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One of the major challenges in person Re-Identification (RelD) is the inconsistent visual appearance of a
person. Current works on visual feature and distance metric learning have achieved significant achieve-
ments, but still suffer from the limited robustness to pose variations, viewpoint changes, etc., and the
high computational complexity. This makes person RelD among multiple cameras still challenging. This
work is motivated to learn mid-level human attributes which are robust to visual appearance variations
and could be used as efficient features for person matching. We propose a weakly supervised multi-type
attribute learning framework which considers the contextual cues among attributes and progressively
boosts the accuracy of attributes only using a limited number of labeled data. Specifically, this frame-
work involves a three-stage training. A deep Convolutional Neural Network (dCNN) is first trained on an
independent dataset labeled with attributes. Then it is fine-tuned on another dataset only labeled with
person IDs using our defined triplet loss. Finally, the updated dCNN predicts attribute labels for the target
dataset, which is combined with the independent dataset for the final round of fine-tuning. The predicted
attributes, namely deep attributes exhibit promising generalization ability across different datasets. By di-
rectly using the deep attributes with simple Cosine distance, we have obtained competitive accuracy on
four person RelD datasets. Experiments also show that a simple distance metric learning modular further
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boosts our method, making it outperform many recent works.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Person Re-Identification (RelD) is a technology to identify the
same person across images captured by different cameras. As is
shown in Fig. 1, person RelD is challenging because the visual ap-
pearance of a person is easily affected by many factors, including
illumination conditions, viewpoint variations, camera parameters,
body poses, etc. Due to its important applications in public secu-
rity, e.g., cross camera pedestrian searching, tracking, and event
detection, person RelD has attracted lots of attention from both
the academic and industrial communities. Currently, most research
efforts can be summarized into two categories: a) extracting and
encoding robust local features representing the visual appearance
of a person [1-7] and b) reducing the distance between features
of the same person by learning a discriminative distance metric
[8-25].

Despite the significant achievements made by existing works,
there is still much room for improvement before person RelD can
be used in real applications. Because local features mainly de-
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scribe low-level visual appearance, they are not robust to variances
of viewpoints, body poses, etc. On the other hand, distance met-
ric learning suffers from the poor generalization ability and the
quadratic computational complexity, e.g., different datasets present
different visual characteristics corresponding to different metrics.
Compared with low-level visual feature, human attributes like long
hair, blue shirt, etc., represent mid-level semantics of a person. As
illustrated in Fig. 1, attributes are more consistent for the same
person and are more robust to the above mentioned variances.
Some recent works hence have started to use attributes for person
RelD [26-31]. Because human attributes are expensive for manual
annotation, it is difficult to acquire enough training data for a large
set of attributes. This limits the performance of current attribute
features. Consequently, low-level visual features still play a key role
and attributes are mostly used as auxiliary features [28-31].
Recently, deep learning has exhibited promising performance
and generalization ability in various vision tasks. For example in
[35], an eight-layer deep Convolutional Neural Network (dCNN) is
trained with large-scale images for visual classification. The mod-
ified versions of this network also perform impressively in ob-
ject detection [36] and segmentation [37]. Many researchers have
started to use deep learning and triplet loss for person RelD
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Fig. 1. Example images of the same person taken by two cameras from three
datasets: (a) VIPeR [32], (b) PRID [33], and (c) GRID[34]. This figure also shows five
of our predicted attributes shared by these two images.

[38-40]. Specifically, they use two images of the same person and
one image of another person to construct a triplet. Then, triplet
loss backpropagated to update the dCNN to learn a discriminative
distance metric, i.e., the distance between two images of the same
person should be smaller.

Inspired by the promising performance of attributes and the
strong generalization ability of dCNN, we target to learn a dCNN
to detect a large set of human attributes for person RelD. Due to
the diversity and complexity of human attributes, it is a labori-
ous task to manually label enough of attributes for dCNN training.
The key issue is hence how to train this dCNN from a partially-
labeled dataset and ensure its discriminative power and gener-
alization ability in the person RelD tasks. Meanwhile, some at-
tributes are not compatible with each other. For example, gender-
related attributes such “female” and male can not coexist for the
same person. It is also not reasonable to predict multiple positive
hair-related attributes like “hairLong”, “hairBald”, “hairShort”, etc.
for the same person. Therefore, instead of using the flat multi-label
prediction structure, we should design a proper dCNN structure to
take such contextual cues into consideration.

To address these issues, we propose a Weakly Supervised Multi-
Type Attribute Learning (WSMTAL) algorithm. As shown in Fig. 2,
we divide human attributes into multiple types, where each con-
tains several incompatible attributes and only one of them can
be positive. For example, the gender-related attributes and hair-
related attributes would belong to two different types of attributes.
In our dCNN, different types of attributes share the same convolu-
tional layers, but each has its own fully connected layers and Soft-
max out layer to ensure the label incompatibility. Our WSMTAL is
proposed to train this network with three stages.

In WSMTAL, the dCNN is firstly trained with the independent
dataset, then is refined to acquire more discriminative power for
person RelD task. Because this procedure involves one dataset with
attribute labels and another without attribute labels, we call it
a weakly supervised learning. Moreover, we divide the attributes
into different types to ensure the incompatibility among attributes
within each type. The attributes predicted by the final dCNN model
are named as deep attributes. This structure is more reasonable
than our previous work [41], which detects multiple attributes
with a flat cross-entropy output layer.

To validate the performance of deep attributes, we test them
on four popular person RelD datasets without combining with the
local visual features. The experimental results show that deep at-
tributes perform well, e.g., they outperform many recent works
combining both attributes and local features [28-31]. Note that,

predicting and matching deep attributes make person RelD system
faster, because it no longer needs to extract and code local fea-
tures, compute distance metric, and fuse with other features.

Our contributions can be summarized as follows:

e We propose a three-stage weakly-supervised deep attribute
learning algorithm, which makes learning a large set of human
attributes from a limited number of labeled attribute data pos-
sible.

An attribute triplet loss is proposed to predict attributes into
multiple types and consider contextual cues among attributes.
Deep attributes achieve promising performance and generaliza-
tion ability on four person RelD datasets. Moreover, deep at-
tributes release the previous dependencies on local features,
thus have the potential to make the person RelD systems more
robust and efficient.

This work extends our conference version [41] in the following
aspects:

e Our original SSDAL directly learns attributes using plain sig-
moid cross-entropy loss. The proposed WSMTAL model splits
attributes into many types, where each includes several incom-
patible attributes and only one of them can be positive. This
structure considers extra contextual cues among attributes and
results in better performance.

