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Abstract—A number of vision problems such as zero-shot learning and person re-identification can be considered as cross-class

transfer learning problems. As mid-level semantic properties shared cross different object classes, attributes have been studied

extensively for knowledge transfer across classes. Most previous attribute learning methods focus only on human-defined/nameable

semantic attributes, whilst ignoring the fact there also exist undefined/latent shareable visual properties, or latent attributes. These

latent attributes can be either discriminative or non-discriminative parts depending on whether they can contribute to an object

recognition task. In this work, we argue that learning the latent attributes jointly with user-defined semantic attributes not only leads to

better representation but also helps semantic attribute prediction. A novel dictionary learning model is proposed which decomposes the

dictionary space into three parts corresponding to semantic, latent discriminative and latent background attributes respectively. Such a

joint attribute learning model is then extended by following a multi-task transfer learning framework to address a more challenging

unsupervised domain adaptation problem, where annotations are only available on an auxiliary dataset and the target dataset is

completely unlabelled. Extensive experiments show that the proposed models, though being linear and thus extremely efficient to

compute, produce state-of-the-art results on both zero-shot learning and person re-identification.

Index Terms—Attribute learning, dictionary learning, multi-task learning, zero-shot learning, person re-identification, transfer learning
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1 INTRODUCTION

A recent endeavour of computer vision research is to
scale the visual recognition problem to large number

of classes. This is made possible by the emergence of large-
scale datasets such as ImageNet [1] and the advances in
deep learning techniques [2], [3].

However, scalability remains an issue. This is because
most existing recognition models are based on supervised
learning and require sufficient training samples to be col-
lected and annotated for each class. However, beyond daily
objects, collecting image samples for rare and fine-grained
object classes is difficult even with the modern image search
engines. Zero-shot learning (ZSL) [4] and person re-identifi-
cation (Re-ID) [5] are two such tasks at object category and
instance level respectively. More concretely, ZSL aims at
recognizing images from testing/unseen classes by learning

from a set of different training/seen classes. While the
objective of person Re-ID is to match people from one cam-
era view (probe) to another camera view (gallery) under the
condition that the persons in the probe and galley do not
appear in the training data. Considering the people’s identi-
ties as classes, the main challenge of both tasks is that the
training classes and testing classes do not have any intersec-
tion. Hence, the key problem is how to transfer knowledge
learned from a set of labelled (seen) training classes to
another set of testing classes without any training samples,
namely the cross-class transfer learning problem.

One of the most popular approaches to cross-class trans-
fer learning is attribute learning. Attributes are properties of
visual objects that can be shared across different object clas-
ses. They can thus act as a bridge between the training/seen
classes and testing/unseen classes for knowledge transfer.
Most existing works define attributes as semantic, i.e., name-
able properties which are annotated based on a user-defined
ontology [4], [6], [7], [8], [9], [10]. Once being modelled from
the seen classes, they can be used to recognise unseen classes
at both the class and instance levels. For the ZSL problem,
each unseen class is given an attribute “prototype” [11] and
then an instance can be recognised by comparing the proto-
typeswith the predicted attributes. In contrast, for the person
Re-ID, the goal of attribute modelling is to compute a mid-
level representation from low-level features [12].

Earlier attribute learning works [4], [13] learn a binary
attribute classifier for each attribute separately and indepen-
dently, whilst ignoring the existence of correlations among
them, e.g., “female” and “long-hair” are correlated. This has
been rectified by recent approaches [6], [7], [8], [9], [10], [14],
[15] which jointly learn multiple attributes together with the
object class labels in order to exploit their correlations.
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However, these joint modelling approaches focus on the
user-defined semantic attributes only, whilst ignoring the
factors that (1) semantic attributes are often not exhaustively
defined; and (2) there are also other shareable but not name-
able/semantic properties. These properties are termed latent
attributes and have been studied as alternatives to the
semantic attributes [7], [16], [17], [18], [19], [20], [21]. In this
work, we argue that semantic and latent attributes are com-
plementary to each other and jointly explain away the
visual data; they thus should be jointly modelled.

Jointly learning semantic and latent attributes is useful
for both more accurately predicting semantic attributes for
ZSL and learning a more discriminative mid-level represen-
tation for instance-level object recognition. This is due to
two reasons: First, these semantic and latent attributes can
be discriminative thus useful for object recognition. For
example, Fig. 1 shows that a limited list of user-defined
semantic attributes are often inadequate for instance-level
object recognition, in this case attribute-based person Re-ID
[22]. However, when a set of complementary, interpretable
and discriminative latent attributes are learned to augment
the user-defined semantic attributes, recognition can be
made easier. Second, even if predicting the user-defined
attributes is the only goal, discovering and learning these
latent attributes is still useful—it makes sure that shareable
properties irrelevant to the user-defined attributes are
accounted for in the model rather than acting as a distractor
to corrupt the learned semantic attribute predictor.

In this work, two types of latent attributes are consid-
ered: those that are correlated to class labels thus potentially
useful for object recognition, and those that are not. The for-
mer is called discriminative latent attributes (D-LAs), and
the latter background latent attributes (B-LAs) which could
literally be background that may appear in any object clas-
ses. The primary goal of learning D-LAs is to compute dis-
criminative representation useful for recognition. However,
when learned jointly with user-defined semantic attributes,
they often correspond to complementary and interpretable
visual properties (see Fig. 1). Although B-LAs are useless
for the targeted recognition task, they have to be modelled

so as to avoid corrupting the other types of useful attributes.
This makes our approach fundamentally different from the
existing latent attribute modelling approaches which are
only interested in discovering discriminative latent attrib-
utes [7], [16], [17], [18], [19], [20], [21].

To jointly learn both types of latent attributes as well as
semantic attributes together with their correlations with the
class labels, we propose a novel dictionary learning model.
Given the features of training samples, the learned dictio-
nary subspace is decomposed into three parts: (1) the user-
defined-attribute-correlated dictionary subspace part which
is correlated to the user-defined attribute annotations, (2)
the D-LA dictionary subspace part that is subject to the class
label correlation constraint to make sure that it is discrimi-
native, and (3) the B-LA dictionary subspace part that only
helps data reconstruction and is subject to no constraint.
Note that since a dictionary learning model aims to recon-
struct the original signal using all dictionary atoms together,
it naturally enforces the learned three different types of
attributes to be complementary to each others. Fig. 2 illus-
trates the proposed dictionary learning framework.

Cross-class transfer learning aims to reduce or remove
the need for both data collection and annotation. No sample
collection for the testing classes is necessary; however, data
from the training classes still need to be annotated in the
form of class labels and semantic attributes. The joint attri-
bute learning model depicted in Fig. 2 can be trained with-
out semantic attributes (i.e., class labels only). Nevertheless
for instance recognition problems such as Re-ID, there exist
multiple domains and labelling the training sample class
labels for each domain is labor-intensive [23], [24], [25], [26].
It is thus much desirable if attribute learning can be carried
out in an unsupervised manner, i.e., neither attributes nor
class labels are required for the training samples.

