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Abstract: Compressive Sensing (CS) theory shows that a signal can be decoded from 
many fewer measurements than suggested by the Nyquist sampling theory, when the sig-
nal is sparse in some domain. Most of conventional CS recovery approaches, however, 
exploited a set of fixed bases (e.g. DCT, wavelet, contourlet and gradient domain) for the 
entirety of a signal, which are irrespective of the nonstationarity of natural signals and 
cannot achieve high enough degree of sparsity, thus resulting in poor rate-distortion per-
formance. In this paper, we propose a new framework for image compressive sensing re-
covery via structural group sparse representation (SGSR) modeling, which enforces im-
age sparsity and self-similarity simultaneously under a unified framework in an adaptive 
group domain, thus greatly confining the CS solution space. In addition, an efficient itera-
tive shrinkage/thresholding algorithm based technique is developed to solve the above 
optimization problem. Experimental results demonstrate that the novel CS recovery strat-
egy achieves significant performance improvements over the current state-of-the-art 
schemes and exhibits nice convergence. 

1. Introduction 
Compressive Sensing (CS) has drawn quite an amount of attention as an alternative to the 
current methodology of sampling followed by compression [1–2]. By exploiting the re-
dundancy existed in a signal, CS conducts sampling and compression at the same time. 
From many fewer acquired measurements than suggested by the Nyquist sampling theory,
CS theory demonstrates that, a signal can be reconstructed with high probability when it 
exhibits sparsity in some domain.  

An attractive strength of CS-based compression is that the encoder is made signal-
independent and computationally inexpensive at the cost of high decoder complexity, that 
is, simple encoder and complex decoder. This asymmetric design is severely desirable in 
some image processing applications when the data acquisition devices must be simple 
(e.g. inexpensive resource-deprived sensors), or when oversampling can harm the object 
being captured (e.g. X-ray imaging) [3]. 

From CS theory, the sparsity degree of a signal plays a significant role in recovery. 
The higher degree of a signal, the higher recovery quality it will have. Thus, seeking a 
domain in which the signal has a high degree of sparsity is one of the main challenges 
which CS recovery should face. Since natural signals such as images are typically nonsta-
tionary, there exists no universal domain in which all parts of the signals are sparse. The 
most current CS recovery methods explored a set of fixed domains (e.g. DCT, wavelet 
and contourlet, gradient domain) [17, 8, 19], therefore are signal-independent or not 
adaptive, resulting in poor rate-distortion performance.  
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To rectify the problem, many recent works incorporated additional prior knowledge 
about transform coefficients (statistical dependencies, structure, etc.) into the CS recov-
ery framework, such as Gaussian scale mixtures (GSM) models [9], tree-structured wave-
let [4], tree-structured DCT (TSDCT) [7]. Additionally, in [6], a projection-driven CS 
recovery coupled with block-based random image sampling is developed, which aims to 
encourage sparsity in the domain of directional transforms. Chen et al. [18] exploited 
multi-hypothesis predictions to generate a residual in the domain of the CS random pro-
jections, where this residual being typically more compressible than the original signal 
leads to improved reconstruction quality. Furthermore, many latest works concentrate on 
utilization of both local and nonlocal statistics for high quality image restoration [5, 16]. 
Zhang et al. [21, 10] proposed a framework for CS recovery via collaborative sparsity, 
which enforces local 2-D sparsity and nonlocal 3-D sparsity simultaneously in an adap-
tive hybrid space-transform domain, thus greatly confining the CS solution space. 

In recent years, very impressive image restoration results have been obtained with lo-
cal patch-based sparse representations calculated with dictionaries learned from natural 
images [13], [15]. Relative to fixed dictionaries, learned dictionaries enjoy the advantage 
of being better adapted to the images, thereby enhancing the sparsity. However, dictio-
nary learning is a large-scale and requires high computational complexity. What’s more, 
in the process of dictionary learning, each patch is considered independently, which ig-
nores the relationships between similar patch, such as self-similarity [13]. 