Our original SSDAL selects positive attributes by referring to

thresholds, which vary on different datasets and are hard to de-

cide. This shortcoming has been effectively addressed by WSM-

TAL. WSMTAL splits attributes into C types, where each includes

several incompatible attributes and only one of them can be

positive. In this way, C positive attributes can be identified in C

classification tasks.

o More extensive experiments are conducted to test the validity
of our approach. More comparisons to recent works, as well as
the prediction accuracy of each type of attributes have been
added. Deeper network, i.e., the VGG network is tested in our
framework. This shows that our model is compatible with dif-
ferent deep networks, thus could leverage latest deep models
to further improve the person Re-ID performance.

2. Related work

In this section, we briefly summarize and discuss related works
in four aspects, i.e., 1) traditional low-level feature and distance
metric learning based person RelD, 2) attributes based person
RelD, 3) deep learning for attributes prediction, and 4) deep learn-
ing for person RelD, respectively.

Many researchers extract and encode low-level features for per-
son RelD [1-7]. To handle viewpoint changes, Farenzena et al.
[1] devise the Symmetry-Driven Accumulation of Local Features
(SDALF) by the symmetric nature of pedestrians appearance. Cheng
et al. [2] use pictorial structures and compute visual features in
different parts of the body to estimate human body configuration
to tackle the pose variations issue. There are also may methods
measure the similarity between images of two different cameras
[8-23,25] by learning a more reasonable distance metric. The Re-
laxed Pairwise Metric Learning (RPML) [10] is a method of relax-
ing the original hard constraints so as to make the computation
more efficient. Zheng et al. [17] also introduce a Probabilistic Rel-
ative Distance Comparison (PRDC) model. Shen et al. [22] learn
a correspondence structure using boosting which represents the
two images features from a target camera pair matching probabil-
ities. Considering the positive semi-definite constraint, Liao et al.
[23] use a logistic metric learning approach to perform person
RelD.

Attributes are efficient and discriminative for person RelD and
have been used as features in may works [26-31]. Layne et al.
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Fig. 2. Illustration of our dCNN structure and the Weakly Supervised Multi-Type Attribute Learning (WSMTAL) algorithm.

[28] show attributes improve RelD accuracy when combined with
low-level features. Su et al. [31] present a low rank attribute em-
bedding framework for person RelD using a novel multi-task learn-
ing framework. However, most of these methods use attributes as
auxiliary information to aid the low level features.

Currently, many studies have applied deep learning to attributes
learning [42-48]. Shankar et al. [42] propose a deep-carving neural
net to learn attributes for natural scene images. Chen et al. [43] use
a double-path deep domain adaptation network to get the fine-
grained clothing attributes. Li et al. [44] propose two deep learn-
ing models to learn the pedestrian attributes, one is called as deep
learning based single attribute recognition model (DeepSAR) and
the other is a deep learning framework which recognizes multi-
ple attributes jointly (DeepMAR). Huang et al. [45] propose a Dual
Attribute-aware Ranking Network (DARN) to represent deep fea-
tures using attribute-guided learning for cross-domain image re-
trieval. Yu et al. [46] use their weakly supervised deep learning
model not only to recognize attribute but also to exploit the lo-
cations and rough shapes of pedestrian attributes. Our work dif-
fers from them in the aspects of both motivation and methodol-
ogy. We are motivated by how to learn attributes of the human
cropped from surveillance videos from a small set of data labeled
with attributes. Our weakly supervised learning framework consis-
tently boosts the discriminative power of dCNN and attributes for
person RelD.

The works by Zhu et al. [47,48] are earlier works using deep
learning for attribute based person RelD. They use a multi-label
convolutional neural network (MLCNN) to predict multiple at-

tributes with body part division. Zhu et al. finally combine deep
attributes and low-level features and get promising person re-
identification performance. Different from their work, our algo-
rithm is more concise and efficient, i.e., does not use body part
division to learn attributes and directly uses deep attributes to per-
form person RelD.

Inspired by the promising performance of deep learning, some
researchers begin to use deep learning to learn visual features and
distance metrics for person RelD [24,38,39,49-51]. In [49], Li et al.
use a deep filter pairing neural network for person RelD, where
two paired filters of two cameras are used to automatically learn
optimal features. In [50], Yi et al. present a “siamese” convolutional
network for deep distance metric learning. In [51], Ahmed et al.
devise a deep neural network structure to transform person re-
identification into a problem of binary classification, which judges
whether a pair of images from two cameras contain the same per-
son. In [24], Ding et al. present a scalable distance learning frame-
work based on the deep neural network with the triplet loss. Chen
et al. [38] propose a novel multi-channel parts-based convolutional
neural network model with the triplet loss for person RelD. They
also use a new threshold to improve the triplet loss. Wang et al.
[39] present a joint learning framework to unify single-image rep-
resentation and classification of cross-image representation using
dCNN.

Despite of their efforts to find better visual features and dis-
tance metrics, the above mentioned works are designed specifi-
cally for certain datasets and are dependent on their camera set-
tings. Differently, we use deep learning to acquire general camera-
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independent mid-level representations. As a result, our algorithm
shows better flexibility, e.g., it could handle person RelD tasks on
datasets containing different number of cameras.

3. Proposed approach
3.1. Framework

Our goal is to learn a large set of human attributes for per-
son RelD through dCNN training. We define A = {A!, A2, ..., A}
as the collection of K attributes belonging to C types, and A =
{af.dS. ..., a5} denotes the label of the cth type attribute contain-
ing K¢ attributes, where a{0, 1} is the binary label. We divide
attributes in to C types, and ensure Vi # j, AinAJ = . Therefore,
ACCA, Zg=1 K¢ =K. Our goal is thus learning an attribute detector
0O, which predicts the attribute labels A for any input image I, i.e.,

A =0(). (M

Because of the promising discriminative power and generaliza-
tion ability, we use dCNN model as the detector O(-). However,
dCNN training requires large-scale training data labeled with hu-
man attributes. Manually collecting such data is also too expen-
sive to conduct. To ensure effective learning of a dCNN model for
person RelD from only a small amount of labeled training data,
we propose the Weakly supervised Multi-Type Attribute Learning
(WSMTAL) algorithm.

As shown in Fig. 2, in the first training stage, an independent
dataset with attribute labels is used to perform fully-supervised
dCNN training. The resulting dCNN produces initial attribute la-
bels for the target dataset. To improve the discriminative power of
these attributes for RelD task, we start the second stage of train-
ing, i.e., fine-tuning the network using the person ID labels and
our defined attributes triplet loss. The attributes triplet loss updates
the network to enforce that the same person has more similar at-
tributes and vice versa. The training data for fine-tuning can be
easily collected because the person ID labels are readily accessi-
ble in many person tracking datasets. This fine-tuned dCNN hence
predicts updated attribute labels for target datasets. Finally in the
third stage, the labeled target dataset plus the original indepen-
dent dataset are combined for the final stage of fine-tuning. The
attributes predicted by the final dCNN model are named as deep
attributes.

