in surveillance videos and estimate their
3D locations, we need to evaluate the detection results both on the
camera views and the ground plane. Toward this end, we adopt
two groups of evaluation criteria:

1. RECALL/PRECISION, which are used to evaluate the locations of
the detected pedestrians on the ground plane. The PRECISION
and the RECALL measures given by the ratios TP/(TP þ FP) and
TP/(TP þFN) respectively, where TP, FP and FN are the number
of True Positive, False Positive and False Negative on the
ground plane.

2. MODA/MODP [22](at an overlap threshold of 0.5), which are
used to evaluate the detection results in different camera

views. MODP measures the localization quality of the correct
detections, MODA measures the detection accuracy taking into
account both false and true correspondence. For both metrics,
the larger value indicates a better performance.

6.2. Validation

This experiment aims at validating the two key developments
of the paper: (1) the proposed MvBN can remove phantoms
effectively while keeping most of pedestrians; (2) the HAP method
can make our final detection results have a higher performance on
different camera views.

The quantitative evaluation results are shown in Table 3. The
“Pe-candidate” stands for pedestrian candidates produced by the
base detection method (Reduction Dimension [4] in our experi-
ments), which include pedestrians and phantoms. “MvBN only”
stands for detection results by MvBN without the HAP method. In
other words, the detection results of “MvBN only” in each view are
got from projecting the each pedestrian's original location directly
from the ground plane to each camera view with the predefined
height (1.85 m). Compared with “MvBN only,” the detection results
of “MvBN þHAP” in camera views are generated by the HAP
method.

As Table 3 shows, the RECALL of pedestrian candidates is really
high, while the PRECISION is very poor. It means that pedestrian
candidates contain most of pedestrians with a large number of
phantoms. Compared with pedestrian candidates, MvBN has a
much better performance in PRECISION while keeping a similar
level in RECALL. It demonstrates that the proposed MvBN can
remove phantoms effectively while keeping most of real pedes-
trians. In addition, “MvBNþHAP” has a same evaluation perfor-
mance on RECALL and PRECISION with “MvBN only,” because the

Table 4
Evaluation results on different datasets. MODA/MODP is the mean value of MODA/MODP for all used views in this dataset.

The ground plane Image views

TER MODA MODP

(a) PETS CC
POM 0.28 0.70 0.55
3DMPP 0.31 – –

Ours 0.13 0.87 0.78

The ground plane Image views

RECALL PRECISION MODA MODP

(b) PETS S2L1
POM 0.70 0.91 0.65 0.67
Multiview Sampler – – 0.72 0.69
Ours 0.95 0.94 0.87 0.76

The ground plane Image views

RECALL PRECISION MODA MODP

(c) APIDIS
POM 0.52 0.75 0.35 0.69
O-Lasso 0.70 0.90 – –

Ours 0.87 0.94 0.82 0.75

The ground plane Image views

TER MODA MODP

(d) TERRACE
POM 0.81 0.19 0.56
3DMPP 0.37 – –

Ours 0.24 0.82 0.73

P. Peng et al. / Pattern Recognition 48 (2015) 1760–1772 1769



Fig. 11. There are several detection examples on different datasets and the last column is the detection results on the ground plane. The same pedestrian in different cameras
has same color bounding box. (a) PETS CC, (b) PETS S2L1, (c) APIDIS, and (d) TERRACE.
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HAP method does not change the detected pedestrians' locations
on the ground plane. The performance gains on MODA and MODP
indicate that the HAP method is more effective when generating
detection results in camera views.

6.3. Robustness to the prior pedestrians' height

We continue discussion on the HAP method. All pedestrians are
assigned to a fixed height as a predefined parameter of MvBN. In
order to test the sensitivity of the detection results against the
parameter, an experiment is conducted to show the performance
variations of our approach using different predefined heights.
During the experiment, we varied the height from 1.5 m to 2.4 m
and series of tests were done with or without the HAP method.
Fig. 10 shows the quantitative evaluation results, where x-axis
stands for different predefined heights and y-axis is the mean
MODA/MODP of all used views in the corresponding dataset. The
green curve stands for evaluation results for MvBN with HAP
method, while the red one is for MvBN without the HAP method.
As is shown in Fig. 10, the detection results without the HAP
method would be sensitive to the predefined height. The reason is
that the predefined height is treated as the final height of all
detected pedestrians. As expected, MvBN with the HAP method
would get better evaluation performance and make the final
detection results more robust to the predefined heights. Even if
the height is unreasonable (such as 2.35 m), the HAP method
could still obtain good evaluation performance. This is because the
HAP method would adjust each pedestrian's height based on
image observations rather than setting all pedestrians as the fixed
predefined height.

6.4. Compare with the state-of-the-art algorithms

In this experiment, the proposed approach is compared with
several state-of-the-art methods to demonstrate the effectiveness.
As same as the above experiments, we use MODA and MODP to
evaluate detection results in different camera views. To compare
the proposed approach with the state-of-the-art methods on the
ground plane, RECALL/PRECISION or TER is used to evaluate the
detection results (O-LASSO only showed the RECALL/PRECISION
evaluation results, while 3DMPP used TER [9] as the final evalua-
tion metric). TER is used to measure the detection accuracy taking
into account both false and true correspondence on the ground
plane. For the TER metric, when value is less, performance is
better. The comparison results are shown in Table 4. Fig. 11 shows
several detection results of the proposed method.

In different datasets, all the evaluation results of the proposed
method are reasonably high. From Table 4, we can see our
approach outperforms all the other methods both in camera views
(MODA and MODP) and 3D real world (TER or RECALL/PRECISION).
Generally speaking, the main differences between our approach
and other methods lie as follows:

1. The proposed method has a similar framework with POM [3]
and O-Lasso [4]. These three methods model the multi-view
pedestrian detection problem as different optimal problems
and try to minimize the difference between the final detection
results and the observed foreground masks. The main differ-
ence is that we utilize the occlusion relationship to model
pedestrian candidates. The experimental results show that the
occlusion relationship is effective to remove phantoms. In
addition, we treat the input information with bias (i.e., diverse
pedestrians' heights and calibration noise) and utilize the HAP
method to refine detection results in camera views.

2. Multiview Sampler [8] also utilizes the occlusion relationship
and considers the noisy input. Compared with [8], the proposed

method depresses phantoms using multiple views information
simultaneously rather than independently in each single view.
Their method will make the final detection in a camera view
lose the correspondence with other views.

3. Compare with 3DMPP [9], we utilize the statistical property of
foreground pixels rather than the foregrounds in some crucial
parts (feet and head), which makes our method more robust-
ness to foreground errors.

7. Conclusion

This paper presents a novel approach for pedestrian detection
in multiple cameras by removing phantoms from pedestrian
candidates which can be produced by many existing methods. To
remove phantoms, a Multi-view Bayesian network (MvBN) is
constructed to model all pedestrian candidates and their occlusion
relationship in all views. Such phantoms can be efficiently
removed by inferring the nodes on MvBN that demonstrate the
highest probabilities of occlusions. Moreover, we propose a height
adaptive projection (HAP) method to generate final detection
results in each view. By a local search process in a neighborhood
of heights and locations of the detected pedestrians, our approach
can make final detection results adaptive to pedestrians' heights
and robustness to the noisy inputs. The experimental results have
shown that our approach achieves a good performance on a
variety of application scenarios, such as visual surveillance and
sports analysis. Our approach has been shown to outperform other
state-of-the-art algorithms. The influence of different components
and the robustness to the inputs have been analyzed.
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