This can be achieved by unsupervised domain adapta-
tion or cross-dataset transfer learning [27], [28], [29], [30],
[31]. More specifically, we assume that the target domain/
dataset consists of a set of unlabelled training class samples
and a set of test samples of different classes. In addition, a
set of auxiliary domain datasets are available which are
annotated with class labels and (optionally) semantic attrib-
utes. The task is to transfer knowledge from both the
labelled auxiliary datasets and the unlabelled target training
set to the target test set. To this end, assume all data are rep-
resented by a fixed/pre-computed features and we extend
the proposed joint attribute learning model by following an
asymmetric multi-task learning framework, where each
dataset corresponds to a task. We assume that the UDAC
and some D-LA dictionary atoms are dataset-independent,

Fig. 1. Some examples of user-defined semantic attributes and latent
attributes. The user-defined semantic attributes are shown in the first
row: (a) black jacket and (b) jeans. While those in the second row are
two discriminative latent attributes learned by the proposed method: (c)
white shirt with an open darker jacket and (d) white logo on the chest of
a top. We can see that these latent attributes are often semantically
meaningful and interpretable, but in a more subtle way, and may have
been ignored by human annotators. It is clear that person A and person
B cannot be distinguished by only two user-defined semantic attributes.
But when complemented by latent attributes, it becomes easier.

Fig. 2. Our framework for joint learning of user-defined-attribute-corre-
lated (UDAC), discriminative latent attribute (D-LA), and background
latent attribute (B-LA) dictionary subspace. Class labels are person iden-
tities in the Re-ID problem.
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thus shared across different datasets, whilst the B-LA atoms
are dataset-specific and unique to each dataset. Moreover,
different decompositions of dictionaries are introduced for
the auxiliary and target datasets respectively to reflect the
fact that our multi-task learning model is asymmetric, i.e., it
only aims to benefit the target task. The key strength of our
model, which also distinguishes it from existing multi-task
learning methods [32], is that it is able to learn from
unlabelled target data. This is because our model is based
on dictionary learning, which is originally designed for
unsupervised learning and can thus be naturally reformu-
lated for unsupervised transfer learning.

2 RELATED WORK

Learning latent attributes. The idea of discovering and model-
ling latent attributes has been exploited before [7], [16], [17],
[18], [19], [20], [21]. However, in theses studies, latent attrib-
utes are not learned jointly and thus are not necessarily com-
plementary to user-defined attributes. There exist a few
exceptions which learn discriminative latent attributes and
user-defined ones jointly [15], [33], [34]. In [15], the discov-
ered latent attributes are correlated with user-defined attrib-
utes and used to predict the latter. In contrast, our model
aims to learn the latent attributes that are complementary to
the user-defined ones, thus can be combined together for
richer representation. Similar to ours, the method in [33]
learns complementary user-defined and latent attributes
jointly. However, it requires training samples of test classes;
whilst our model does not need these training samples, mak-
ing it more scalable. The method in [34] uses a generative
topic model, and it is ideal for utilising human prior knowl-
edge about the problem domain but weak on learning a dis-
criminative representation for object recognition. In contrast,
our dictionary learning basedmodel is discriminative and as
a linear subspacemodel is easier to compute, compared with
[34] which has to make approximations via variational infer-
ence tomake it tractable.

Zero-shot learning. Existing zero-shot learning (ZSL) meth-
ods differ in the semantic spaces used to embed the seen and
unseen classes. Most methods use semantic attributes [4],
[9], [35] and word vectors [36], [37], [38], or a combination of
both [39], [40], [41]. In this work, we show that with the attri-
bute space only, state-of-the-art ZSL performance can be
achieved. Given a semantic embedding space, existing ZSL
methods fall into two types: semantic embedding (SE) based
methods and semantic relatedness (SR) based methods [40].
The SE-based methods first map the input image representa-
tions to the semantic space and then determine the class
labels in the space by searching for the nearest class proto-
types [4], [8], [9], [10], [39], [42], [43], [44]. While the SR-based
methods first learn to measure the visual similarity between
a testing unseen class sample and the seen classes, which is
then compared with the semantic similarity computed as the
class prototype distance between an unseen class and all
seen classes [38], [40], [45], [46]. Similar to a recent work [47],
our model fuses the SE- and SR-based approaches seam-
lessly by modelling both semantic and latent attributes. Spe-
cifically, SE-based ZSL is performed with the learned
semantic attributes and SR-based ZSL with the D-LA; the
final result is obtained by score-level fusion.

Attribute-based person Re-ID. Semantic attributes have
been exploited as a mid-level representation for Re-ID [22],
[48], [49], [50]. However, none of these methods is competi-
tive on benchmark datasets. This is because (1) the user-
defined attribute representations have very low dimensions
(dozens versus tens of thousands, e.g., in [51]); and (2) no
latent attributes are exploited. Recently, user-defined attrib-
utes and low-level features are modelled jointly in [52] for
Re-ID. However, the user-defined attributes are predicted
independently and no latent attributes are used. In contrast,
our model not only models both types of attributes, but also
is flexible in that discriminative latent attributes can still be
learned when no user-defined attribute annotations are
available. Another relevant work is [12] which deploys a
generative model to transfer attribute annotations from aux-
iliary data (fashion clothing) to the target data (surveillance
video). Again, as a generative model, it is weak in learning
discriminative representation.

Unsupervised domain adaptation for person Re-ID. Recently,
unsupervised cross-dataset transfer learning or domain
adaptation has been attempted for Re-ID in the hope that
labelled data from auxiliary datasets/domains can provide
transferable identity-discriminative information for a target
dataset. Note that this problem is very different from the
same-dataset unsupervised cross-class problems in some
early works [53], [54]. When both the dataset/domain and
the identities are different, the transfer learning problem
considered in this work is much harder. Among the existing
cross-dataset transfer learning works, [23] adopted an SVM
multi-kernel learning transfer strategy, and both [24] and
[25] employed multi-task metric learning models. All theses
works are supervised and need labelled data in the target
dataset. As far as we know, the only existing unsupervised
cross-dataset transfer learning model for Re-ID is [26],
which utilised cross-domain ranking SVMs. However, an
SVM-based model can not learn from completely unlabelled
data. As a result, their target dataset is not exactly unla-
belled because negative data are given for the target dataset.
Therefore, strictly speaking, the model in [26] is a weakly-
supervised rather than an unsupervised model. In contrast,
our model is completely unsupervised without requiring any
labelled data from the target dataset.

Dictionary learning. Beyond attribute learning, dictionary
learning [55], [56] has been studied extensively. Originally
designed for unsupervised learning, it has been extended to
supervised learning tasks such as face recognition [57] and
person Re-ID [58], [59], [60]. Our model is related to these
models in that discriminative latent attributes are learnt
through the dictionary subspace. However, only our model
is able to additionally learn user-defined attributes and
background latent attributes for better representation.

Contributions. Our contributions are summarised as fol-
lows: (1) A unified framework for learning both user-
defined semantic attributes and discriminative latent attrib-
utes is proposed. (2) We further develop a novel dictionary
learning model which decomposes the learned dictionary
subspace into three parts corresponding to the semantic,
discriminative latent as well as background latent attributes
respectively. An efficient optimisation algorithm is also for-
mulated. (3) The proposed method is extended to a novel
asymmetric multi-task learning framework to address the
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unsupervised cross-dataset transfer learning problem when
the target dataset is completely unlabelled. Extensive
experiments are carried out on benchmark ZSL and person
Re-ID datasets. The results show that our method generates
state-of-the-art results on both tasks. Preliminary versions
of this work on modelling semantic and latent attributes
jointly in a same domain dataset [61] and learning a dis-
criminative representation by unsupervised domain adap-
tion [62] have been presented. Compared with them, this
study presents a unified framework that tackles both prob-
lems and thus yields better performance.

