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Abstract

We introduce a Compact Topical Descriptor to learn a
compact yet discriminative image signature from the refer-
ence image corpus. This descriptor is deployed over the
well used bag-of-words image histogram, with two merits
over the traditional topical features: First, we propose to
directly control the topical sparsity to achieve the descrip-
tor compactness. Second, we ensure the descriptor discrim-
inability by minimizing the bag-of-words reconstruction er-
rors during the topical histogram encoding. To this end, we
have a generative viewpoint of the topical feature extrac-
tion, which is estimated as a sparse MAP estimation over
the original bag-of-words. We learn such estimation by a
bi-convex optimization, iterating between both hierarchical
sparse coding from words to topical histograms and dic-
tionary learning of the corresponding word-to-topic trans-
form. Especially, supervised labels such as image rank-
ing list can be also incorporated into our descriptor learn-
ing paradigm. We quantize our performance in both Im-
ageNet10K and NUS-WIDE, with comparisons to bag-of-
words, LDA, miniBoF, and Aggregated Local Descriptors.
In practice, we also implement our descriptor for a low bit
rate mobile visual search application, i.e. sending compact
descriptors instead of the image to reduce the query delivery
latency. Our descriptor has significantly outperformed the
state-of-the-art compact descriptors by quantitative evalu-
ations over 10 million reference images.

1. Introduction

Describing images is no doubt one of the fundamental
challenges in computer vision. Besides its progressive ef-
forts towards fully content understanding, the very recent
works [1–4] have also focused on the descriptor compact-
ness without serious loss of the descriptor discriminability,
which has multidisciplinary benefits. For instance, in many
mobile visual search systems like Google Goggles, it makes
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more sense to deliver a compact visual signature instead
of the query image to reduce the query delivery latency,
which is extremely worthwhile when facing a bandwidth-
constraint wireless link. In image classification competi-
tions like PASCAL VOC [7], the feature compactness is
also desired to avoid the curse of dimensionality in clas-
sifier training. Motivations also come from large scale im-
age/video classification endeavors [8,9], where a compact
signature is very beneficial for scalable storing and fast ac-
cessing of millions of reference images or videos.

The descriptor compactness has been studied in the pre-
vious literature, for instance by reducing the local descriptor
dimensions like PCA-SIFT [10], GLOH [11], SURF [12]
and MSR descriptors [13], as well as by compressing the
image-level signatures like miniBoF [15] and Aggregated
Local Features [2]. With the ever growing mobile comput-
ing capability, recent works in mobile visual search [1,4,16]
step forwarded to directly extract very compact descriptors
at the mobile end to achieve a low bit rate query delivery.
For instance, Chandrasekhar et al. [1] introduced a Com-
pressed Histogram of Gradients (CHoG) descriptor, which
adopts Huffman coding trees to compactly describe an in-
terest point with approximately 60 bits. An alternative is to
compress the bag-of-words histogram instead, as recently
investigated in [4,16]. For instance, Chen et al. [16] pro-
posed to encode position differences of non-zero bins in
bag-of-words, which reportsing an ∼ 3KB code per image
for a vocabulary with 1 million words. By using mobile
contexts like GPS tags, Ji et al. [4] proposed a boosting
based word selection to build location-adaptive vocabular-
ies for mobile landmark search.

Inspiration. Extracting compact signatures given a large
image corpus is not alone: In document retrieval [5,17–19],
it is well admired that the distribution of document cor-
pus plays a key role to design an optimal document sig-
nature. However, to the best of our knowledge, the distri-
bution of image corpus is left unexploited in the existing
works of compact image descriptors [1–3,10,13]. This con-
tradiction inspires us to exploit the feasibility to achieve de-
scriptor compactness from the statistics of image corpus. To
that effect, previous works on supervised descriptor learn-
ing [20–23] cannot be scaled up well in this case since they
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heavily depends on expensive image category labels. For
instance, the work in [20,23] learn class-specific vocabular-
ies from an initial vocabulary. Lazebnik et al. [21] built
supervised visual codebook based on information loss min-
imization principle. Instead, in this paper, we propose to
unsupervised learn compact descriptors from the image cor-
pus distribution to guarantee our scalability (Section 2.2).
The potential supervised labels, if any, can be treated as the
optional additive (Section 2.4) to further boost our learning
effectiveness.