3.2. Fully-supervised dCNN training

We define the independent training set T with their attribute
labels as Ar = {AL,A%,...,AS}. In T, each sample is annotated with
a binary attribute label, e.g., the label of the nth instance T, is
A, = {A}H,A%n,...,A%T}.

In the first stage of training, we use T as the training set for
fully-supervised learning. We refer to the 16-layer VGG network
[52] to build our dCNN model for its promising performance in
various vision tasks. Specifically, our dCNN is also a 16-layer net-
work, including 13 convolutional layers and 3 fully connected lay-
ers, where the 3rd fully connected layer predicts the attribute la-
bels. The kernel and filter sizes of each layer in our architecture
are the same with the ones in [52].

Our dCNN is shown in Fig. 3. We suppose that each type of
attributes can only has one positive prediction to ensure its label
incompatibility. Therefore, it is natural to use Softmax layer, which
outputs only one positive prediction, for each type of attributes.
In this way, C types of attributes can be predicted for each image.
We denote the dCNN model learned in this stage as ©51. ©51 could
predict attribute labels for any test sample.

However, as illustrated in our experiments, the discriminative
power of ©5! is weak because of the limited scale and label ac-
curacy of the independent training set. Therefore, We proceed to
introduce our second stage of training.

3.3. dCNN fine-tuning with attributes triplet loss

In the second stage, a larger dataset is used to fine tune the
previous dCNN model ©5!. The goal of our dCNN model is predict-
ing attribute labels for person RelD tasks. The predicted attribute
labels thus should be similar for the same person. Motivated by
this, we use person ID labels to fine-tune ®5' and produce similar
attribute labels for the same person and vice versa. We denote the
dataset with person ID labels as U = {uq, uy, ..., uy}, where M is
the number of samples and each sample has a person ID label I,
e.g., the mth instance u;; has person ID [,.

In the second stage of training, we first use ©°! to predict the
attribute label A of each sample in U. For each sample, we con-
catenate the outputs of C Softmax classifiers as the attribute label.
Thus, for the attribute label A, of the mth sample, we get C pos-
itive attributes. Then, we use the person ID labels to measure the
annotation errors of 5!,

The annotation error of the ©5! is computed among three sam-
ples. The three samples are randomly selected from the U through
the following steps: 1) select an anchor sample u), 2) select an-
other positive sample u,) with the same person ID with ug), and 3)
select a negative sample u, with different person ID. Thus, a triplet
[U(ay Y(p)» U] is constructed, where the subscripts (a), (p), and (n)
denote anchor, positive, and negative samples, respectively. The at-
tributes of the eth triplet predicted by ©5! are AEZ; AE;)), and Agi))
at the beginning of the fine-tuning, respectively.

The objectives of the fine-tuning is minimizing the triplet loss
through updating the ©51, i.e., minimize the distance between the
attributes of u(,) and u,), meanwhile maximize the distance be-
tween u) and ug,). We call this triplet loss as attributes triplet
loss. We hence could formulate our objective function for fine-
tuning as:

D(AG). AG) +6 < D(AGLAD). V(AG.AGLAD) €T ()

where D(.) represents the distance function of the two binary at-
tribute vectors, AEZ% Ag;)) and AEE)) are predicted attributes of the
eth triplet during the fine-tuning. Then, the corresponding loss

function can be formulated as:

E
£= 3o max(0.D(AG).AG) + 0 - DA AT) ). G)

where E represents the number of triplets. In Eq. (3), if the

() a0 _ ) a0\ ;
D(A(a),A(n)) D(A(a),A(p)) is larger than 6, the loss would be

zero. Therefore, parameter 6 largely controls the strictness of the
loss.

The above loss function essentially enforces the dCNN to pro-
duce similar attributes for the same person. However, the person
ID label is not strong enough to train the dCNN with accurate at-
tributes. Without proper constraints, the above loss function may
generate meaningless attribute labels and easily over-fit the train-
ing dataset U. For example, imposing a large number meaningless
attributes to two samples of a person may decrease the distance
between their attribute labels, but does not help to improve the
discriminative power of the dCNN. Therefore, we add several regu-
larization terms and modify the original loss function as:

E
‘- Z{ max(0.D(A). AS) +6- D(AS,.AL)) + » g}
e

(4)
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Fig. 3. The architecture of our dCNN. The network takes a RGB image as input. All types of attributes share Conv1-1 to Conv3-3 parameters and have their own independent
parameters from Conv4-1 to FC8. Within each type of attributes, we use Softmax layer to ensure the label incompatibility.
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£ =D(AG).AQ) +D(AG). AG) + D(AG). AG). (%)

where £ denotes the amount of change in attributes caused by
the fine-tuning. The loss in Eq. (4) not only ensures that the same
person has similar attributes, but also avoids the meaningless at-
tributes. We hence use the above loss to update the ©®S! with back
propagation. We denote the resulting update dCNN as 052,

In Fig. 4, we show examples of predicted attributes on MOT
dataset before and after Stage2. It can be observed that Stage2 sub-
stantially improves the accuracy of predicted attributes. Therefore,
fine-tuning with person ID labels refines the attributes on U. In the
Stage3, the labeled U plus the original independent dataset will be
combined for the final stage of fine-tuning. It thus can be inferred
that, Stage2 helps the final stage of training by providing more ac-
curate training data.

3.4. Fine-tuning on the combined dataset

The fine-tuning in previous stage produces more accurate at-
tribute labels. We thus consider to combine the T and U for the
final round of fine-tuning. As shown in Fig. 2, in the third stage,
we first predict the attribute labels for dataset U with ©%2. A new
dataset labeled with attribute labels can hence be generated by

merging T and U. Then, we fine-tune OS2 using the dataset T&U
with a similar procedure in Stage 1. The fine-tuning outputs the
final attribute detector O.

For any test image, we can predict its K-dimensional attribute
label with Eq. (1). In our implementation, we only select one at-
tributes set as 1 in each type of attributes, and other attributes in
this type set as 0. This essentially selects more accurate attributes
and ensure the label incompatibility among attributes. Finally, O
produces a sparse binary K-dimensional attribute vector. Our per-
son RelD system uses this binary vector as feature and measures
their distance with Cosine distance to identify the same person.
The validity of this three-stage training procedure and the perfor-
mance of selected attributes will be tested in Section 4.