3 METHODOLOGY

3.1 Joint Attributes Modelling

Assume that a set of training data are givenwhich are labelled
with some user-defined (semantic) attributes1 and (training)
classes. We aim to model user-defined semantic and latent
attributes jointly so that they can be predicted on test samples
which belong to different (test) classes. Adopting a dictionary
learning model, the learned dictionary is decomposed into
three parts corresponding to three different types of attributes
(see Fig. 2): (1) Du corresponding to the user-defined-attri-
bute-correlated sub-dictionary, (2) Dd corresponding to the
discriminative latent attributes (D-LA) sub-dictionary which
is correlated to the class labels and (3)Db corresponding to the
background latent attributes (B-LA) sub-dictionary which
captures all the residual information in the training data.Db is
uncorrelated to either user-defined attributes or class labels
and thus is learnedwithout any supervision.

Formally, let Y 2 Rm�n be a data matrix for n training
samples, where each column yi corresponds to an m-dim
feature vector representing the ith data. A is a p� n matrix
where each column ai 2 f0; 1gp indicates the absence or
presence of all p binary user-defined attributes.2 The pro-
posed joint attributes model is formulated as a regularised
dictionary learning model

Du;Dd;Db;W
� � ¼ argmin

Y �DuXu �DdXd
�� ��2

F
þ Y �DuXu �DdXd �DbXb
�� ��2

F

þ a
Xn
i;j¼1

mi;j xd
i � xd

j

��� ���2 þ b2 Xu �WAk k2F

s:t: dui
�� ��2

2
� 1; ddi

�� ��2
2
� 1 dbi

�� ��2
2
� 1; wik k22 � 1 8i;

(1)

where matrices Xu, Xd and Xb are codes/coefficients corre-
sponding to sub-dictionaries Du, Dd and Db respectively; W
represents the linear transformation between the codes
obtained usingDu and the user-defined attribute annotation
matrix A; dui , d

d
i , d

b
i and wi are the ith columns of Du, Dd, Db

and W respectively; xd
i is the ith column of Xd; a and b are

free parameters controlling the strengths of two regularisa-
tion terms to be explained later; jj:jjF denotes the Frobenious
norm of a matrix; mi;j is an element of an affinity matrix M
indicating the class-relationships (same/different class)

among different training samples. Specifically, mi;j ¼ 1 if xd
i

and xd
j are of same class, andmi;j ¼ 0 otherwise.

There are four terms of three categories in the cost func-
tion which are now explained in detail:

(1) The first two terms are reconstruction errors that
make sure the learned dictionaries can encode the data
matrix Y well. Note that the two reconstruction error terms
are stepwise ordered. Specifically, the minimisation of the
first reconstruction error term enables Du and Dd to encode
Y as much as possible, while the minimisation of the second
reconstruction error term enables Db to encode and align
the residual part of Y that cannot be coded using Du and
Dd. This stepwise formulation is important to prevent the
background latent attribute dictionary Db from dominating
the reconstruction error and consequently leading to trivial
solutions forDu andDd.

(2) The third term can be rewritten as

Xn
i;j¼1

mi;j xd
i � xd

j

��� ���2 ¼ TrðXdLXd0Þ; (2)

where L ¼ Q�M and Q is a diagonal matrix whose diago-
nal elements are the sums of the row elements of M. It is
thus a graph Laplacian regularisation term dictating that
the projections of columns of Y in the D-LA subspace, i.e.,
Xd, are close to each other if the corresponding data points
belong to the same class. This term is thus to make the D-
LA subspace, parametrised by Dd, to be discriminative
(class-dependent).

(3) The last term is the constraint for learning the UDAC
subspace part. Note that we attempt to establish a linear
transformation W between the projection in that subspace,
Xu, and user-defined attribute annotations A, rather than
simply setting them to be equal, i.e.,Xu ¼ A. This is because
each learnt dictionary atom is additive, that is, each data
point yi is computed/reconstructed as a weighted sum of
these atoms. Thus directly setting each user-defined attri-
bute as a dictionary atom is inappropriate—the relationship
between different user-defined attributes is complicated.
For example, in Fig. 1a, summing “long hair” and
“trousers” to explain away the person’s appearance makes
sense but adding them with “female” makes less sense.
Thus introducing the linear transformation overcomes this
problem and also implicitly performs attribute selection.

Unlike conventional dictionary learning for sparse coding,
our model has no l1-norm sparsity penalty term on the code
matricesXu,Xd andXb. Empirically, we find that less-sparse
codes contain richer information thus more suitable to be
used as representation for recognition. Moreover, removing
these l1-norm terms leads to a simpler optimisation problem.

Note that the proposed method can still work without
the user-defined attribute annotations A in the training
data. In this case, Du, W and Xu will be dropped and only
D-LA and B-LA are learned

Du;Db
� � ¼ argmin Y �DdXd

�� ��2
F

þ Y �DdXd �DbXb
�� ��2

F
þ a

Xn
i;j¼1

mi;j xd
i � xd

j

��� ���2;
s:t: ddi

�� ��2
2
� 1 dbi

�� ��2
2
� 1; 8i:

(3)
1. We will show later that the requirement on the availability of

user-defined attributes can be removed.
2. Continuous attribute vectors can also be used here.
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3.2 Unsupervised Domain Adaptation

The proposed joint attribute modelling approach can work
without user-defined attribute annotation, but the training
samples’ class labels have to be provided which still hinders
its scalability for certain cross-class transfer learning tasks
such as person Re-ID. Here we consider an extension of the
model for a more challenging unsupervised domain adapta-
tion setting. Under this setting, the training samples are
completely labelled. However, we assume a set of auxiliary
datasets/domains exist, which are labelled and related to
the target dataset/domain consisting of the unlabelled
training data and test data of different classes. Here the aux-
iliary and target datasets should share user-defined attrib-
utes if annotated and some D-LAs. This condition is easily
satisfiable, e.g., in person Re-ID, different domains are dif-
ferent camera networks which contain different person
identities but can be described using a same set of attributes.

We adopt a multi-task learning approach because it is
widely used for cross-datasets and additive models such as
dictionary learning are naturally suited [63], although no
attempt has been made for unsupervised domain adapta-
tion. Here we consider learning the attribute model for each
dataset as a task. We wish to learn all tasks jointly so that
they can benefit each other. Importantly, since we are only
concerned with the target dataset, the multi-task model is
asymmetric and biased towards the target dataset.

