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Abstract—This paper presents a cost-sensitive rank learning
approach for visual saliency estimation. This approach avoids
the explicit selection of positive and negative samples, which is
often used by existing learning-based visual saliency estimation
approaches. Instead, both the positive and unlabeled data are
directly integrated into a rank learning framework in a cost-sen-
sitive manner. Compared with existing approaches, the rank
learning framework can take the influences of both the local visual
attributes and the pair-wise contexts into account simultaneously.
Experimental results show that our algorithm outperforms sev-
eral state-of-the-art approaches remarkably in visual saliency
estimation.

Index Terms—Cost-sensitive, positive and unlabeled data, rank
learning, visual saliency.

I. INTRODUCTION

F ROM the perspective of signal processing, visual saliency
refers to the selection mechanism to pop-out the “impor-

tant” content from the input visual stimuli. With visual saliency,
the limited computational resource can be allocated to the de-
sired targets while the distractors can be ignored. Therefore, the
central issue in visual saliency estimation is to distinguish the
targets from the distractors using the various visual clues.

Often, visual saliency estimation requires the integration
of the bottom-up and top-down factors [1]. In existing works,
the bottom-up factor is usually treated as a stimuli-driven
component that determines visual saliency by detecting unique
or rare visual subsets in a scene. Inspired by the Feature In-
tegration Theory [2], many bottom-up approaches estimated
visual saliency by binding the irregularities in different visual
attributes. For example, Itti et al. [3] presented an approach
to estimate image saliency by integrating intensity, color and
orientation contrasts. By incorporating motion and flicker
contrasts, the same approach was extended to video saliency
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in [4]. Harel et al. [5] represented each scene with a directed
graph and adopted a random walker to select the salient lo-
cations corresponding to the less visited nodes. In [6], Marat
et al. presented a biology-inspired model by simulating the
filtering mechanism of the retinal cells to estimate spatiotem-
poral saliency. Similarly, many other approaches detected
irregularities in the spatiotemporal domain (e.g., [7]–[9]), in the
amplitude spectrum (e.g., [10]) or in the phase spectrum ([11]).
These irregularities were then integrated in an ad-hoc manner
to locate the salient target. However, such an ad-hoc integration
may not always work since the top-down factor also plays a
crucial role in visual saliency estimation. Often, the top-down
factor can be treated as priors to guide the integration process.
For example, Peters and Itti [12] proposed an approach to infer
a projection matrix from global scene characteristics to saliency
maps. Kienzle et al. [13] presented a non-parametric saliency
model by using the Support Vector Machine. Navalpakkam
and Itti [14] adopted a learning-based algorithm to pop-out the
targets and suppress the distractors through maximizing the
signal-noise-ratio. Generally speaking, these approaches can
achieve promising results but still have some drawbacks. Often,
the user data such as eye traces can only provide sparse positive
samples. That is, only a few locations in a scene are labeled
as positive, while most of other locations in the scene remain
unlabeled. These unlabeled data may contain many positive
samples so that it is improper to treat all of them as negative
samples (e.g., as in [12] and [13]), or randomly select negative
samples from them (e.g., as in [13]). Moreover, the influence
of pair-wise context (e.g., the competition between targets and
distractors [3], [4], the co-occurrence characteristics of various
visual stimuli [15]) is not considered in these approaches, which
also plays an important role in visual saliency estimation.

To solve these two problems, we propose a cost-sensitive
rank learning approach on positive and unlabeled data for visual
saliency estimation. In our approach, the influences of local vi-
sual attributes and pair-wise contexts are taken into account si-
multaneously using a pair-wise rank learning framework. More-
over, we avoid the explicit extraction of positive and negative
samples by directly integrating both the positive and unlabeled
data into the optimization objective in a cost-sensitive manner.
Extensive experiments demonstrate that our approach outper-
forms several state-of-the-art bottom-up (e.g., [3]–[5], [7], [8],
[10], [11]) and top-down (e.g., [12]–[14]) approaches in visual
saliency estimation. Moreover, both the cost-sensitive integra-
tion of positive and unlabeled data and the rank learning frame-
work are proved to be helpful in visual saliency estimation.