The Approach. We propose a Compact Topical
Descriptor (CTD) paradigm to learn a data driven com-
pact image signature. Similar to [24,25], we aim to learn
a sparse abstraction from the well used bag-of-words image
signature at the topical level. However, the sparsity of topi-
cal features can only be indirectly controlled by imposing a
Dirichlet like sparse prior [27], or by adding an entropy like
posterior regularization [18], which is due to the normal-
ized mixture distribution constraints in traditional models
like pLSA [26] or LDA [27].

Inspired by the works in sparse topical coding in docu-
ment analysis [5], by avoiding the normalized distribution
constraints in previous works [18,24–27], the direct control
of the topical sparsity from a non-probabilistic perspective
is feasible. Consequently, we can impose the topical spar-
sity into the topical feature extraction by adding a Lasso
like `1-regularizer. In this sense, each visual word is max-
imally reconstructed by using a sparse linear combination
of topics. And therefore, the image is described as a topical
histogram built by assemble and truncate the topical recon-
structions of individual words

In practice, we employ a log-Poisson loss with Laplace
prior to model the discrete word distributions. We also learn
a topic-to-word dictionary as the topical bases such that top-
ics are still unigram distributions over the dictionary terms,
similar to the traditional topic models [26,27]. Such relax-
ation enables us to deploy an efficient coordinate descent
to learn both topic-to-word dictionary and topical features
with a closed-form solution. Optionally, we can also in-
corporate supervised labels from the image corpus, such as
ground truth ranking orders, to learn CTD in a supervised
manner.

Benefits. Learning compact descriptors from the image
corpus is of practical advantages. Our methodological ex-
planations are two-fold:

(1) We seek an optimal tradeoff between the descriptor
compactness and discriminability, from the perspective of
image corpus distribution rather than from the single image
statistics. In other words, we directly incorporate the inter-
image similarity statistics to learn the topical features for
individual images.

(2) Different from previous works in learning local de-
scriptors [10,13], we prefer to extract compact image fea-

tures upon the bag-of-words. Therefore, our descriptor is
data driven and can be used to various local descriptors and
codebooks [10–13].

Application. We further demonstrate the potentials of
our topical descriptor in a low bit rate mobile visual search
application, which is well advocated in the very recent
works [1,3,4]. In this scenario, to ensure an efficient mo-
bile query delivery, compact visual descriptors are directly
extracted from the mobile end and sent through the wireless
link. We have deployed our proposed descriptor on HTC
DESIRE G7 smart phones, which is quantitatively tested on
10 million landmark images collected from five worldwide
metropolitans. Our descriptor can maintain almost identi-
cal search accuracy comparing to a million scale bag-of-
words histogram [36] with approximately 100-bit per image
to achieve an astonishing 1:1000 compression rate, which
significantly outperforms the state-of-the-art compact de-
scriptors for mobile visual search [1,3].

Related Work. Besides the topical feature based im-
age representation [24,25], our solution also relates to both
sparse coding and nonnegative matrix factorization. The
former learns a structured dictionary by sparse coding of
image patches [28,29], typically with max or average pool-
ing to incorporate spatial layouts [30]. The latter learns
a document(image)-specific coding vector to reconstruct
words extracted from a given document(image) [31]. Both
schemes combine individual word-level sparse codes into
an image signature, which therefore cannot well capture
the inter-word dependency. Instead, we model such depen-
dency by deriving topical features from words to topics, and
then to images, hence can preserve such dependency at the
topical level. Finally, while differing in methodology, works
in compact global descriptors e.g. GIST [14] and com-
pressed bag-of-words histograms e.g. miniBoF [15] Aggre-
gated Local Features [2] also target at the image signature
compactness, which will be quantitatively compared in Sec-
tion 4 together with the topical features [24,25] like LDA .

2. Compact Topical Descriptor
Notations. We adopt a visual codebook V = {V1, ...,VN}

to represent each given image I as a vector w =

(w1, ...,wN)T , where each wi (i ∈ N) represents the fre-
quency of word i appears in I. (wi = 0 denotes Vi does
not appear). Our goal is to learn a topic-to-word dictionary
M ∈ RK×N , where each row Mk is a topic basis, i.e. a uni-
gram distribution over V. For simplicity, we denote the nth
column in M as M.n.