Formally, assume Yt 2 Rm�nt is a data matrix with each
column yt;i corresponding to an m-dim feature vector in the
dataset t (t ¼ 1; . . . ; T ) consisting of nt samples. Let T be the
index for the target dataset and the others are auxiliary
datasets. Here the dictionary is decomposed into two types
of sub-dictionaries: those shared between tasks/datasets,
i.e., UDAC and D-LA, and the task-specific ones that cap-
ture dataset-unique aspects, i.e., B-LA. Moreover, the
decomposition should be different for the auxiliary and tar-
get datasets to reflect that we only care about the target one.
Based on these considerations, four types of sub-dictionar-
ies are modelled: (1) Du corresponding to the UDAC sub-
dictionary which is shared by all datasets, (2) Dds corre-
sponding to the D-LA sub-dictionary which is also shared
by all datasets, (3) Ddu corresponding to the D-LA sub-
dictionary which is unique to the target dataset, and (4) Db

t

corresponding to the B-LA which is task-specific. Note that
the auxiliary and target datasets are treated differently: For
the target dataset, an additional dictionary Ddu is needed to
account for D-LA unique to the target dataset, making the
decomposition biased towards the target dataset. Different
components of our model and their relationships are illus-
trated Fig. 3 and the formulation of the model is

Du;Dds;Ddu;Db
1; . . . ; D

b
T ;W

� � ¼ argmin

XT�1

t¼1

FA
dataðDu;Dds;Db

tÞ þ FA
D�LAðXds

t Þ þ FA
UDACðXu

t ;WÞ

þ FT
dataðDu;Dds;Ddu;Db

T Þ þ FT
D�LAðXds

T ;Xdu
T Þ þ FT

UDACðXu
T Þ;

s:t: dui
�� ��2

2
� 1; ddsi

�� ��2
2
� 1; ddui

�� ��2
2
� 1;

��dbt;i��22 � 1;

wik k22 � 1; 8i; t:
(4)

Similar to (1), matrices Xu
t , X

ds
t , Xdu

T and Xb
t are codes/coef-

ficients corresponding to dictionaries Du, Dds, Ddu and Db
t

respectively. FA
datað�Þ and FT

datað�Þ are the data reconstruction
terms for the auxiliary and target datasets respectively and
they are defined as

FA
dataðDu;Dds;Db

tÞ
¼ Yt �DuXu

t �DdsXds
t

�� ��2
F
þ Yt �DuXu

t �DdsXds
t �Db

tX
b
t

�� ��2
F
;

FT
dataðDu;Dds;Ddu;Db

T Þ
¼ YT �DuXu

T �DdsXds
T �DduXdu

T

�� ��2
F

þ YT �DuXu
T �DdsXds

T �DduXdu
T �Db

TX
b
T

�� ��2
F
:

(5)

FA
D-LAð�Þ and FT

D-LAð�Þ are the constraints of D-LA for the
auxiliary and target datasets respectively

FA
D-LAðXds

t Þ ¼ a
XNt

i;j¼1

mt;i;j

��xds
t;i � xds

t;j

��2;
FT
D-LAðXds

T ;Xdu
T Þ ¼

a
XNT

i;j¼1

mT;i;j

���xdsT;i � xds
T;j

��2 þ ��xdu
T;i � xdu

T;j

��2�:
(6)

Mt is an affinity matrix among different training samples in
dataset t. Specifically, for the labelled auxiliary datasets,
mt;i;j ¼ 1 if yt;i and yt;j are of the same class and mt;i;j ¼ 0
otherwise. For the unlabelled target dataset, MT is initial-
ised as a zero matrix and updated iteratively as explained
later.

FA
UDACð�Þ and FT

UDACð�Þ are the constraints of UDAC for
the auxiliary and target datasets respectively. Since the
user-defined attribute annotations are only available in the
auxiliary datasets, we utilise the affinity matrix in FT

UDAC , as
follows

FA
UDACðXu

t ;W Þ ¼ b2 Xu
t �WAt

�� ��2
F
;

FT
UDACðXu

T Þ ¼ a
XNT

i;j¼1

mT;i;j

��xu
T;i � xu

T;j

��2: (7)

Note that the proposed method can again work without
the user-defined attribute annotations At for the auxiliary
datasets. In this case, Du, W and Xu

t will be dropped and
onlyDds,Ddu andDb are learned.

3.3 Optimisation

Since (1) can be solved as a special case of (4) when T ¼ 1,
we only detail how the the optimisation problem in (4) is

Fig. 3. A schematic illustration of the proposed multi-task dictionary
learning model.
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solved. Substituting (5), (6) and (7) to (4), the solution is
achieved by solving the following subproblems iteratively:

(1) Computing Xds
t , Xu

T and Xdu
T . Given fixed Du, Dds, Ddu,

Db
t and Xb

t , the coding problem of the task t (t ¼ 1; . . . ; T )
becomes

min ~Y t � ~D ~Xt

�� ��2
F
þ aTrð ~XtLt

~Xt
0Þ; (8)

where for the target dataset

~YT ¼ YT

YT �Db
TX

b
T

� �
; ~D ¼ Du;Dds;Ddu

Du;Dds;Ddu

" #
; ~XT ¼

Xu
T

Xds
T

Xdu
T

2
64

3
75;

and for the auxiliary dataset

~Yt ¼
Yt �DuXu

t

YT �DuXu
t �Db

tX
b
t

� �
; ~D ¼ Dds

Dds

" #
; ~Xt ¼ Xds

t

� �
:

Lt is calculated as similar as (2). Let the derivative of (8)
equal to 0 and the analytical solution of ~xt;i (the ith column
of ~Xt) can be obtained as

~xt;i ¼ ~D
0 ~Dþ 2�lt;i;iI

	 
�1
~D
0
~yt;i � 2a

X
k6¼i

~yt;klt;k;i

 !
;

where lt;k;i is the ðk; iÞ element of Lt, I is the identity matrix
and ~xt;i is the ith column of ~Xt.

(2) Computing Xu
t ; ðt ¼ 1; � � � ; T � 1Þ. Fix other terms, Xu

t

is solved as

min ~Y t � ~DXu
t

�� ��2
F
; (9)

where

~Yt ¼
Yt �DdsXds

t

Yt �DdsXds
t �Db

tX
b
t

bWAt

2
64

3
75; ~D ¼

Du

Du

bI

2
64

3
75:

I is the identity matrix. Let the derivative of (9) equal to 0
and the analytical solution ofXu

t is

Xu
t ¼ ~D

0 ~D
	 
�1

~D
0 ~Yt: (10)

(3) ComputingXb
t . Fix other terms,Xb

t is solved as

For the target dataset:

min YT �DuXu
T �DdsXds

T �DduXdu
T �Db

TX
b
T

�� ��2
F
;

and for the auxiliary datasets:

min Yt �DuXu
t �DdsXds

t �Db
tX

b
t

�� ��2
F
:

(11)

Let the derivative of (11) equal to 0 and the analytical solu-
tion ofXb

t can be obtained as

For the target dataset:

Xb
T ¼ Db

T

0
Db

T

	 
�1
Db

T

0
YT �DuXu

T �DdsXds
T �DduXdu

T

� �
;

and for the auxiliary datasets:

Xb
t ¼ Db

t

0
Db

t

	 
�1
Db

t

0
Yt �DuXu

t �DdsXds
t

� �
:

(4) Updating sub-dictionaries. When other terms are given, Du

is optimised as

min Y �DuXk k2F ; s:t: dui
�� ��2

2
� 1; ð8iÞ; (12)

where

Y ¼ ½Y1 �DdsXds
1 ; . . . ; YT�1 �DdsXds

T�1; Y1 �DdsXds
1

�Db
1X

b
1; . . . ; YT�1 �DdsXds

T�1 �Db
T�1X

b
T�1; YT �DdsXds

T

�Ddu
T Xdu

T ; YT �DdsXds
T �Ddu

T Xdu
T �Db

TX
b
T �

X ¼ ½Xu
1 ; . . . ; X

u
T�1; X

u
1 ; . . . ; X

u
T�1; X

u
T ;X

u
T �:

(13)

Eq. (12) can be optimised by the Lagrange dual, and the
analytical solution of Du can be computed as Du ¼
YX0ð Þ XX0 þ Lð Þ�1

, where L is a diagonal matrix con-
structed from all the dual variables.