The remainder of this paper is organized as follows.
Section II describes the cost-sensitive rank learning approach
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for visual saliency estimation. Experimental results are shown
in Section III and the paper is concluded in Section IV.

II. THE APPROACH

Often, users intend to search the desired targets under the fa-
cilitation of experience derived from past similar scenes (i.e.,
the contextual cueing effect [16], [17]). In this process, a requi-
site step is to identify the search priority of each location. Such
priority is closely related to visual saliency and can be derived
from local visual attributes and pair-wise contexts. Therefore,
we can formulate visual saliency estimation as a rank learning
problem to estimate the searching priority of each location.

Here we first describe how to extract the local visual at-
tributes. In general, a scene can be expressed as a conjugate
of information flows from multiple visual feature channels.
Among these channels, some are the probable sources of
preattentive guidance and visual saliency is related to local
contrasts in these preattentive channels. As in [4], we compute
the local contrasts from 12 typical preattentive channels in
six scales, including intensity (six), color opponencies (12),
orientations (24), flickers (six) and motion energies (24). In
total, 72 local contrasts are obtained. Here we use a vector
with 72 components to characterize the local visual attributes
of the th location (e.g., 16 16 block) in the th scene.

Using these features, we then present our cost-sensitive rank
learning approach for visual saliency estimation. In the learning
process, an important issue is to train a ranking function
using the ground truth saliency . For two locations
and , indicates that ranks higher
than and maintains a higher saliency. However, the user
data often contain only sparse positive samples. As shown in
Fig. 1(a), the eye traces can only reveal parts of the salient target,
while most locations remain unlabeled. To utilize the unlabeled
data, we derive by considering the visual similarity and
the spatial correlation between and the labeled positive
samples. Let be the event that is a labeled positive
sample, the visual similarity can be calculated as

(1)

where if holds, otherwise . is the
total number of blocks in a scene. As shown in Fig. 1(b), such
visual similarities can pop-out the locations that are similar to
the positive samples. Moreover, the spatial correlation is
computed as

(2)

where is the Euclidean distance between the locations
and , while corresponds to the diagonal distance of the

th scene. As shown in Fig. 1(c), such spatial correlations can
pop-out the remainder of the salient target. After that, we nor-
malize the visual similarities and the spatial correlations into
[0,1] and derive by setting:

(3)

Fig. 1. Generating ground-truth saliency from sparse positive samples.
(a) Sparse positive samples (the eye fixations are provided by the MTV dataset
in [18]); (b) the visual similarity map; (c) the spatial correlation map; (d) the
derived ground-truth saliency map.

As shown in Fig. 1(d), the formulation in (3) will only assign
high saliency values to the locations that are adjacent and
similar to the labeled positive samples. In the training process,
however, it is often difficult to directly determine the label
for each sample, especially for the one with medium saliency
(e.g., around 0.5). Moreover, visual saliency estimation mainly
focuses on distinguishing targets from distractors and the
correlations between target pairs or between distractor pairs
should be considered with low priority. Therefore, we integrate
all the positive and unlabeled data (with estimated ground truth
saliency) into a rank learning framework in a cost-sensitive
manner. Since visual features can be bound into consciously
experienced wholes for visual saliency estimation [2], we
adopt a ranking function to combine the input
features with linear weights. Given the local visual attributes
and ground-truth saliency for each location of the training
scenes, the empirical loss can be defined as

(4)

where . We can see that there will be
a loss if the ranking function gives predictions contrary to
the ground-truth saliencies (i.e., when

). Moreover, the loss function emphasizes the
correlations between targets and distractors since the central
issue in visual saliency estimation is to distinguish targets from
distractors. That is, the cost of erroneously ranking a target-dis-
tractor pair (i.e., ) is much bigger than that of
mistakenly predicting the ranks between target pairs or between
distractor pairs (i.e., ). Thus, it is cost-sensitive
by differentiating target-distractor pairs in our framework.