Main Idea. We aim to project an initial high-
dimensional bag-of-words w into a sparse set of non-zero
dimensions in RK based on M as its abstraction. This basis
projection is learnt from the image corpus by a hierarchical
latent variable model (Figure 1 (a)), where sn ∈ R

K is the
word code for word n, and xi ∈ R

K is the image code of ith
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Figure 1. Difference explanation of our compact topical descriptor
(a) versus other topical features like probabilistic Latent Semantic
Analysis (pLSA) (b) and Latent Dirichlet Allocation (LDA) (c).

image as the targeted topical descriptor. In principle, this
sparse latent representation is learnt for each wi through a
regularized loss minimization. We first revisit topic model
from a probabilistic generative viewpoint proposed in [5,6]:

2.1. Generative Topical Description

For each image, we assume the word codes S = {sn}
N
n=1

are conditionally independent given its image code x, and
also each observed word count wn is independent given the
corresponding word code sn, as in Figure 1 (a). Given a
topic-to-word dictionary M initialized by sampling from a
uniform distributionP, this image is described generatively:

Phase 1 samples the image code x from a prior p(x).
Phase 2 samples each word code sn from a conditional

distribution p(sn|x) for each observed word Vn. Then, its
word count wn is again sampled from its Gaussian Distri-
bution Gaussian(wn), which belongs to the expectation of a
sufficient statistics of wn and has its mean by sn

T M.n

Ep(wn |sn,M) [Gaussian(wn)] , sT
n M.n. (1)

In such a manner, the observed word count wn is re-
constructed using the linear combination of word code sn

and topic-to-word transform M.n as sn
T M.n, which enjoys

advantages such as non-negative, mean-valued describing
power for Gaussian distribution.

Phase 3 aggregates individual word codes to output the
image code, which depends on the choice of p(x) and
p(sn|x), which is revisited in Section 2.4 for the case of su-
pervised topical descriptor extraction.

2.2. Topical Sparsity by Sparse MAP Estimation

Based on the above probabilistic modeling, topics are
derived by MAP estimation, during which we impose the
sparsity constraint to achieve the descriptor compactness.

For each image, the above generative process is interpreted
as to infer the following joint distribution:

p(x,S,w|M) = p(x)
∏

n∈N,wn,0

p(sn|x)p(wn|sn,M). (2)

Similar to [5], a Poisson distribution is used to discretize the
word observations in the right hand side of Equation 2:

p(wn|sn,M) , Poisson(wn; sT
n M.n), (3)

where Poisson(x; y) =
yxe−y

x! can be transferred into the KL-
divergence of x and y after a log-Poisson operation.

To achieve the sparsity of both x and S, following the set-
ting of [32], we adopt a Laplace prior p(x) ∝ exp(−λ||x||1),
and p(sn|x) is a supergaussian. We impose an `1-regularizer
over sn to directly control the word code sparsity1

p(sn|x) ∝ exp (−γ||sn − x||1 + ρ||sn||1) . (4)

Learning from the Image Corpus. Subsequently, let
Θ = {xi,Si,wi}

I
i=1 denote the codes for the entire image cor-

pus containing {Ii}
I
i=1 images. We solve the problem of

min
Θ,M

∑
i

`(sin,M) + λ
∑

i

||xi||1 +
∑

i,win,0

(γ||sin − xi||1 + ρ||sin||1)

s.t. : ∀i xi ≥ 0; ∀n ∈ Ii, sin ≥ 0; ∀k, Mk ∈ P.
(5)

where ` is a log-Poisson loss function defined by

`(sin,M) = − log Poisson(win; sT
inM.n). (6)

Minimizing Equation 6 is equivalent to minimizing an un-
normalized KL-divergence between the observation win and
the reconstruction sn

T M.n. We constraint both xin and sin as
non-negative since win is non-negative, which can be inter-
preted as measuring the relative importance of topics.

2.3. Bi-Convex Optimization

The objective function of Equation 5 is bi-convex with
a convex loss function ` (e.g., log-loss of Gaussian distri-
bution), with convex solution space. In other words, Equa-
tion 5 is convex over either Θ or M when fixing the other.
This inspires us to solve Equation 5 using coordinate de-
scent as in [31] that alternatively performs:

Sparse Topical Coding to optimize both image and
word codes Θ when fixing M. We solve the following min-
imization problem for each image respectively:

min
x,S

∑
n∈N

`(sn,M) + λ||x||1 +
∑
n∈N

(γ||sn − x||1 + ρ||sn||1) , (7)

with the constraint of sn ≥ 0. Based on Equation 7, both im-
age and word codes x and S are learnt through a coordinate
descent with a closed-form solution, which alternates:

1We determine the hyper-parameters (λ, γ, ρ) via cross validation.