4. Experiments
4.1. Datasets for training and testing

To conduct the first stage training, we choose the PETA
[54] dataset as the training set. Each image in PETA is labeled
with 61 binary attributes and 4 multi-class attributes. The 4 multi-
class attributes are footwear, hair, lowerbody and upperbody, each of
which has 11 color labels including Black, Blue, Brown, Green, Grey,
Orange, Pink, Purple, Red, White, and Yellow, respectively. We hence
expand 4 multi-class attributes into 44 binary attributes, resulting
in a 105-dimensional binary attribute label.

To consider the incompatibility among attributes, we divide
these 105 attributes into 15 types, including Age, Gender, Carry-
Object, AccessoryObject, SleeveStyle, UpperStyle, UpperType, Lower-
Style, LowerType, HairStyle, FootStyle, UpperColor, LowerColor, Hair-
Color and FootColor, respectively. More details can be found in
Fig. 5. It should be noted that, we require each person to have at
most one positive attribute within each type.

For the second stage training, we choose the MOT challenge
[53] dataset to fine-tune dCNN ©°! with attributes triplet loss. MOT
challenge is a dataset designed for multi-target tracking and pro-
vides the trajectories of each person. We thus could get the bound-
ing box and ID label of each person. And we use more than 20,000
images on MOT challenge. Consequently, we will obtain more than
100,000 triplets.

To evaluate our model, we choose VIPeR [32], PRID [33], GRID
[34], and Market [55] as test sets. Note that, VIPeR, GRID and PRID
are included in the PETA dataset. When we test our algorithm on
them, they will be excluded from the training set. For example,
when we use the VIPeR for person RelD test, none of its images
will be used for dCNN training.

CUHKO3 is another popular dataset for Person RelD. However,
PETA does not specify how many images in it are from CUHKO3.
Our statistical analysis shows that each testing group defined by
CUHKO03 has about 20 IDs appear in PETA. Without the precise in-
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Fig. 5. Illustration of the 15 types of attributes.

formation provided by PETA, it is hard for us to manually remove
all of the CUHKO03 images from PETA. Therefore, we test our meth-
ods on the above four test sets and do not use the CUHKO03 for
testing.

4.2. Implementation details

We select the 16-layer VGG network [52] as our base dCNN ar-
chitecture. We use the same kernel and filter sizes for all the hid-
den layers. We learn 105 binary attributes from PETA. When we
fine-tune dCNN with attributes triplet loss, we follow the stan-
dard triplet loss algorithm [56] to select samples. Specifically, for
each type, we first extract FC7 layer features for each image in U
dataset. Then, we randomly select an image of a person as the an-
chor sample u). Another image of the same person with a large
distance with u is selected as positive sample u,). An image of
other persons with a smaller distance with v is selected as neg-
ative sample u(p).

Parameters for learning are empirically set via cross-validation.
The 6 and y in Eq. (4) are set as 1 and 0.01, respectively. We im-
plement our approach with GTX TITAN X GPU, Intel i7 CPU, and
32GB memory. The first stage of training takes about one week,
the second stage of fine-tuning takes about five days, and the third
stage takes about three days.

4.3. Accuracy of predicted attributes and zero-shot learning

In the first experiment, we test the accuracy of predicted at-
tributes on three datasets, VIPeR, PRID and GRID, as well as show
the effects of combining different training stages. We select 1/10 of
the whole training dataset for validation. For each attribute type,
we show the top-1 and top-2 classification accuracies. Note that,
when we test a certain dataset, images from this dataset wont ap-
pear in the training set. To test the convergence of our algorithm
during the training stage, we also show the accuracies on the vali-
dation set. We summarize the results in Tables 1-3.

Stage; denotes the baseline dCNN OS!. Stageig; and Stage’g,
denote the updated dCNN %2 after the second stage training us-
ing U and T. Stage g3 first labels U with ©S1, then combines U and

T to fine-tune the ©5!. WSMTAL denotes our final dCNN after the
third stage training. From the experimental results, we can draw
the following conclusions:

From Tables 1-3, we can draw the following conclusions:

1) Although Stage g3 uses larger training set, it does not con-
stantly outperform the baseline. This is because the expanded
training data is labeled by ©°!, and it does not provide new
cues for fine-tuning ©5! in Stage 3.
052 produced by Stage;g, does not constantly outperform base-
line. This is reasonable because the goal of Stage 2 is to update
the attribute labels of MOT dataset with the help of person ID
labels, rather than updating the entire network and improving
its discriminative power on unseen data, e.g., testing data. This
is why we only update the fully-connected layers in Stage 2
and keep the convolutional layers fixed. In another word, Stage
2 is important because it refines the attribute labels of MOT
dataset U, thus the combined U + T can be a better training set
for Stage 3. Fig. 4 clearly shows that Stage 2 produces more ac-
curate attribute labels.
WSMTAL is able to improve the accuracy of baseline by 3.0%
in average on three datasets. This demonstrates our three-stage
training framework can learn more robust semantic attributes.
To intuitively show the accuracy of predicted attributes, we use
the dCNN trained by WSMTAL to predict attributes on MOT
challenge dataset. Some examples are illustrated in Fig. 6.
From the results on the validation set, it is obvious that Stage;,
Stageqg,, Stageigz and WSMTAL get comparable performance.
This means that these algorithms converge well on the train-
ing set. It is also interesting to observe that WSMTAL performs
not as good as Stage; and Stageqgs on the validation set. This
means further updating the deep model trained on T, i.e., ®51,
with another dataset U drops the performance on validation set
selected from T. However, with the help of additional person
ID labels of U, WSMTAL is more suitable for Zero-shot learn-
ing and gets better generalization ability. WSMTAL also achieves
the best performance on VIPeR, PRID, and GRID.
5) To show that extra person ID labels, i.e., the MOT challenge
dataset, help our model training, we compare the performance
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Table 1
The classification accuracies of attributes of the first 5 types on the VIPeR, GRID and PRID datasets.
Types Number Validation(%) VIPeR(%) PRID(%) GRID(%)
Top-1 Top-2 Top-1 Top-2 Top-1 Top-2 Top-1 Top-2
Age 5 Stage, 86.41 97.03 4434  80.42 4813 7735 4256 7835
Stageqg: 8456  95.18 41.09 77.85 46.03 75.45 39.87 76.42
Stagejg, 87.16 96.18 44,09  81.85 48.15 77.61 43.22 78.42
Stageqgs 86.47 97.51 45.02 8033 48.23 78.24 42.45 77.99
WSMTAL  86.02 96.87 4699 8184 5043 79.13 45.13 81.84
Sex 2 Stage, 96.53 100.00 70.05 100.00 6750 100.00 67.82 100.00
Stageqg: 95.47 100.00 69.12 100.00 66.43 100.00 66.34  100.00
Stagejg, 97.01 100.00 70.03 100.00 66.32 100.00 6843 100.00
Stageqgs 9649 100.00 70.13 100.00 67.66 100.00 68.03 100.00
WSMTAL  95.83 100.00 71.20 100.00 69.64 100.00 69.73 100.00
CarryObject 1 Stage, 86.35  96.31 2646  46.82 2946  52.83 2696  41.28
Stageqga 84.75 95.92 25.12 47.03 28.22 50.37 25.47 41.96
Stage’q, 86.27  96.55 2588 4596 28.39 51.72 26.05  40.78
Stageqgs 86.32 95.69 2719 46.71 30.11 53.07 26.88  41.63
WSMTAL  85.08 94.24 29.27 49.01 31.71 54.82 28.74 4453
AccessoryObject 7 Stage, 91.86 97.54 4432  66.33 57.66 75.58 52.45 83.77
Stageqg: 90.25 96.44 43.21 65.74 56.41 74.93 51.68 83.40
Stageie, 92.18 98.54 4352  66.08 55.57 75.33 52.63 84.29
Stageqgs 91.55 97.19 4483  66.85 57.38 75.69 51.85 83.79
WSMTAL  90.62 97.40 46.17 69.10 60.14 78.85 54.19 86.06
SleeveStyle 3 Stage, 99.14 100.00 80.17 93.73 85.37 95.62 42.71 77.96
Stageqg: 98.75 10000 79.64  93.46 84.33 94.23 42.22 77.68
Stageie, 99.42 10000 79.98  92.96 85.67 9539 43.01 78.25
Stageqgs 99.93 10000 7938  93.63 8496  95.73 43.09 7693
WSMTAL 9896 100.00 85.76 98.73 87.09 97.88 45.13 81.84
Table 2
The classification accuracies of attributes of the next 7 types on the VIPeR, GRID and PRID datasets.
Types Number Validation(%) VIPeR(%) PRID(%) GRID(%)
Top-1 Top-2 Top-1 Top-2 Top-1 Top-2 Top-1 Top-2
UpperStyle 2 Stageq 99.01 100.00 90.17 100.00 82.64 100.00 80.53 100.00
Stageqzo 97.85 100.00 89.25 100.00 82.01 100.00 80.11 100.00
Stage’q, 99.53 100.00 89.66 100.00 82.23 100.00 79.85 100.00
Stageqgs 98.69 100.00 90.33 100.00 8249 100.00 81.36 100.00
WSMTAL 9896 100.00 9296 100.00 84.10 100.00 83.63  100.00
UpperType 10 Stage, 85.31 99.36 62.57 83.71 57.48 79.13 55.97 76.53
Stageqza 84.27 99.17 61.48 83.42 5739 79.11 5548  75.68
Stage’q, 86.51 99.97 62.37 83.59 58.95 81.24 53.82 73.35
Stageqgs 86.33 100.00 61.34 83.66 57.24 78.54 54.76 76.42
WSMTAL 8490 98.44 6434 8593 60.81 81.56 5899 79.83
LowerStyle 2 Stageq 96.27 100.00 90.23 100.00 81.97 100.00 79.19 100.00
Stageqga 95.69 100.00 8996 100.00 81.05 100.00 7856  100.00
Stage’q, 96.39  100.00 88.45 100.00 79.32 100.00 77.73 100.00
Stageiss 9642  100.00 90.15 100.00 82.01 100.00  79.08 100.00
WSMTAL  96.33 100.00 9324 100.00 8444 100.00 81.70 100.00
LowerType 10 Stage, 93.,55 100.00 7039  90.14 64.32 89.44 41.75 64.35
Stageqgo 9229 9942 70.11 90.27 63.57 89.28 40.19 63.70
Stage’q, 9594 10000 6832 8716 62.70 86.48 40.95 6143
Stageqgs 93.27 99.33 69.74 89.36 64.68  88.93 41.38 63.77
WSMTAL  91.67 98.96 7492 9594 66.20 91.66 4404 67.03
HairStyle 3 Stage, 96.79 100.00 6859 9419 70.13 94.53 66.23 95.43
Stageqga 96.23 100.00 6713 94.00 6847  94.53 66.12 94.13
Stage’q, 96.88  100.00 67.36 93.15 69.57 93.84 64.33 93.07
Stageigs 9693 100.00 6848 9432 69.88  94.89 67.05 95.00
WSMTAL  96.88 100.00 7142 95.91 71.51 96.81 68.82 96.03

between using and without using MOT challenge dataset, re-
spectively. In Tables 1-3, Stagejy, denotes the performance
of dCNN trained without using MOT dataset. It can be seen
that, our WSMTAL outperforms Stagejg, in most cases. It is
also interesting to notice that, Stagej,, constantly outperforms
Stageqgo on the dataset T, where the validation is from. This is
reasonable because the model of Stageg, is optimized on an-
other domain U, i.e.,, MOT dataset, and targets to refine the at-
tribute labels of MOT dataset, rather than to improve the dis-

criminative power on the dataset T. Differently, Stages,, is di-
rectly optimized on the dataset T, thus shows better perfor-

mance than Stageig;.-

4.4. Performance on two-camera datasets

This experiment tests deep attributes on two-camera person
RelD tasks. Three datasets are employed. 10 random tests are first
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performed for each dataset. Then, the average Cumulative Match
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Table 3
The classification accuracies of attributes of the last 5 types on VIPeR, GRID and PRID datasets.
Types Number Validation(%) VIPeR(%) PRID(%) GRID(%)
Top-1 Top-2 Top-1 Top-2  Top-1 Top-2  Top-1 Top-2
FootStyle 6 Stage, 71.53 95.06 35.38 64.63 4534 7253 30.15 55.91
Stageiga 71.59 94.69 33.62 63.92 44.43 72.04  29.96 56.82
Stage’q, 7286 9715 33.78 62.14 4384  70.08 2729 5311
Stageqgs 71.66 95.88 34.96 64.55  46.02 73.10 30.05 56.39
WSMTAL  70.83 94.79 3836 66.25 4775 74.14 33.80 60.13
UpperColor 11 Stage, 79.35 93.23 44.33 67.11 28.21 51.03 30.25 52.47
Stageiga 78.02 91.68 42.96 66.49  27.63 50.41 30.23 51.39
Stage’q, 78.89 92.96 44.65 67.99 2638 4817 29.65 51.03
Stageqgs 7944 9199 45.36 66.52 28.04 50.88 3118 53.00
WSMTAL  78.12 91.15 47.92 69.13 2897 5231 3290 55.04
LowerColor 11 Stage, 95.62 98.96 47.76 72.36 38.06 70.53 50.91 76.35
Stageiga 94.18 98.78 46.33 71.45 37.82 69.65 50.13 76.42
Stagelq, 96.77  99.12 46.55 7049  36.24 7012 47.69 73.83
Stageqgs 94.37 100.00 4825 71.88 38.27 70.48 49.97 75.99
WSMTAL  94.23 98.44 51.75 7569 4099 7282 5218 77.89
HairColor 1 Stage, 96.39 99.13 55.37 76.14 48.11 80.37 4435 64.50
Stageiga 9544  98.27 54.23 75.38 46.27 81.04 43.19 65.39
Stagelq, 96.11 99.73 52.06 71.89 47.56 79.63  41.83 63.20
Stageqgs 96.50 98.69 56.30 76.23 48.09 82.10 43.96 66.42
WSMTAL 95.84 9792 57.74 7930 50.80 8449 47.09 70.71
FootColor 1 Stage, 93.68 98.66 44.28 68.13 62.45 83.69 30.30 60.13
Stageiga 92.71 96.75 43.19 67.48 60.97 82.47 28.56 59.48
Stagelq, 9480 99.17 42.24 66.90 6101 80.73 29.05 58.14
Stageqgs 93.07 97.58 45.07 68.25 62.37 83.02 30.66 59.88
WSMTAL 92.19 96.88 46.03 7084 6714 84.81 3448 63.80