Considering the fact that the natural image signal is non-stationary and its sparse do-
main varies spatially, in this paper, we establish a new sparse representation modeling, 
called structural group sparse representation (SGSR), and develop a novel strategy for 
image compressive sensing recovery via SGSR. The proposed SGSR enforces image 
sparsity and self-similarity simultaneously in a unified framework, which enables a natu-
ral image to be highly sparse in an adaptive group domain. To make SGSR tractable and 
robust, an iterative shrinkage/thresholding algorithm (ISTA) based technique is devel-
oped to solve the above severely underdetermined inverse problem efficiently. Extensive 
experiments manifest that SGSR is able to increase recovery quality by a large margin 
compared with the conventional CS recovery methods or require many fewer measure-
ments for a desired reconstruction quality.  

The remainder of the paper is organized as follows. Section 2 reviews CS theory and 
traditional patch based sparse representation modeling. Section 3 provides the design of 
structural group sparse representation modeling. Section 4 gives the implementation de-
tails of proposed CS recovery strategy via SGSR. Experimental results are reported in 
Section 5. In Section 6, we conclude this paper. 

2. Background 

2.1. Compressive Sensing 
A signal u  of size N is said to be sparse in domain or basis � , if its transform coeffi-
cients T�� u� are mostly zeros, or nearly sparse if the dominant portion of coefficients 
are either zeros or very close to zeros. The sparsity of u  in �  is quantified by the num-
ber of significant elements within the coefficients vector � .

More specifically, given M linear measurements, the CS recovery of u  from b  is 
formulated as the following constrained optimization problem: 
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s.t. �b Au ,                                            (1) 

where A  represents  the random projections (RS). p is usually set to 1 or 0, characteriz-
ing the sparsity of the vector �u . 1|| ||� is 1� norm, adding all the absolute values of the 
entries in a vector, while 0|| ||�  is 0� norm, counting the nonzero entries of a vector. Ac-
cording to [2], CS is capable of recovering K-sparse signal u  (with an overwhelming 
probability) from b  of size M, provided that the number of random samples meets M ≥
cK(N/K). The required sampling rate (M/K), to incur lossless recovery, is roughly propor-
tional to (K/N). A compressive imaging camera prototype using RS has been presented in 
[20].

2.2. Traditional Patch based Sparse Representation 
Recently, sparse representation based modeling has been proven to be a promising model 
for image processing tasks [13, 15], which assumes that natural image is sparse in some 
domain spanned by a set of bases or a dictionary of atoms. In literature, the basic unit of 
sparse representation for images is patch. Mathematically, denote by ��x N  the original 
image, and by xi  an image patch of size s sB B�  at location , 1,2,...,i  i = n . Given a 
dictionary sB M��D R , each patch can be sparsely coded as T�D xi i�  by using some 
sparse coding algorithms. Then the entire image can be sparsely represented by the set of 
sparse codes � �i� . Therefore, the CS recovery problem under the dictionary D  is for-
mulated below: 

1

T

�
	x
D xmin k p

k

n

s. t. �b Ax .                                      (2) 

3. Structural Group Sparse Representation Modeling 
Besides sparsity, nonlocal self-similarity is another significant property of natural images, 
leading to great success in image restoration [11, 12]. It characterizes the repetitiveness 
of the textures and structures embodied by natural images within nonlocal area, which 
can be used for retaining the sharpness and edges effectually to maintain image nonlocal 
consistency.  

To resolve the problem of CS recovery, in this paper, we propose a novel sparse repre-
sentation modeling in the unit of group instead of patch, to exploit the sparsity and the 
self-similarity of natural images simultaneous in a unified framework. Each group is 
composed of nonlocal patches with similar structures as its columns. Thus, the proposed 
sparse representation modeling is named as structural group sparse representation 
(SGSR). Moreover, adaptive dictionaries for each group can also be learned to achieve 
sparser representation with very low complexity, which enables the proposed SGSR more 
efficient and effective. This section will give detailed description of SGSR modeling, and 
the adaptive dictionary learning technique will be provided in the next section.  