Learning Word Code S: We first fix image code x to learn
the word code sn for each nth word, in which each topical
basis dimension is independently estimated:

ŝn = arg min
sn
`(sn,M) + γ||sn − x||22 + ρ

K∑
k=1

snk, (8)

with the constraint of sn ≥ 0. Based on Poisson distribution
assumption, the corresponding solution is snk = max(0, ŝnk)
by fixing sn j for all the other j , k. Therefore, the following
gradient is set as 0 to solve each snk

∇snk ŝn =

(
1 −

wn

sT
n M .n

)
Mkn + 2γ(snk − xk) + ρ (9)

Let µ =
∑

j,k sn jM jn and τ = Mkn +ρ−2γxk, solving Equa-
tion 9 is equal to solving ŝnk for

2γMkn ŝ2
nk + (2γµ + Mknτ)ŝnk + µτ − wnxkn = 0. (10)

If xkn = 0, we have ŝnk = θ =
ρ

2γ . Otherwise, we solve a
quadratic equation to obtain ŝnk.

Learning Image Code x: Then we fix S to learn each x
for each image by solving

min
x
λ||x||1 + γ||sn − x||22, (11)

which is convex with the constraint of x ≥ 0. Since each
dimension in x are independent, again we solve each xk sep-
arately, such that

∀k xk = max
(
0, S̄ k −

λ

2γNnonzero

)
, (12)

where S̄ k = 1
Nnonzero

∑
n∈Nnonzero

snk. In other words, we use
an `1-regularizer to have a truncated average over Nnonzero

individual word codes to obtain x for this image.
Learning Topic-to-Word Dictionary. Alternated, we

fix both image and word codes (x,S) of individual images
in the image corpus, then update the topic-to-word dictio-
nary (transform) M by minimizing the log-Poisson loss. We
solve this convex problem via the well-used projected gra-
dient descent [33], where the projection to the simplex P
can be performed with a linear algorithm as detailed in [33].
Algorithm 1 outlines the proposed bi-convex learning pro-
cedure.

2.4. Supervised Descriptor Learning

Optionally, we extend our topical descriptor learning into
a supervised scenario. In this case, we also assume there are
tags (side-information) available for a portion of the refer-
ence images2. Let y ∈ RL be the available tags with a set of

2 This is a commonsense scenario such as GPS or base station tags in
mobile visual search systems [3,4].

Algorithm 1: The bi-convex optimization procedure of
our compact topical descriptor (codes with light color
correspond to supervised descriptor learning).

1 Input: Visual vocabulary V = {V1, ...,VN}, image
corpus I = {Ii}

I
i=1,

2 Output: Image codes {wi}
I
i=1.

3 Initialize a topic-to-word transform M by sampling
from the uniform distribution P.

4 Hierarchical Sparse Coding by fixing M:
5 for each Ii ∈ I do
6 Learning word codes Si = {sin}

N
n=1 for Ii by solving

Equation 10.
7 Learning image code xi by solving Equation 12

with truncated averaging.
8 end
9 Dictionary Learning by projective gradient

descendent [33] based on fixing Θ for I.
10 Update supervised weighting vector f over image

codes by solving Equation 13.

L unique labels. In principle, we leverage y to supervise our
dictionary learning by forcing co-labeled images as similar
as possible.

Modeling Ranking Loss. We formulate each image
code x as input features for a retrieval system. The simi-
larity is measured using an L2 distance. Note that others
like Cosine distance can be also adopted. Given the training
images with labels I′ = {(wi, yi)}I

′

i=1, we learn a weight-
ing vector f ∈ RK for x similar to the inverted document
frequency [34]. Then, an optimal distance should have the
following ranking loss over the labeled reference image set:

arg min
f

Loss(f, y) =

arg min
f

∑
i∈I′

∑
j∈I′

(yi ⊕ y j)fT (xi − x j)
(13)

We jointly learn a weighting vector f for the image corpus,
learn a topic-to-word transform matrix (dictionary) M, and
learn the latent representations Θ = {xi,Si}

I′
i=1. To that ef-

fect, we rewrite the joint optimization as:

min
Θ,M,f

f (Θ,M) + CLoss(f, y) +
1
2
||f||22

s.t. : ∀i xi ≥ 0, ∀n ∈ Ii sin ≥ 0, ∀k, Mk ∈ P,

(14)

where f (Θ,M) refers to the loss in Equation 5, C is a posi-
tive constant.