Characteristic (CMC) curves of these tests are calculated and used
for performance evaluation. The experimental settings on three
datasets are introduced as follows:

VIPeR : 632 persons are included in the VIPeR dataset. Two im-
ages with size 48 x 128 of each person are taken by camera A and
camera B, respectively in different scenarios of illumination, pos-
tures and viewpoints. Different from most of existing algorithms,
our WSMTAL does not need training on the target dataset. To make
fair comparison with other algorithms, we use similar settings for
performance evaluation, i.e.,, randomly selecting 10 test sets, and
each contains 316 persons.

PRID : This dataset is specially designed for person RelD in sin-
gle shot. It contains two image sets containing 385 and 749 per-
sons captured by camera A and camera B, respectively. These two
datasets share 200 persons in common. For the purpose of fair
comparison with other algorithms, we follow the protocol in [33],
and create a probe set and a gallery set, where all training samples
are excluded. The probe set includes images of 100 persons from
camera A. The gallery set is made up of images from 649 persons
capture by camera B.

GRID : This dataset includes images collected by 8 non-adjacent
cameras fixed at a subway station. The probe set contains images
of about 250 persons. The gallery set contains images of about
1025 persons, among which 775 persons do not match anyone in
the probe set. For the purpose of fair comparison, images of 125
persons shared by the two sets are employed for training. The re-
maining 125 persons and 775 distracters are used for the testing.

Compared Algorithms : We compare our approach with many
recent works. Compared works that learn distance metrics for per-
son RelD include RPML [10], PRDC [17], RSVM [65], Salmatch [57],
LMF [58], PCCA [9], KISSME [13], KLFDA [14], KCCA [59], TSR [60],
EPKFM [19],LOMO + XQDA [20],MRank-PRDC [34], MRank-RSVM
[34], RQDA [66], MLAPG [23], CSL [22] and LDNS [61]. Compared
works based on traditional attribute learning are AIR [26], OAR
[28] ,LOREA [31] and JLSAT [62]. Related works that leverage deep
learning include DML [50], IDLA [51], Deep-RDC [24], DGDropout
[64], Gate S-CNN [63] and Deep-TCP [38]. The compared CMC

scores at different ranks on three datasets are shown in Tables 4,
5, and 6, respectively.

The three tables clearly show that, even it is not fine-tuned
with extra data, the baseline dCNN 5! achieves fairly good re-
sults on three datasets, especially on PRID and GRID. Additionally,
if we fine-tune the baseline dCNN using our attributes triplet loss,
we achieve an additional 3.5% improvement at rank 1 on VIPeR,
2.8% on PRID, and 1.7% on GRID, respectively. This indicates that
our three-stage training framework improves the performance by
progressively adding more information into the training procedure.

Our WSMTAL algorithm has surpassed many existing algorithms
on the VIPeR, PRID and GRID datasets. Some recent works like
AIR [26], OAR [28], LOREA [31], and JLSAT [62] also learn at-
tributes for person RelD. The comparison in Table 4 clearly shows
the advantages of our deep model in attribute prediction. Some
previous works like DML [50], IDLA [51], Deep-RDC [24], DG-
Dropout [64], Gate S-CNN [63] and Deep-TCP [38] take advantages
of deep learning in person RelD. Different from them, our work
generates camera-independent mid-level attributes, which can be
used as discriminative features for identifying persons on differ-
ent datasets. The experiments results in Table 4 also show that our
method outperforms these works.

Because we use the predicted binary attributes as features for
person RelD, we can also learn a distance metric to further im-
prove the RelD accuracy. We select XQDA [20] for the distance
metric learning. As can be seen from three tables, our approach
with XQDA [20], i.e., WSMTAL + XQDA, achieves better perfor-
mance than WSMTAL. This clearly shows that our work can easily
combine with existing distance metric learning works to further
boost the performance.

4.5. Performance on multi-camera dataset

We further test our approach in a more challenging multi-
camera person RelD task. We employ the Market dataset [55],
where more than 25,000 images of 1501 labeled persons are col-
lected from 6 cameras. Each person has 17 images in average,



personalLess45
personalMale
carryingMessengerBag
accessoryNothing
upperBodyLongSleeve
upperBodyCasual
upperBodyPlaid
lowerBodyCasual
lowerBodyTrousers
hairShort
footwearLeatherShoes

upperBodyGreen
lowerBodyBlack
hairYellow
footwearBrown

personalLess30
personalMale
carryingNothing
accessoryHat
upperBodyNoSleeve
upperBodyCasual
upperBodySweater

|5 lowerBodyCasual
'& 1 lowerBodyTrousers
hairLong
footwearSneakers
upperBodyWhite
lowerBody White
hairBlack
footwearWhite

C. Su et al./Pattern Recognition 75 (2018) 77-89

personalLess30
personalMale
carryingBackpack

accessoryNothing
b upperBodyLongSleeve
upperBodyCasual
8 upperBodyThickStripes
lowerBodyCasual
lowerBodyTrousers
hairShort
footwearSneakers
upperBodyRed
lowerBodyGrey
hairGrey
footwearBrown

personalLarger60
personalFemale

<

carryingPlasticBags
accessoryNothing
upperBodyLongSleeve
upperBodyCasual
upperBodyJacket
lowerBodyCasual
lowerBodyTrousers
hairShort
footwearLeatherShoes
upperBodyGrey
lowerBodyBrown
hairWhite
footwearBlack

personalLess30
personalMale
carryingBackpack
accessoryNothing

upperBodyLongSleeve

upperBodyCasual
upperBodyPlaid
lowerBodyCasual
lowerBodyTrousers
hairShort
footwearSneakers
upperBodyBrown
lowerBodyGrey
hairGrey
footwearBrown

personalLess30
personalFemale

carryinglLuggageCase

accessoryNothing

i upperBodyLongSleeve

upperBodyCasual

upperBodyThickStripes

lowerBodyCasual
lowerBodyTrousers
hairLong
footwearSneakers
upperBodyGrey
lowerBodyBrown
hairYellow
footwearBlack