Generally speaking, minimizing the loss function (4) will not
only pop-out the target using the local visual attributes, but also
suppress the distractors by considering the influences of pair-
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Fig. 2. Some representative results. Note that here the eye density maps are not convolved with a Gaussian kernel, which is a popular method to recover more
positive samples for the evaluation. (a) Original frames; (b) eye fixation maps; (c) Itti98 [3]; (d) Itti01 [4]; (e) Itti05 [7]; (f) Hou07 [10]; (g) Guo08 [11]; (h) Harel07
[5]; (i) Zhai06 [8]; (j) Peters07 [12]; (k) Kienzle07 [13]; (l) Navalpakkam07 [14]; (m) our approach.

wise correlations. However, it is difficult to directly minimize
such a binary loss function. Toward this end, a feasible solution
is to find an upper bound of (4) and minimize the upper bound
instead. From the definition of the loss function, we can see that:

(5)

By incorporating (5) into (4), the optimization objective can
be rewritten as

(6)

Note that (6) contains only exponential terms with linear pos-
itive weights. Thus the objective function is convex and the
global optimum can be reached using gradient-based method:

(7)
With the derived ranking function, a rank

is assigned to each block . To get the visual saliency
map, we empirically turn this rank into a saliency value

, where is a constant to pop-out the
probable salient targets. For larger (empirically set to 3 in
this study), the locations other than the most salient location
can be suppressed more effectively. Moreover, we convolve the
saliency map with a Gaussian kernel to ensure that
the entire salient object can be detected. For convenience, the
saliency values are normalized into [0,1].

III. EXPERIMENTAL RESULTS

In this section, we evaluate the feasibility of our cost-sensi-
tive rank learning approach for visual saliency estimation. In
the experiments, we adopt one video dataset proposed in [18]
with eye traces of eight subjects. The dataset consists of over
46 000 video frames in 50 video clips (25 min), which mainly
contain scenes such as “outdoors day&night,” “crowds,” “TV
news,” “sports,” “commercials,” and “video games.” When
watching each video clip, the eye traces of four to six subjects
were recorded using a 240 HZ eye-tracker. In the experiment,
we randomly divide the dataset into training/validation/test sets
for ten times. For each division, we adopt ten state-of-the-art

TABLE I
PERFORMANCE OF VARIOUS APPROACHES IN VISUAL SALIENCY ESTIMATION

approaches for comparison. In general, these approaches can
be grouped into two categories.

1) Bottom-Up (BU) approaches for saliency estimation, in-
cluding Itti98 [3], Itti01 [4], Itti05 [7], Zhai06 [8], Harel07
[5], Hou07 [10] and Guo08 [11].

2) Top-Down (TD) approaches for saliency estimation, in-
cluding Peters07 [12], Kienzle07 [13] and Navalpakkam07
[14].

Among these approaches, Itti98 [3], Itti01 [4], Itti05 [7] and
Navalpakkam07 [14] adopt the same local visual features as in
our approach. For fair comparison, Kienzle07 [13] also trained
the SVM classifier using these features, other than the local in-
tensities. In the experiments, the parameters for the learning-
based approaches are optimized on the validation set.

In the experiments, we use the Area Under the ROC Curve
to evaluate the overall performance. In the evaluation,

salient locations are selected from the estimated saliency maps
using different thresholds. These locations are then validated
using the ground-truth saliency maps (approximated by the eye-
density maps as in [3], [6], [12]–[14], etc.) and the ROC curve
is plotted as the false positive rate vs. true positive rate. Perfect
prediction corresponds to score of 1, while random pre-
diction gives a score of 0.5. The scores of different
approaches are shown in Table I and some representative results
are given in Fig. 2.