First, divide the image x with size N into n overlapped patches of size s sB B� and 
each patch is denoted by kx , i.e., 1, 2,...,k = n . Then, for each patch kx , in the L L�  train-
ing window, search its c  best matched patches, which consist of the set kxS . Next, define 
the structural group xG k

corresponding to kx , which includes every element of kxS  as its 
columns, i.e., � �1 2, ,..., c
 
 
�x x x xG G G Gk k k k . Finally, given the adaptive dictionary Dk  for 
each group, xG k

 can be sparsely represented as T� xD G
kk k� . Therefore, the CS recovery 
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problem with the proposed structural group sparse representation (SGSR) modeling is 
formulated as: 

1

T

�
	 xx
D Gmin

kk p
k

n

s. t. �b Ax .                                      (3) 

In this paper, p is set to be 0 to achieve higher sparse representation. Let T� xD G
kk k�

and x�  denotes the concatenation of all k� , that is,  , ,..., TT T T�x n1 2[ ]� � � � . Thus, the CS 
recovery problem (3) is rewritten as

xx
min

0
� s. t. �b Ax .                                              (4) 

4. Numerical Algorithm Implementation Details 
In this section, we will present the implementation details for solving Problem (4) for im-
age CS recovery. Note that Problem (4) is essentially non-convex and quite difficult to 
solve directly due to the non-differentiability and non-linearity of the SGSR term. Solv-
ing it efficiently is one of the main contributions of this paper. 
    We first introduce a penalty parameter �  and transform Problem (4) into the following 
unconstrained form: 

�� � xx
Ax bmin 2

2 02
1 � ,                                            (5) 

where �  is the regularization parameter controlling the trade-off between two terms in Eq. 
(5). Then, invoking iterative shrinkage/thresholding algorithms (ISTA) [14] to Eq. (5) 
leads to the following two iterative steps: 

T�� � �r x A Ax bj j j( ) ( ) ( )( ) ,                                          (6) 

�� � � � x
x

x x rargminj j 2( 1) ( )
022

1 � ,                                  (7) 

where �  is a constant stepsize and j  denotes the iteration number. Hence, the key for 
solving Eq. (5) is to solve Eq. (7) efficiently. For simplicity, the subscript j  is omitted 
without confusion. 

Note that it is difficult to solve Eq. (7) directly due to the complicated definition of x� .
To enable solving Eq. (7) tractable, in this paper, a general assumption is made, with 
which even a closed form can be achieved. Concretely, r  can be regarded as some type
of the noisy observation of x , and then an assumption is made that each element of -x r
follows an independent zero-mean distribution with variance σ2 . It is worth emphasizing 
that the above assumption does not need to be Gaussian process, which is more general 
and reasonable. By the general assumption, we can prove the following conclusion. 

THEOREM 1. Let , , , �� �� �x rx r G G
k k

N B cs , and denote the error vector by ��x re and 
each element of e  by ,( )je ,...,1� N.j Assume that ( )je is independent and comes from a 
distribution with zero mean and variance .2�  Then, for any 0>� , we have the following 
property to describe the relationship between �x r 2

2
 and 

�
�� x rG G

k kk

n 2

21
, that is, 

,
�

	
 	
 �
� � � � �� x rG Gx r

k kN K k

nN
KP

2 2

2 21
lim 1| |{ }  ,                            (8) 

where ( )�P  represents the probability and s� � �cK B n  . 
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Proof: Due to the assumption that each ( )je  is independent, we obtain that each 2( )je  is 
also independent. Since ( )[ ] 0�jE e and 2( )[ ] ��jDe , we have the mean of each 2( )je , which 
is expressed as 

,...,,  .��� 
 �e e e Nj j jE D E j2 2 2( ) ( ) ( ) 1[ ] [ ] [ [ ]]

By invoking the Law of Large Numbers in probability theory, for any 0>� , it leads to 
σ22

1
1

2 1lim ( ){| | }�
�	


� ���N

jN NP je , i.e., 

� �2 2
2 2

1lim 1
N NP x r ��
	


� �� �  ,                                         (9) 

Further, let ,x rG G denote the concatenation of all xG k
and rG k

, 1, 2,...,k = n , respec-
tively, and denote each element of �x rG G by , ,...,=eG Ki i( ) 1 . Due to the assumption, 
we conclude that eG i( )  is independent with zero mean and variance .2�

Therefore, the same manipulations with Eq. (9) applied to eG i 2( )  yield 
σ ,�

�	

� ��� eG

K

K iKP i 2 2

1

1
2 1lim ( ){| | }  namely,  

� � .σ2 2
21 2

1lim 1k kK k

n

KP x rG G �
	
 �

� �� ��                                 (10) 

Considering Eqs. (10) and (9) together, we prove Eq. (8).
According to Theorem 1, there exists the following equation with very large probabili-

ty (limited to 1):

�
� � �� x rG Gx r

k kk

nN
K

2 2

2 21
.                                          (11) 

Incorporating Eq. (11) into Eq. (7) leads to 
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where �� � K N .
It is obvious to see that Eq. (12) can be efficiently minimized by solving n  sub-

problems for all the groups xG k
, each of which is formulated below: 

�� �
x

x r
G

G Gargmin
k k

k

k
2

2 02
1 � .                                     (13) 

Next, we will show how to learn the adaptive dictionary for each group xG k
, and ob-

tain the closed-form solution for Eq. (13). 