Similar toDu,Dds is optimised by

min Y �DdsX�� ��2
F
; s:t: ddsi

�� ��2
2
� 1; ð8iÞ; (14)

where

Y ¼ ½Y1 �DuXu
1 ; . . . ; YT�1 �DuXu

T�1; Y1 �DuXu
1

�Db
1X

b
1; . . . ; YT�1 �DuXu

T�1 �Db
T�1X

b
T�1; YT �DuXu

T

�Ddu
T Xdu

T ; YT �DuXu
T �Ddu

T Xdu
T �Db

TX
b
T �

X ¼ ½Xds
1 ; . . . ; Xds

T�1; X
ds
1 ; . . . ; Xds

T�1; X
ds
T ;Xds

T �:
(15)

Then, for the target dataset, fix other terms and Ddu can
be updated by

min YT �DduXT

�� ��2
F
; s:t: ddui

�� ��2
2
� 1; ð8iÞ; (16)

where

YT ¼ YT �DuXu
T �DdsXds

T ; YT �DuXu
T �DdsXds

T �Db
TX

b
T

� �
;

XT ¼ Xdu
T ;Xdu

T ;Xdu
T

� �
:

(17)

At last, the objective function to solveDb
t t ¼ 1; . . . ; Tð Þ is

min Yt �Db
tX

b
t

�� ��2
F
; s:t: dbt;i

��� ���2
2
� 1ð8iÞ; (18)

where

For the target dataset:

YT ¼ YT �DuXu
T �DdsXds

T �DduXdu
T ;

and for the auxiliary datasets:

Yt ¼ Yt �DuXu
t �DdsXds

t :

(19)

Eqs. (14), (16) and (18) can be solved similarly as (12).
(5) UpdatingW . Similar to the dictionary updating in Step

3, fix other variables and solveW by

min X �WAk k2F ; s:t: wik k22 � 1ð8iÞ: (20)

where

X ¼ Xu
1 ; . . . ; X

u
T�1

� �
;A ¼ A1; . . . ; AT�1½ �: (21)
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The analytical solution of W is given by: W ¼ XA0� �
AA0 þ L
� ��1

, where L is a diagonal matrix constructed
from all the dual variables.

Algorithm 1 summarizes our algorithm. It converges
after a few (< 50) iterations in our experiments.

Algorithm 1. Unsupervised Domain Adaptation Algo-
rithm for Attribute Learning

Input: Yt; initializeD
u,Dds Ddu andDb

t randomly;Xb
t ! 0;

Output: Du,Dds;Ddu ,Db
t ,D

u andW ðt ¼ 1; . . . ; T Þ.
while Non-convergence do
for t ¼ 1 ! T do
if Auxiliary dataset then
Compute codeXds

t by (8).
Compute codeXu

t by (9).
If Target dataset then
Compute codeXds

T ,Xu
T andXdu

T by (8).
Compute codeXb

t by (11).
UpdateDu by (12).
UpdateDds by (14).
for t ¼ 1 ! T do
if Auxiliary datasets then
UpdateDb

t by (18).
if Target dataset then
UpdateDdu by (16).
UpdateDb

t by (18).

Iterative Updating MT . After running Algorithm 1, each
training sample yT;i from the target dataset can be estimated
(using (22) to be detailed below) as a code vector. With this
code, we can measure the similarity between each pair of
target data samples and recompute MT . This matrix now
captures the soft relationship among the training samples in
the target dataset. Specifically, if xT;j is among the k-nearest-
neighbors of xT;i and xT;i is also among the k-nearest-neigh-
bors of xT;j, mT;i;j ¼ xT;i�xT;j

xT;ik k xT;jk k; otherwise, mT;i;j ¼ 0 (k ¼ 1

in our experiments and we obtain similar results when

k < 5). With the updated MT , we re-run Algorithm 1 to
enter the next iteration. This iterative procedure stops when
the value of cost function (4) converges (i.e., the difference
divided by the value over consecutive iterations is smaller
than 0.01), and the number of iterations is typically less than
5 in our experiments.

3.4 Attribute Prediction

Once the various sub-dictionaries are learned, each test
image y from an unseen test class can be encoded as
xu; xd; xb
� �

via Du, Dd and Db respectively. The encoding
problem under the unsupervised domain adaptation can be
formulated as

xu; xds; xdu; xb
� �
¼ argmin y�Duxu �Ddsxds �Dduxdu �Db

Tx
b

�� ��2
2

þ g xuk k22 þ xds
�� ��2

2
þ xdu
�� ��2

2
þ xb
�� ��2

2

	 

;

(22)

where xu, xds, xdu and xb are the projections of y using the
UDAC, shared D-LA, and target dataset unique D-LA and
B-LA sub-dictionaries respectively, and g is a weight for the
regularisation terms. Eq. (22) can be solved easily with a

linear system. Under the supervised setting (1), Ddu and xdu

will be dropped, and Dds and xds will be replaced by Dds

and xds correspondingly.
After we obtain xu, the user-defined attribute vector a

can be predicted via the linear constraintW

a ¼ argmin xu �Wak k22 þ g ak k22: (23)

4 APPLICATIONS

4.1 Zero-Shot Learning

It is a supervised cross-class transfer learning problem. Let
As ¼ faskgKs

k¼1 and Au ¼ faukgK
u

k¼1 be semantic attribute proto-
types of Ks seen classes and Ku unseen classes respectively.
They can be obtained through human annotations following
an attribute ontology. Lu ¼ flukgKs

k¼1 is the D-LA prototypes
of Ks seen classes. Specifically, we first calculate the D-LA
code xd of all samples from the seen class k by (22), and
then use the mean as the D-LA prototype of the seen class k.

For a test image y from an unseen class, it is represented
by its semantic attribute vector a and D-LA vector xd esti-
mated using (23) and (22). The class label of y can be
assigned using either of them:

Semantic attributes based ZSL. In this semantic embedding
based approach, y is recognised by comparing the proto-
types fAu

kgK
u

k¼1 with the predicted semantic attributes a by
nearest neighbour search

k� ¼ argmax
k

a � auk
ak k2 auk
�� ��

2

: (24)

D-LA based ZSL. In this semantic relatedness based
approach, we first measure the semantic relatedness
between each unseen class and all the seen classes by
attempting to reconstruct the unseen class prototype using
all the seen class prototypes, resulting in a SR vector ruk for
the kth unseen class. Specifically, this SR vector is obtained
by solving the following least square regression problem

ruk ¼ argmin auk �Asruk
�� ��2

2
þ g ruk

�� ��2
2
: (25)

Meanwhile, the D-LA xd of y can be used to measure the
visual similarity between y and all the seen classes. The
resultant visual similarity vector is obtained by solving
another regression problem

xr ¼ argmin xd � Luxr
�� ��2

2
þ g xrk k22: (26)

Finally, y can be recognised by comparing the visual simi-
larity vector xr and semantic relatedness vector ruk of each
unseen class and assigning the class label to the one with
smallest distance

k� ¼ argmax
k

xr � ruk
xrk k2 ruk

�� ��
2

: (27)

Since the semantic attributes and D-LA are complemen-
tary to each other, these two approaches are combined by
score-level fusion as our final approach

k� ¼ argmax
k

a � auk
ak k2 auk
�� ��

2

þ xr � ruk
xrk k2 ruk

�� ��
2

 !
: (28)
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4.2 Person Re-ID

For Re-iD, each test sample can be represented as the pre-
dicted semantic attributes a and D-LA xd. Simply treating
the two types of attributes as features, person Re-ID could
be performed by summing the cosine distance of a and xd

respectively between the attribute vectors of a probe sample
and a gallery one.