85

personalLess30
personalFemale
carryingNothing

accessoryNothing

‘ ~ upperBodyLongSleeve
—‘é upperBodyCasual
9 K. upperBodyOther
| lowerBodyCasual
lowerBodyJeans
hairLong
footwearShoes
upperBodyRed
lowerBodyGrey
hairBlack
footwearBlack

personalLess30
personalMale
carryingBackpack
accessorySunglasses
upperBodyShortSleeve
upperBodyCasual
upperBodyTshirt
lowerBodyCasual
lowerBodyShorts
hairShort

footwearSneakers
upperBodyGreen
lowerBodyWhite
hairBlack
footwearWhite

Fig. 6. Examples of predicted attributes on MOT challenge by the learned dCNN after three stages of training. Texts with blue color are correct attributes, while those with
red color are false attributes. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 4
CMC scores, i.e., percentage (%) of correct matches, of ranks 1, rank 5, rank 10, rank 20 on the VIPeR
dataset.
Methods Rank 1 Rank 5 Rank 10  Rank 20
Metric Learning based RelD RPML [10] 27.0 57.0 69.0 83.0
Salmatch [57] 30.2 524 65.5 79.1
LMF [58] 29.1 523 65.9 80.0
KISSME [13] 19.6 475 62.2 770
KCCA [59] 373 714 84.6 92.3
KLFDA [14] 322 65.8 79.7 90.9
LOMO + XQDA [20] 40.0 68.9 815 91.1
CSL [22] 348 68.7 82.3 91.8
MLAPG [23] 40.7 69.9 823 924
TSR [60] 31.6 68.6 82.8 94.6
EPKFM [19] 36.8 70.4 83.7 91.7
LDNS [61] 423 714 82.9 92.1
Attributes Learning based ReID  AIR [26] 18.0 38.8 51.1 71.2
LLCNN-P [47,48] 13.89 34.02 4741 -
OAR [28] 214 41.5 55.2 715
LORAE [31] 423 72.2 81.6 89.6
JLSAT [62] 454 - - -
Deep Learning based RelD IDLA [51] 348 543 76.5 87.6
DML [50] 28.2 59.3 73.5 86.4
Deep-RDC [24] 405 60.8 70.4 84.4
Gate S-CNN [63] 378 66.9 76.3 -
DGDropout [64] 38.6 - - -
Deep-TCP [38] 478 74.7 84.8 911
Proposed SSDAL [41] 379 65.5 75.6 88.4
Stage, 36.2 63.9 73.5 84.7
Stageig: 36.3 63.1 729 824
Stagergs 373 615 72.7 815
WSMTAL 39.7 66.9 76.5 86.6
WSMTAL + XQDA 471 71.5 80.3 88.2
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Table 5
CMC scores, i.e., percentage (%) of correct matches, of ranks 1, rank5,
rank 10, rank 20 on the PRID dataset.

Methods Rank 1 Rank 5 Rank 10  Rank 20
RPML [10] 4.8 14.3 216 30.2
PRDC [17] 45 12.6 19.7 29.5
RSVM [65] 6.8 16.5 22.7 315
Salmatch [57] 4.9 175 26.1 339
LMF [58] 12.5 239 30.7 36.5
PCCA [9] 35 10.9 17.9 271
KISSME [13] 4.1 12.8 211 31.8
KLFDA [14] 7.6 18.9 25.6 374
KCCA [59] 14.5 343 46.7 59.1
LOREA [31] 18.0 374 50.1 66.6
LOMO +XQDA [20] 153 35.7 41.2 53.8
MLAPG [23] 16.6 331 414 52.5
JLSAT [62] 26.8 - - -
Deep-TCP [38] 22.0 - 47.0 57.0
LDNS [61] 29.80 52.9 66.0 76.5
SSDAL [41] 20.1 474 55.7 68.6
Stage, 19.6 46.7 55.1 66.4
Stageizo 19.4 46.4 53.5 66.2
Stageiss 20.8 43.0 55.1 67.3
WSMTAL 224 47.8 56.8 67.6
WSMTAL + XQDA 244 52.3 62.5 74.2
Table 6

CMC scores, i.e., percentage (%) of correct matches, of ranks 1, rank5,
rank 10, rank 20 on the GRID dataset.

Methods Rank 1 Rank 5 Rank 10  Rank 20
PRDC [17] 9.7 22.0 33.0 443
RSVM [65] 10.2 24.6 333 43.7
MRank-PRDC [34] 111 26.1 35.8 46.6
MRank-RSVM [34] 122 278 363 493
RQDA [66] 15.2 30.1 39.2 49.3
EPKFM [19] 16.3 35.8 46.0 57.6
LOMO + XQDA [20] 16.6 354 41.8 52.4
LLCNN-P [47,48] 18.32 46.16 62.56 -
SSDAL [41] 19.1 35.6 48.0 58.4
Stage, 17.5 345 42.8 55.3
Stageizo 16.8 32.0 433 57.5
Stageiss 17.5 354 44.5 55.8
WSMTAL 19.2 38.1 47.8 58.7
WSMTAL + XQDA 234 39.6 49.8 60.3

which show substantially different appearances due to variances
of viewpoints, illumination, backgrounds, etc. This dataset is also
larger than most of existing person RelD datasets. Because Market
has clearly provided the training set, we use images in the training
set and their person ID labels to fine-tune our dCNN ©52,

In contrast to the two-camera person RelD task, the multi-
camera person RelD targets to identify the query person across im-
age sets from multiple cameras. Therefore, our task is to query and
rank all images from these cameras, according to the given probe
image (i.e., Single Query) or tracklet (i.e., Multiple Query) of a per-
son. Because this process is similar to image retrieval, we evaluate
the performance by mean Average Precision (mAP) and accuracy
at Rank 1, following the protocol in [55]. The results are shown in
Table. 7. More details about feature pooling can be found in [55].