Learning as Linear Regression. We solve Equation 14
by projective coordinate descent [33], with slight changes
on solving for x by adding an additional step to learn f. The
learning of each x is again optimized by using Equation 12.
The learning of f is achieved with the loss in Equation 13.



Figure 2. Detailed experimental analysis on the NUS-WIDE benchmark. (a). joint tuning of both γ and ρ; (b). the percentage of images to
build CTD; (c). the tuning of codebook sizes; (d). the mAP improvements by adding supervised labels.

Then, for each image, we output its topical descriptor S by
shifting the mean of each bin into

S̄ k =
1

|Nnonzero|

Nnonzero∑
n=1

snk +
C

2I|Nnonzero|λ
( fyk − fŷk) (15)

where ŷ = arg miny(4`(y, ŷ) + F(y, x)) is the prediction loss,
such as their category label violation as in Equation 13, or
ranking distortion as in [4]. The light color codes in Algo-
rithm 1 outline our supervised topical descriptor learning.

3. Further Discussions

Our compact topical descriptor differs from the tradi-
tional topic models like pLSA or LDA [25,27]. Typically
their methods assumes a Dirichlet prior to generate the top-
ics of all the words, which are assumed to be from a given
document-specific mixing proportion. And each word oc-
curence in the document is supposed to be generated from a
group of related topic. To this end, LDA based topic mod-
els do not have an explicit definition of the word code as in
this paper, and therefore it is hard to directly control its code
sparsity. Although the sparsity can be controlled by adjust-
ing the Dirichlet prior indirectly, we will quantitative show
in Section 4 that such controlling is less effective comparing
with our proposed solution in this paper.

It is worth to mention that, methods such as Sparse Cod-
ing [28–30] and Non-negative Matrix Factorization (NMF)
[31] also try to learn a hierarchical representation from the
image (or document) corpus. by treating their learnt bases
as “topics”, aforementioned schemes are similar to the gen-
erative hierarchical topical generation schemes as in [5,6]
and our methods. However, one fundamental difference is
that our descriptor only encodes non-zero words. On the
contrary, both sparse coding and NMF encode all words in
the vocabulary, which are therefore less efficient in terms of
coding speed and less compact in terms of descriptor size.

4. Experiments
In Section 4.1, we provide quantitative evaluations of our

CTD feature over alternatives and state-of-the-art descrip-
tors in both ImageNet10K and NUS-WIDE benchmarks, in-
cluding BoW features [35,36], LDA [25] based topical fea-
ture, miniBoW [15], and Aggregate Local Descriptors [2].
In Section 4.2, we further demonstrate the real-world usage
of our descriptor in a low bit rate mobile visual search sys-
tem deployed on HTC DESIRE G7 smart phones, tested in
10 million reference images with comparisons to the state-
of-the-art compact descriptors for mobile visual search, in-
cluding CHoG [1,3], Tree Histogram Coding [16] and GIST
[14].

4.1. Comparisons on Image Search Benchmarks

ImageNet10K. We first evaluate our CTD feature for
image search tasks in ImageNet10K3. The original Ima-
geNet contains more than 10,000,000 images in over 10,000
categories organized by the WordNet hierarchy. We choose
the ImageNet10K, which contains 10,184 categories from
the Fall 2009 release of ImageNet, including both internal
and leaf nodes with more than 200 images each (a total of 9
million images). We use precision@100 for each query to
evaluate the performance.