Different from ZSL, the proposed method can still work
for Re-ID without user-defined attribute annotations A in
the training data, based on (3). In this case, the test sample y
is represented only by its D-LA xd only. Another difference
is that unsupervised domain adaptation can be performed
for Re-ID, making our method applicable to unlabelled
datasets/domains.

5 EXPERIMENTS

5.1 Zero-Shot Learning

Datasets and settings. Two widely-used benchmark datasets
are chosen in this experiment. AwA is composed of 30,475
images from 50 animal classes and each class is annotated
with 85 user-defined attributes. Following the default split
[4], we divide the dataset into two parts: 40 classes (24,295
images) as the seen classes for training and the remaining
10 classes (6,180 images) as unseen classes for testing. CUB
contains 11,788 images of 200 bird classes and each class is
annotated with 312 attributes. Again we use the same data
split as in most other ZSL works (i.e., 150 seen classes for
training and the rest 50 unseen target classes for testing).
For both datasets, the 4,096-dim VGG deep features pro-
vided by [42] are used to compare other methods fairly. As
for the parameter setting, the sizes of Du, Dd and Db are set
to 400, 400 and 100 respectively for both datasets. The other
free parameters, a and b in (1) and g in (22), are set as 30, 1.5
and 3 respectively for both datasets. These parameters are
all obtained using cross-validation.

Baselines. We compare our method with 10 state-of-art
methods. They fall into two groups. Methods in the first
group project the input image representation to a semantic
space, and the projections are then compared with the class
labels embedded in the same space (class prototypes) for
recognition. These include DAP [4], ALE [9], CSHAP [10]
and UMF [8]. The second group of methods learn a joint
embedding space for both the visual feature and semantic

spaces, including SSE [42], SJE [39], JLSE [38], SC [47],
LatEm [43], and MSS [44]. Most of these compared methods
use the user-defined attributes as the semantic space. The
only two exceptions are SJE [39] and LatEm [43], which
additionally use other spaces obtained by natural langauge
processing such as Word2Vec [64].

Comparative results. The results are shown Table 1. All
baselines use the same train-test split and most use the
same features as ours. The results show that our method
achieves the best performance on both datasets even though
a number of the compared methods utilise additional infor-
mation. For example, MSS [44] utilises visual parts annota-
tions. SJE [39] and LatEm [43] combine the user-defined
attributes with other semantic spaces. Futhermore, JLSE
[38] is under the transductive setting which requires the
access to the full test dataset for model adaptation.

Ablation study. One of the key reasons for the superior ZSL
performance is the more accurate attribute prediction. To
verfiy that, the user-defined attribute prediction accuracy is
reported in Table 2, measured using mean area under ROC
curve (mAUC). It clearly shows that the proposed method
achieves state-of-the-art performance on both datasets for
attribute prediction. To find out which part of the proposed
model contributes to the good performance for both attribute
prediction and ZSL, we examine the contributions of the key
components in our model (see (1)), including: (1) two types
of latent attributes: D-LA (Dd) and B-LA (Db) are learned
together with the user-defined attributes, and (2) instead of
learning the user-defined attributes directly as a sub-dictio-
nary, we model a linear transformation (W ) from the user-
defined attributes A to the UDAC dictionary subspace (Du).
Table 3 compares our full model (Ours_full) with various
striped-down versions. The results show that all these com-
ponents contribute positively to the final performance of the
model. Further evaluations on the complementarity of
the semantic and latent attributes can be seen in the Supple-
mentaryMaterial, which can be found on the Computer Soci-
ety Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPAMI.2017.2723882.

TABLE 1
Comparative Results on Zero-Shot Learning

(Recognition Accuracy in %)

Approaches AwA CUB

ALE [9] 43.5 18.0
UMF [8] 48.6 18.2
CSHAP [10] 45.6 17.5
SC [47] 72.9 54.5

DAP* [4] 57.5 -
SSE* [42] 76.3 30.4
SJE* [39] 73.9 51.7
JLSE* [38] 80.5 42.1
MSS* [44] - 56.5
LatEm* [43] 76.1 47.4
Ours 82.9 57.1

“*”means that the same VGG features are used.

TABLE 2
Comparative Results on Predicting User-Defined Attributes

Approaches AwA CUB

ALE [9] 65.7 60.3
CSHAP [10] 74.3 68.7

DAP* [4] 72.8 61.8
IAP* [4] 72.1 -
TBOS* [15] 70.5 68.1
Ours 75.8 78.3

TABLE 3
Evaluation on the Contributions of Different Components

to ZSL and Attribute Prediction (A_Pre)

ZSL A_Pre

AWA CUB AWA CUB

WithoutDd 81.6 50.7 73.6 74.4
WithoutDb 80.2 48.9 71.2 72.6
WithoutW 74.4 42.6 68.9 69.8

Ours_full 82.9 57.1 75.8 78.3
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5.2 Person Re-ID

5.2.1 Supervised Person Re-ID

Datasets. Four widely-used person re-ID benchmark datasets
are chosen.VIPeR [65] contains 1,264 images of 632 individu-
als from two distinct camera views (two images per individ-
ual) featured with large viewpoint changes and varying
illumination conditions. All individuals are randomly
divided into two equal-sized subsets for training and testing
respectively with no overlapping in identity. This random
partition process is repeated 10 times, and the averaged per-
formance is reported. For fair comparison, we use the same
data splits as in [66]. PRID [67] consists of images extracted
from two surveillance cameras. Camera view A contains 385
individuals, camera view B contains 749 individuals, with
200 of them appearing in both the two views. The single shot
version and data splits of the dataset are used in our experi-
ments as in [66]. In each data split, 100 peoplewith one image
from each view are randomly chosen from the 200 persons
present in both camera views as the training set, while the
remaining 100 persons of View A are used as the probe set,
and the remaining 649 persons of ViewB are used as gallery.
Experiments are repeated over the 10 splits. CUHK03 [68]
contains 13,164 images of 1,360 identities, captured from six
cameras with each person only appearing in two views. It
provides pedestrian bounding boxes manually labelled by
human and automatically detected by a deformable-part-
model (DPM) detector. We report results on both cases. The
20 training/test splits provided in [68] are used under the
single-shot setting as in [51].Market-1501 [69] contains 32,668
detected person images of 1,501 identities. Each identity is
captured by six cameras at most, and two cameras at least.
We use training and test sets provided in [69], under both the
single-query andmulti-query evaluation settings.