4.1. Adaptive Dictionary Learning 
For each structural group xG k

, its adaptive dictionary is learned from its approximate es-
timate ���rG k

B cs  ( ,� Bm min cs( ) ).  
Specifically, first, applying the singular value decomposition (SVD) to rG k

, that is,  

1 ,

T

T
i i ii 
 
 
�

�

�	 r r r

r r r rG U V

u v�
k k k k

k k k

m

�
                                                 (14) 

where ; ;...; ,  
 
 
� � � � �r r r rk k k kmk k1 2 diag( )[ ]� ��  is a diagonal matrix with the elements 
of k�  on its main diagonal, and ,i i
 
r ru v

k k
 are the columns of rU k

 and rV k
, separately. 
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Then, define each atom i
dk  of adaptive dictionary Dk  for every group xG k
 as follows: 

1, 2, ...,,  
k kk m
 
 
 �� r rd u vT

i i i i .                                           (15) 

Finally, the learned adaptive dictionary is constructed by [ , ,..., ]
 
 
�D d d dk k k k m1 2 .
It is clear to see that the technique of adaptive dictionary learning is very efficient, re-

quiring only one SVD for each structural group. Experiments will demonstrate the effec-
tiveness the designed dictionary to represent images in a sparse domain. 

4.2. Closed-form Solution for xG k  Sub-problem 
Before we solve each xG k

 sub-problem (13), with the design of adaptive dictionary learn-
ing, we have the following conclusion. 

THEOREM 2.                      � � �x rG G
k k k k

2 2

2 2
� � ,                                              (16) 

Proof: With the definitions about k{ }�  and k{ }� , we get 
�xG D

k k k�  and �rG D
k k k� .                                         (17) 

Then, 
 �= =� � �x rG G D D D
k k k k k k kk k

222

2 2 2
� � � � .                           (18) 

Due to the construction of Dk  in (15) and the unitary property of rU k
and rV k

, it yields 
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2
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diag

trace diag diag

trace diag diag

= trace diag diag

trace diag diag

� � � �

� � � �

� � � �

� � � �

� � � � � �

                   (19) 

Combining Eqs. (18) and (19), we prove Eq. (16).
With the aid of Theorem 2, the sub-problem (13) is equivalent to

2

2 02
1

k kk
k

� ��argmin
�

� � � .                                        (20) 

Owing to Lemma 2 in [10], the closed-form solution of (20) is expressed as 
ˆ , 1� � � � �k k k k2 2hard( ) = (abs( ) )� � � � ,                         (21) 

where ( )hard �  denotes the operator of hard thresholding and �  stands for the element-
wise product of two vectors. Thus, the efficient solution for sub-problem (13) is  

ˆ ˆ�xG D
k k k� .                                                    (22) 

This process is applied for all groups to achieve estimates ˆ
xG k

 and all ˆ
xG k

 are returned 
to their original positions and averaged at each pixel to obtain the solution for Eq. (7). 

 Figure 1: Experimental test images. 
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4.3. Summary 
In light of all derivations above, the complete description of image CS recovery via struc-
tural group sparse representation (SGSR) is given below: 

Image CS Recovery via SGSR 
Input: The observed measurement b , the measurement matrix A and parameter � ; 

Initialization: set initial estimate 0x( ) ; 
for Iteration number j = 0, 1, 2, … , Max_iter 

Update r  by computing (6); 
Create structural groups rG k

 by searching similar patches in new r ; 
for Each group rG k

Construct dictionary Dk  by computing Eq. (15); 
Reconstruct ˆ

xG k
by computing Eq. (22); 

end for
Update x  by weighted averaging all the reconstructed groups ˆ

xG k
; 

end for
Output: Final recovered image x̂ . 