NUS-WIDE. The second dataset is NUS-WIDE, which
contains around 270,000 web images associated with 81
ground truth concept tags4. Each image in NUS-WIDE con-
tains multiple tags, which are treated as ground truth label-
ing to validate the image search performance. For evalua-
tion, we consider 21 most frequent tags, such as “animal”,
“buildings”, “person”, etc., each of which has abundant rel-
evant images ranging from 5,000 to 30,000. We sample uni-
formly 100 images from each of the selected 21 tags to form
a query set of 2,100 images with the rest as the training set.
We use the average precision of these 100 images (average

3www.image-net.org/
4http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm

www.image-net.org/
http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm


Figure 3. Performance figure on ImageNet10K dataset.

classification accuracy) to evaluate the performance.
Baselines. (1) GIST represents each image by a single

GIST [14] descriptor (a commonly accepted baseline de-
scriptor for scene classification). (2) BoW represents each
image by a 0.1 million dimensional BoW via hierarchical
k-means clustering [36]. (3) BoW+LDA follows the setting
of [25], where we adopt the LDA model [27] to compress
the initial BoW into a topical feature. (4) BoW Compression
compares our performance to three state-of-the-art works in
compressed BoW histograms, including miniBoW [15] and
Aggregate Local Descriptors [2]. All baselines adopt a kNN
based search with L2 distance to find the top returning, run-
ning on a workstation with 2.53 GHz Intel Xeon CPU and
20GB RAM and costing less than 1 second for every query.

Performances. In both datasets, our CTD signature
outperforms all state-of-the-art alternatives [2,14,15,25,36].
Note that the x-axis denotes the log-scale descriptor size
per image, from which we can see that our CTD works
quite well in the descriptor compactness. In addition, su-
pervised labels helps a lot in ImageNet10K. However, the
performance gain of supervised CTD is limited in NUS-
WIDE, which is due to the fact that only a small portion of
the dataset is manually labeled. As a result, the associated
tags are very noisy.

Insights. Figure 2 provides the parameter tuning details
as well as further insights of our supervised and unsuper-
vised CTD in NUS-WIDE Subfigure (a) shows the joint tun-
ing of both γ and ρ in hierarchical sparse coding in terms
of precision@100. Subfigure (b) shows the percentage of
images for CTD learning and testing, from which we can
see our CTD tends to be stable with the increasing of the
training scale. Subfigure (c) shows the tuning of codebook
sizes, where the performance of our topical descriptor con-
verges at 8,000 words, which means it already well captures
the semantic distribution of the image corpus. Subfigure (d)
shows the performance variations with how many percent-

Figure 4. Compression rate vs. ranking distortion comparing to
[1,2,16] using our ground truth query set.

ages of supervised labels. As analyzed above, it has limited
improvement by increasing the training scale due to the im-
precise labels in NUS-WIDE.

4.2. Low Bit Rate Mobile Visual Search

Work Flow. We have applied our compact topical de-
scriptor for the application of low bit rate mobile visual
search. In this scenario, the descriptor is expected to be
compact, discriminative, and meanwhile computationally
efficient to reduce the overall query delivery latency. We
take mobile location search for example, where each refer-
ence image contains a GPS tag and the delivered query con-
tains both the compact visual signature and a coarse side
information e.g. base station identity. The work flow of our
descriptor for this application consists of four phases:

Phase 1 is a “region selection” operation in the mobile
end. Its input can be mobile side information like base sta-
tion tags that is directly available at the mobile end, which
helps to locate the current query to one of the geographical
regions in a given city5. Phase 2 is to extract local features,
quantize them into bag-of-words, and map into a topical
descriptor which is binarized into an occurrence (hit/non-
hit) histogram with Huffman coding to further reduce size.
Phase 3 is to transmit the encoded signature (with the base
station identity) over the wireless link to a remote server.
Phase 4 decodes the topical descriptor in this server into
the original bag-of-words, which is then combined with the
region-specific f to search similar images.

Data Collection. We collect over 10 million geo-
tagged photos from photo sharing websites of Flickr and
Panoramio. We crawled photos from five worldwide
metropolitans including Beijing, New York City, Barcelona,
Singapore and Florence. This dataset is named as 10M

5We do not use this location tag to post or pre-filter reference images,
so as to make a fair comparison in Figure 4,



Figure 5. Search examples using CTD (first row) and CHoG (second row) in 10M Landmarks Photos dataset, left is the query image.
We visualize the non-zero local descriptor responses to the non-zero topical bins, showing that our topical descriptor only locates on
discriminative landmark regions.

Figure 6. Clockwise: geographical distribution of reference im-
ages in New York and Beijing (top); geographical distortions of
the returning images aligned with the ground truth locations: red
dot in the center (down right); and the query (red) sampling in
New York City (down left).