From Table I, we can see that our approach outperforms all
the other ten approaches. As shown in Fig. 2(c)–(d), Itti98 [3]
and Itti01 [4] only maintain the most salient locations using
the “winner-take-all” competition. Thus they yield low
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scores since the competition may not only suppress the distrac-
tors but also inhibit the targets. Other bottom-up approaches
perform much better by integrating the irregularities in the spa-
tiotemporal domain (e.g., Itti05 [7], Zhai06 [8] and Harel07 [5]),
in the amplitude spectrum (e.g., Hou07 [10]) or in the phase
spectrum (e.g., Guo08 [11]). However, the experience on past
scenes can often provide effective clues for suppressing the dis-
tractors, which are not considered by these approaches. Thus
the saliency maps generated by these approaches often contain
much noise.

Compared with the bottom-up approaches, the top-down ap-
proaches [12]–[14] do not demonstrate much improvement due
to their inappropriate strategies on sampling negative training
samples. For example, Peters07 [12] and Navalpakkam07 [14]
treated all the locations that have received no fixations as neg-
ative samples (i.e., distractors), while Kienzle07 [13] generated
the negative samples by using the same coordinates of eye fix-
ations, but on different scenes. Therefore, many positive sam-
ples in the unlabeled data will be assigned to wrong labels,
which will greatly degrade the overall performance. As shown
in Fig. 2(j)–(l), these approaches can only recover parts of the
targets, while the other parts are often suppressed as distractors.

Compared with these approaches, our approach can accu-
rately locate the salient target while suppressing the distractors.
Particularly, our approach can pop-out the entire salient object,
other than the most salient points. As shown in the second row
of Fig. 2(m), our approach can pop-out the whole caption line
and the car from a complex scene. Generally speaking, the suc-
cess of our approach is mainly due to two reasons. Firstly, the
positive and unlabeled data is directly exploited by the optimiza-
tion objective in a cost-sensitive manner, which provides effec-
tive clues for locating the entire targets. Secondly and more im-
portantly, the rank learning framework focuses not only on the
local visual attributes but also on the pair-wise correlations. In
the learning process, the local visual attributes assist to pop-out
the targets, while pair-wise correlations can help to suppress the
distractors.

We also design an experiment to illustrate why the cost-sen-
sitive formulation is necessary. In one experiment, we set a
threshold to select only the sample pairs whose saliency
differences are larger than into the training process. In this
process, the selected sample pairs are treated with equal weights
(i.e., the term in (4) is fixed to 1). Firstly, we
set and the score reaches 0.743. This indi-
cates that the rank learning framework itself can improve the
overall performance, even only using the most reliable samples.
Then we gradually decrease and the reaches its max-
imal (0.775) when , and then decrease to 0.766 when

. The reason is that the correlations between targets and
distractors (i.e., sample pairs with high saliency differences) can
provide effective clues for selecting the discriminative features
for the ranking function. However, correlations between targets
or between distractors (i.e., sample pairs with low saliency dif-
ferences) may bias the selection process to the wrong visual at-
tributes, thus decreasing the score. This implies that pe-
nalizing correlations between targets and between distractors in
a cost-sensitive manner is helpful in visual saliency estimation.

IV. CONCLUSION

In this paper, we propose a novel approach for visual saliency
estimation. Our contributions are two-fold: firstly, the task of
visual saliency estimation is formulated as a rank learning
problem on positive and unlabeled data for the first time. The
rank learning framework can consider the influences of both the
local visual attributes and pair-wise contexts simultaneously.
Secondly, we propose an approach to directly integrate the
positive and unlabeled data into the optimization objective
in a cost-sensitive manner. This helps to detect the entire
targets while suppressing the distractors by focusing on the
target-distractor correlations. From the experimental results,
our approach outperforms several state-of-the-art bottom-up
and top-down approaches. In the future work, we will extend
the rank learning framework to user-targeted visual attention
modeling. Moreover, we will incorporate other clues such as
global scene characteristics into the rank learning framework
to further improve the performance.
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