Attribute annotation. The training sets of all datasets have
labels indicating the identities of the people. In addition, a
total of 105 binary user-defined attributes have been anno-
tated for VIPeR and PRID in [14]. We remove the user-
defined attributes which do not appear in each dataset, and
the numbers of the remaining attributes are 85 and 56 for
VIPeR and PRID respectively. Note that attribution annota-
tion is unavailable on CUHK03 and Market-1501. As men-
tioned in Section 3, our model works with and without the
user-defined attributes. For fair comparison with the exist-
ing methods which do not use attribute annotations, we
report results of our model both with and without user-
defined attributes.

Features and evaluation metric. Both hand-crafted low-level
features and deep CNN features are considered for fair com-
parisonwith various published results. For hand-crafted fea-
ture, the 26,960-dim Local Maximal Occurrence (LOMO)
features [51] are used. In addition, deep features are used in
our experiment. Specifically, we extract the 1024-dim CNN
feature from the “pool5” layer in the GoogLeNet model [3]
which is pre-trained on ImageNet dataset [70] and then fine-
tuned on “non-target” person Re-ID datasets. For example,
when extracting features on VIPeR dataset, we fine-tune
themodel on PRID, CUHK03 andMarket datasets.3 For eval-
uation, we compute Cumulated Matching Characteristics

(CMC) curves. Due to space constraint as well as for easier
comparison with published results, we only report the
cumulated matching accuracy at selected ranks in tables
rather than depicting the actual CMC curves. The only
exception is theMarket-1501 dataset. Since there are on aver-
age 14.8 cross-camera ground-truth matches for each query,
we additionally usemean average precision (mAP) as in [69].

Parameter settings. The sizes ofDu,Dd andDb are all set to
300. We found that the performance of our model is insensi-
tive to the dictionary size when it is between 200 to 400. The
other free parameters in our model, a and b in (1) and g in
(22), are obtained using four-fold cross-validation.

Baselines. Twelve state-of-the-art Re-ID methods are
selected for comparison. They fall into four categories: (1)
Distance metric leaning based methods: RPLM [73], Mid-
level Filter [74], LADF [75], and Similarity Learning [76]; (2)
Kernel-based Discriminative subspace learning methods:
MFA [77], kLFDA [77], kCCA [66], XQDA [51], and MLAPG
[78]; (3) Deep learning based: Improved Deep [79], Wang
et al. [80], FT-JSTL+DGD [81], Zhang et al. [72], TCP [82]
and Gated S-CNN [71]; (4) Attribute-based method: aMTL-
LORAE [52], which is the most relevant to ours as it also uti-
lises the user-defined attributes. Note that aMTL-LORAE
requires multiple images of each person for training, hence
they apply data augmentation to generate more training
samples on VIPeR and utilises the multi-shot setting of
PRID rather than the single-shot one adopted by most other
methods including ours. Furthermore, aMTL-LORAE can-
not work without user-defined attributes. For fair compari-
son, we use the same features and the same training-test
splits for the compared methods whenever possible (i.e.,
when the code is available we use the same features as
ours). Three versions of our models are evaluated:
(1) “Ours_U” which means only user-defined attributes are
used, (2) “Ours_L” which means only latent attributes are
learned as representation without requiring user-defined
attribute annotation, and (3) “Ours_All” which means both
the user-defined and latent attributes are used. The used
feature type is indicated in bracket, e.g., “Ours_L(L)” means
low-level hand-crafted features are used.

Comparative results. From the results shown in Table 4, we
have the following observations: (1) Even without using the
additional attribute annotation, our method Ours_L(L)
achieve better or comparable performance in comparison
against the state-of-the-art alternatives using hand-crafted
features. (2) Ours_All outperforms Ours_L on all datasets.
This indicates that the learned user-defined attributes and
discriminative latent attributes are indeed complementary
to each other. (3) If only user-defined attributes are used to
represent a person, Ours_U has a much weaker perfor-
mance than Ours_L, suggesting that the user-defined
attributes alone are limited in representing a person dis-
criminatively. (4) Compared to the alternative attribute-
based Re-ID model aMTL-LORAE, our model (Ours_All) is
clearly better. In particular, our method outperforms aMTL-
LORAE by a large margin even when they used more train-
ing data on PRID. In addition, aMTL-LORAE can only be
applied when there are user-defined attribute annotations,
whilst our model is not restricted by that. (5) Our model can
be considered as a discriminative subspace learning based
method. Compared with the alternative subspace learning

3. It is a common practice to pretrain a deep CNN on auxiliary Re-ID
datasets [71], [72].
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based methods such as kLFDA [77] and XQDA [51], our
model’s performance is clearly superior. (6) With deep
CNN features as input, the results are much better than
low-level features. It indicates that our method can benefit
from stronger deep features. Also, our model with the CNN
feature outperforms all the recent deep Re-ID models even
without additional attribute annotations (Ours_L(CNN)) on
all four datasets. These results suggest that even an end-to-
end deep Re-ID model can benefit from projecting the deep
features into a lower dimensional latent discriminative attri-
bute space using our model. Some visualisation of the
learned D-LAs and an ablation study on the contributions
of different model components can be found in the Supple-
mentary Material, available online.

5.2.2 Unsupervised Person Re-ID

Under this setting, the training data from the target dataset is
completely unlabelled. We assume there exist a number of
auxiliary datasets labelled with identities and (optionally)
user-defined attributes. A discriminative feature representa-
tion is then learned using both the auxiliary and target datasets
using our asymmetricmulti-task learningmodel (Section 3.2).

Datasets and settings. The same four datasets (VIPeR,
PRID, CUHK03 (manual) and Market) are used but the set-
tings are different. Specifically, one dataset in turn is chosen
as the target dataset and the other three are used as the aux-
iliary datasets. All the persons’ identities in the auxiliary
datasets are labelled and used for model training, while the
target dataset is split into the training and test sets as in the
supervised setting above. To compare with the reported
results with other methods [84], [85] fairly, we utilise the
5132-dim hand-crafted feature [66].

Parameter settings. The sizes of UDAC DU , B-LA, shared
and unique D-LA sub-dictionaries are all set to 200 in all
experiments. We found that the model’s performance is
insensitive to the different dictionary sizes. Other parame-
ters (a and b in (4)) are set automatically using three-fold
cross-validation with one of the three auxiliary datasets as
the validation set and the other two as the training set.

Baselines. The compared methods can be categorised into
two groups: (1) Single-task methods. Without transfer learn-
ing, the training data of these unsupervised methods are
only the unlabelled data from the target dataset. Some state-
of-the-art unsupervised Re-ID methods are selected for
comparison, including the hand-crafted-feature-based
method SDALF [86], the saliency-learning-based eSDC [87],
the graphical-model-based GTS [88], the sparse-representa-
tion-classification-based ISR [84] and the dictionary-learn-
ing-based DLLR [85]. We also report results of the single-
task version of our model by removing all auxiliary data
related terms in (4), denoted as Ours_S. (2) Multi-task meth-
ods. There are few multi-task learning methods, or unsuper-
vised transfer learning methods in general, available for the
unsupervised setting. AdaRSVM [26] is the only unsuper-
vised cross-data transfer learning work for person Re-ID
that we are aware of. However, AdaRSVM assumes the
availability of negative pairs in the target dataset, thus using
more supervision than our method. We also use the sub-
space alignment based unsupervised domain adaptation
method SA_DA [89] to align the data distributions of the
auxiliary and target datasets first. Then a supervised Re-ID