Landmark Photos. We run k-means clustering by using the
GPS tags to partition photos of each city into multiple re-
gions. For each city, we select the top 30 densest regions
as well as 30 random regions. We then ask a group of vol-
unteer to identify one or more dominant landmark views
from each of these 60 regions. For a given dominant view,
all their near-duplicate photos are manually labeled in its
belonged region and nearby regions. Eventually we have
300 queries as well as their ground truth labels (corrected
matches). Figure 6 further shows the geographical distribu-
tion of the collected reference images, the selected queries,
and the search accuracy on geographical map.

Evaluation Protocol. We use mAP to evaluate the
search performance, which is widely used in [1–4,35].

Table 1. Memory and time at HTC Desire G7.
Tree Memory Time

SIFT [37] SVT, H = 6, B = 10 59MB 1.361S
CHoG [1,3] SVT, H = 6, B = 10 24MB 1.624S

Tree Histogram Coding [16] 60MB 1.453s
Compact Topical Descriptor 68MB 1.974S

mAP =
1
K

K∑
k=1

∑Nk
relevant

r=1 P(r)

Nk
relevant

. (16)

where k = 1 to K is the total queries for evaluation. Nk
relevant

is the number of relevant documents to the kth query; r is
the the rth relevant document; P(r) is the precision at the
cut-off rank of document r.

Rate Distortion Analysis. Figure 4 gives the rate dis-
tortion comparisons to [1–3,16], where the compression
rate refers to the descriptor lengths and the search distor-
tion refers to the mAP drops. Figure 4 shows our descrip-
tor achieves the best tradeoff in the rate distortion: We re-
port the highest compression rate (1:1000) with a very lim-
ited distortion (viewing Figure 4 horizontally), as well as
the highest ranking mAP (significantly over [1–3,16]) with
comparable compression rate (viewing Figure 4 vertically).
In addition, without supervised descriptor learning, CTD
still outperforms all state-of-the-art alternatives [1–3,16].

Efficiency Analysis. We deploy our low bit rate mo-
bile visual search prototype on HTC Desire G7, which is
equipped with an embedded camera with maximal 2592 ×
1944 resolution, a Qualcomm MSM7201A processor at
528MHz, a 512M ROM + 576M RAM memory, 8G ex-
tended storage and an embedded GPS. Figure 7 shows a
snapshot of our compact topical descriptor based mobile vi-
sual search system. Table 1 further shows the memory and
time cost at the mobile end with comparisons to state-of-
the-arts in [1,3,16]. The most time-consuming part is local
feature extraction, which can be further accelerated by ran-
dom sampling, instead of detecting interest points.

Case Study. We discovered that some empirical queries
in our system happen to be taken at night. And some queries



Figure 7. A snapshot of our low bit rate mobile visual search sys-
tem deployed on HTC DESIRE G7 smart phone.

occur in different scales (from either nearby views or dis-
tant views). There is also a common problem that queries
are with blurs (very common cases). We also selected some
suboptimal queries with partial occlusions (objects or per-
sons), as well as photos of partial landmark views. Figure 5
further shows the performances of our descriptor and the
alternative of CHoG [3] in the abovel mobile query sce-
narios in New York, Beijing, Barcelona and Florence re-
spectively. It is obvious that our descriptor performs much
better, highly discriminative between foreground and back-
ground words by visualizing non-zero words after decod-
ing, such that the selected topics only focus on the most
discriminative foreground objects.

5. Conclusion
We introduce Compact Topical Descriptor (CTD), a non-

probabilistic topical description learnt from the image cor-
pus, which enables the direct control of topical sparsity
to extract compact image signatures. Through relaxing
the normalized constraints made in the traditional topical
features, we perform a iterated bi-convex optimization in-
cluding word-topic-image hierarchical sparse coding and
topic-to-word dictionary learning. We further enable op-
tional integration of supervised learning from side informa-
tion such as partial category labels to improve its discrim-
inability. Our proposed descriptor performs superior over
the state-of-the-arts [2,14,15,25,36] on both ImageNet and
NUS-WIDE. We also deploy our descriptor in a low bit rate
mobile search system to provide location recognition in five
metropolitans. We significantly outperform the state-of-the-
art alternatives [1,3,16] by evaluating within 10 million ref-
erence landmark images.
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