From Table 7, we can observe that our approach outperforms
most of the compared methods for both single query and multi-
query scenarios in mAP. Our method does not perform as good
as the latest LDNS [61] and Gate S-CNN [63] methods on Market
dataset. Note that, both of LDNS [61] and Gate S-CNN [63] train
their models directly on the training set of the Market dataset.
Therefore, the underlying reason maybe because our method sim-
ply transfers the learned low-dimensional attribute features from
an independent and relative small dataset PETA to the large Mar-
ket dataset. Moreover, the bounding box annotations in the Market

Table 7

CMC scores of ranks 1 and mean Average Pre-
cision (mAP) on the Market dataset. Numbers
indicate the percentage (%) of correct matches
within a specific rank.

Single Query Rank 1 mAP
Salmatch [57] 20.5 8.2

SDALF [1] 335 13.5
BGG [55] 344 141
KISSME [13] 40.5 19.0
MFA [14] 45.7 18.2
KLFDA [14] 513 24.4
LOMO -+ XQDA [20] 438 222
LDNS [61] 55.4 29.9
Gate S-CNN [63] 65.9 39.6
SSDAL [41] 394 19.6
WSMTAL 49.5 29.2
Multiple Query Rank 1 MAP
BGG+MultiQ_max [55]  42.1 18.5
KLFDA [14] 52.7 274
LOMO -+ XQDA [20] 54.1 284
LDNS [61] 68.0 419
Gate S-CNN [63] 76.0 48.5
SSDAL [41] 49.0 25.8
WSMTAL 56.6 31.2

dataset are generated from the DPM [67] detection model, which
differ from the manually annotated bounding boxes in PETA. On
datasets like VIPER, where the bounding boxes are also manually
annotated, our method performs better than LDNS [61] and Gate
S-CNN [63] in Table 4.

4.6. Discussions

In this part, we further discuss some interesting aspects of our
method that may have been missed in the above experimental
evaluations.

It should be noted that, our training and testing sets are from
different domains. To be specific, the attribute prediction model
is trained on PETA and MOT Challenge, rather than the training
sets defined by VIPeR, PRID, and GRID. This setting is thus more
challenging than the commonly used one in compared works, i.e.,
the training set and testing set are both from the same domain
or dataset. Under such setting, our method still shows competitive
performance in Tables 4-7. Our work also shows reasonable per-
formance when is compared with recent works. After using XQDA,
our rank-1 accuracy on GRID is only 0.8% lower than the accuracy
reported in [68]. Our algorithm also outperforms the method of
Matsukawa et al. using pixel feature [69] on both VIPeR and GRID,
i.e., 22.8% [69] vs. our 23.4% on GRID, and 42.3 [69] % vs. our
47.1% on VIPeR. Those experimental results show our method has a
strong feature generalization ability, i.e., attribute feature is trained
on one set but gets reasonable performance on other independent
testing sets. This could be valuable for real applications, where the
attribute training sets on target domain could be hard to collect.

By using attributes features of only 105 dimensions, our method
achieves promising performance on four public datasets. It is in-
teresting to see the RelD performance after combining the com-
pact attribute features and classic visual features. To verify this
point, we integrate the appearance-based features with attributes
features for better discriminative power. Table 8 shows the per-
formance of fusing deep attributes with appearance-based feature
LOMO [20], i.e., LOMO + XQDA + WSMTAL. It is obvious that fus-
ing appearance-based features further improves WSMTAL, e.g., CMC
score achieves 45.3 at Rank-1. Therefore, combining with visual
feature would further ensure the performance of attributes fea-
tures in real applications.
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Table 8

Additional experimental results on VIPeR.
Method Rank 1 Rank 5 Rank 10  Rank 20
WSMTAL 39.7 66.9 76.5 86.6
WSMTAL + XQDA 471 715 80.3 88.2
LOMO + WSMTAL + XQDA 513 78.2 85.1 90.2
FC7 fine-tuned on T 26.5 48.2 61.1 723
FC7 fine-tuned on U 10.1 216 317 45.3
FC7 fine-tuned on T + U 274 49.7 62.3 74.4

Many image retrieval works use the output of FC-7 layer in
VGG-16 as image feature. Therefore, another way of learning mid-
level feature for person RelD is fine-tunning the FC7 layer with
triplet loss similar to the one in WSMTAL, i.e., updating the dCNN
to make same person have similar FC-7 layer features and vice
versa. The FC7 features learned in this way are also not limited
to the 105 dimensions, thus might be more discriminative than at-
tributes. To test the validity of this strategy, we fine-tune the FC7
layer of VGG-Net using person ID labels on different datasets, i.e.,
T, U, and T + U, respectively. Experimental results in Table 8 clearly
indicates that that deep attributes outperforms such FC7 features.
This clearly validates the contribution and importance of attributes.

Compared with our conference paper, which uses AlexNet,
WSMTAL uses deeper VGG-Net. The baseline performance of VGG-
Net is about 2% higher than the one of AlexNet. Table 8 shows
that our WSMTAL framework is about 12% better than those pro-
duced by directly using VGG-Net for feature learning in Rank 1
on VIPeR. This also shows that our proposed weakly supervised
method brings more significant performance gain than the use of
a deeper network.

There are some works that use deep learning to recognize
pedestrian attributes [44,46-48]. The DeepMAR [44] is a deep at-
tributes learning model which can learn the attributes correlations.
And the work by Yu et al. [46] proposes a weakly supervised deep
learning model to recognize attributes and infer the locations of
attributes. Meanwhile, a multi-label convolutional neural network
(MLCNN) [47,48] is formulated to predict multiple attributes with
body part division. Although most of those works are not working
on person RelD, they can be important references for our work. For
example, those works show that considering body parts, locations,
correlations of attributes may further improve the attribute pre-
diction accuracy. Referring to those works, we will add more help-
ful information to our weakly supervised attribute learning model.
This will be investigated in our future work.

5. Conclusions and future work

This paper addresses the person RelD problem using deeply
learned human attribute features. We propose a novel Weakly
supervised Multi-Type Attribute Learning (WSMTAL) algorithm,
which considers the contextual cues among attributes and progres-
sively boosts the accuracy of attributes only using a limited num-
ber of labeled data. Our attributes triplet loss makes it possible to
use images only with person ID labels for training attribute detec-
tors in a dCNN framework. Extensive experiments on four bench-
mark datasets demonstrate that our method performs reasonably
good in attribute detection and outperforms many recent person
ReID methods. Moreover, our algorithm needs no further train-
ing on the target datasets. It means that once the attribute pre-
diction dCNN model is trained, it can be applied in person RelD
tasks on different datasets. The dCNN model fine-tuning only re-
quires images with person ID labels, which can be easily obtained
by Multi-target Tracking algorithms. Further considering the spa-
tial locations of attributes might improve the accuracy of attribute
detection. These would be our future work.
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