TABLE 4
Supervised Re-ID Results

(a) VIPeR

Rank 1 5 10 20

RPLM [73] 27.0 55.3 69.0 83.0
Mid-level [74] 29.1 52.3 65.9 79.9
Similarity Learning [76] 36.8 70.4 83.7 91.7
LADF [75] 30.2 64.7 78.9 90.4
kCCA* [66] 30.2 62.7 76.0 86.8
MFA* [77] 39.7 69.2 80.5 89.0
kLFDA* [77] 38.6 69.2 80.4 89.2
XQDA* [51] 40.0 - 80.5 91.1
MLAPG* [78] 40.7 - 82.3 92.4
NFST* [83] 42.3 71.5 82.9 92.1
Ours_L(L) 41.5 73.4 82.6 90.5

aMTL-LORAE [52] 42.3 72.2 81.6 89.6
Ours_U(L) 17.1 53.8 65.3 75.6
Ours_All(L) 44.3 74.6 84.2 92.5

Improved Deep [79] 34.8 63.6 75.6 84.5
Wang et al. [80] 35.8 66.5 82.5 -
FT-JSTL+DGD [81] 38.6 - - -
Zhang et al. [72] 43.0 - 87.3 94.8
TCP [82] 47.8 74.7 84.8 91.1
Ours_L(CNN) 49.8 77.6 90.1 95.9

(b) PRID

Rank 1 5 10 20

RPLM [73] 15.0 32.0 42.0 54.0
kCCA* [66] 14.3 37.4 47.6 62.5
MFA* [77] 22.3 45.6 57.2 68.2
kLFDA* [77] 22.4 46.5 58.1 68.6
NFST* [83] 29.8 52.9 66.0 76.5
Ours_L(L) 28.9 50.3 63.7 74.0

aMTL-LORAE [52] 18.0 37.4 50.1 66.6
Ours_U(L) 14.5 33.6 45.2 61.3
Ours_All(L) 31.8 54.3 67.5 77.4

Ours_L(CNN) 37.5 64.1 72.6 81.2

(c) CUHK03 (Manual)

Rank 1 5 10 20

XQDA* [51] 52.2 82.2 92.1 96.3
NFST* [83] 58.9 85.6 92.5 96.3
Ours_L(L) 60.8 87.5 93.3 97.2

Improved Deep [79] 54.7 86.5 93.9 98.1
Wang et al. [80] 52.2 82.5 - -
FT-JSTL+DGD [81] 75.3 - - -
Zhang et al. [72] 57.0 85.0 93.5 97.0
Ours_L(CNN) 77.5 92.4 96.5 99.2

(d) CUHK03 (Detected)

Rank 1 5 10 20

XQDA* [51] 46.3 78.9 88.6 94.3
NFST* [83] 53.7 83.0 93.0 94.8
Ours_L(L) 58.4 85.7 93.2 96.3

Improved Deep [79] 45.0 76.0 83.5 93.2
Zhang et al. [72] 51.2 80.5 90.0 94.5
Ours_L(CNN) 64.2 89.1 93.4 96.1

(e) Market-1501

Query singleQ multiQ
Evaluation metrics Rank-1 mAP Rank-1 mAP

MFA* [77] 45.7 18.2 - -
kLFDA* [77] 51.4 24.4 52.7 27.4
XQDA* [51] 43.8 22.2 54.1 28.4
NFST* [83] 55.4 29.9 68.0 41.9
Ours_L(L) 61.1 32.3 73.2 45.8

Gated S-CNN [71] 65.8 39.5 76.0 48.4
Ours_L(CNN) 65.7 43.1 76.5 51.4

‘*’ means that the same features are used. ‘-’ means no reported result is
available.
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model, kLFDA [77], is trained on the labelled source data-
sets and applied to the aligned target dataset. This method
is denoted as SA_DA+kFLDA. Note that as an unsuper-
vised domain adaptation method, SA_DA assumes that the
auxiliary and target domains have the same classes, which
is invalid for cross-dataset transfer learning. In addition, we
compare with a naive transfer approach, by learning kFLDA
on the auxiliary datasets first and applying it directly to the
target dataset without any model adaptation. It is denoted
as kLFDA_N. Adversarial [28] is the deep unsupervised
domain alignment model using gradient reversal and
adversarial learning.

Comparative results. Table 5 reports the results. From these
results, it is evident that: (1) Compared with existing unsu-
pervised methods including SDALF, eSDC, GTS and ISR,
our model is significantly better. This shows that transfer
learning indeed helps for unsupervised Re-ID. (2) The differ-
ence between the results of “Ours_S” and “Ours” models
shows exactly how much the target dataset has benefited
from the auxiliary datasets using our unsupervised asym-
metric multi-task transfer learning method. (3) The results of
kLFDA_N is very poor, showing that the knowledge learned
from the labelled auxiliary datasets cannot be directly used
to help match the target data. This is due to the drastically
different viewing conditions and illumination changes
across views in the target dataset compared to those in the
auxiliary datasets. A naive transfer learning approach such
as kLFDA_N would not be able to cope with the domain
shift/difference of this magnitude. (4) Importantly, it is
noted that when an existing unsupervised domain-adapta-
tion based transfer learning model is applied to alleviate the
domain shift problem (SA_DA+kLFDA), the result is even
worse. This is not surprising as the existing unsupervised

domain adaptation methods are designed under the
assumption that the auxiliary and target domains have the
same recognition task (i.e., having the same set of classes)—
an invalid assumption for our unsupervised Re-ID problem
as different datasets contain different person identities. Also,
the experimental results of Adversarial [28] suggest that the
domain adaptation problem for Re-ID poses unique chal-
lenges that cannot be tackled by simple domain alignment.
(5) The results of the only existing cross-dataset unsuper-
vised Re-ID method AdaRSVM is actually the worst. Note
that since its code is not available, these are the reported
results in [26]. Since different feature representation and two
instead of three source datasets were used, this comparison
is only indicative. However, by examining some additional
results (see Supplementary Material, available online ), we
can conclude that indeed AdaRSVM is able to transfer very
little useful information from the source datasets even when
they use more supervision on the target dataset than our
model. (6) It is also noted that on the two small datasets
(VIPeR and PRID), our unsupervised results are not far off
the best reported results using the existing supervised meth-
ods (see Table 4). In addition, our model is also extremely
efficient to compute (see Supplementary Material, available
online for running cost details and additional results).

6 CONCLUSION

We have proposed a novel attribute learning model for
addressing the cross-class transfer learning problem. Our
model learns user-defined semantic attributes jointly with
discriminative and background latent attributes. The model
is based on dictionary learning. An efficient algorithm is
then formulated to solve the resultant optimisation prob-
lem. This model is further extended to deal with the unsu-
pervised domain adaptation problem whereby the need of
labelling training class samples is removed. Extensive
experiments show that the proposed method produces
state-of-the-art results on both zero-shot learning and per-
son re-identification. One of the limitations of the proposed
model is that it takes a fixed (either hand-crafted or deep)
feature representation as input. With a fixed feature input,
the learned attribute based representation could be sub-
optimal; thus an end-to-end joint feature and attribute
learning approach would be more desirable. End-to-end
dictionary learning has been attempted [90]. However, inte-
grating the proposed multi-task dictionary learning model
into an end-to-end framework is non-trivial. Part of the
ongoing work is on formulating the proposed model as neu-
ral network layers in an end-to-end deep learning model,
particularly under an unsupervised setting.
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