5. Experimental Results 
In this section, experimental results are presented to evaluate the performance of the pro-
posed CS recovery via SGSR. Six test images are shown in Figure 1. In our experiments, 
the CS measurements are obtained by applying a Gaussian random projection matrix to 
the original image signal at block level, i.e., block-based CS with block size of 32×32 
[16]. SGSR is compared with five CS recovery methods in literature, i.e., wavelet method 
(DWT), contourlet method (CT), total variation (TV) method1 [8], multi-hypothesis (MH) 
method2 [18], collaborative sparsity (CoS) method3 [21], which deal with image signals 
in the wavelet domain, contourlet domain [19], gradient domain, random projection resi-
dual domain, and hybrid space-transform domain, respectively. It is worth emphasizing 
that MH and CoS are known as the state-of-the-art algorithms for image CS recovery. 

Table 1: PSNR comparisons with different CS recovery methods (dB)
Ratio Algorithms House Barbara Leaves Monarch Parrots Vessels Avg.

20%

DWT 30.70 23.96 22.05 24.69 25.64 21.14 24.70
CT 30.06 24.20 21.45 24.83 25.97 21.48 24.66
TV 31.44 23.79 22.66 26.96 26.68 22.04 25.59 
MH 33.60 31.09 24.54 27.03 28.06 24.95 28.21
CoS 34.34 26.60 27.38 28.65 28.44 26.71 28.69 

SGSR 35.70 33.45 28.61 29.01 29.84 29.83 31.07

30%

DWT 33.60 26.26 24.47 27.23 28.03 24.82 27.40
CT 32.32 25.58 23.75 27.24 27.88 24.18 26.82
TV 33.75 25.03 25.85 30.01 28.71 25.13 28.08 
MH 35.54 33.47 27.65 29.18 31.20 29.36 31.07
CoS 36.69 29.49 31.02 31.38 30.39 31.35 31.72 

SGSR 37.34 35.83 32.75 32.09 33.15 34.06 34.20

40%

DWT 35.69 28.53 26.82 29.58 30.06 29.53 30.03
CT 34.33 27.25 25.74 29.51 29.85 27.10 28.96
TV 35.56 26.56 28.79 32.92 30.54 28.14 30.42 
MH 37.04 35.20 29.93 31.07 33.21 33.49 33.32
CoS 38.46 32.76 33.87 33.98 32.55 33.95 34.26 

SGSR 39.09 37.74 35.78 34.80 35.59 37.57 36.76

                                                
1 http://www.caam.rice.edu/~optimization/L1/TVAL3/. 
2 http://www.ece.msstate.edu/~fowler/BCSSPL/. 
3 http://idm.pku.edu.cn/staff/zhangjian/RCoS/.
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Figure 2: Visual comparison of CS recovered results for Leaves by different methods (ratio = 20%).

In our implementation, all the parameters of SGSR are set empirically for all test im-
ages. Concretely, the size of each patch, i.e., s sB B� is set to be 8×8, the size of train-
ing window for searching matched patches, i.e., L×L is set to be 40×40, and the number 
of best matched patches, i.e., 50c �  for each group, and 11.8 3,  e ��� � . It is necessary 
to stress that the choice for all the parameters is general, and can be generalized to other 
natural images, which has been verified in our experiments. In this paper, we exploit the 
results of MH as initialization of the proposed SGSR for image CS recovery. 

The PSNR comparisons for all the test images in the cases of 20% to 40% measure-
ments are provided in Table 1. SGSR provides quite promising results, achieving the 
highest PSNR among the six comparative algorithms over all the cases, which can im-
prove roughly 7.2 dB, 6.6 dB, 6.0 dB, 3.1 dB and 2.4 dB on average, compared with CT, 
DWT, TV, MH, and CoS, respectively.  

Some visual results of the recovered images by various algorithms are presented in
Figures 2–3. Obviously, DWT and TV generate the worst perceptual results. The CS re-
covered images by MH and CoS possess much better visual quality than those of DWT 
and TV, but still suffer from some undesirable artifacts, such as ringing effects and lost 
details. The proposed algorithm SGSR not only eliminates the ringing effects, but also 
preserves sharper edges and finer details, showing much clearer and better visual results 
than the other competing methods. The high performance of SGSR is attributed to the 
proposed adaptive group sparse representation modeling, which offers a powerful me-
chanism of characterizing the structured sparsities of natural image signals. 

Because the objective function (5) is non-convex, it is difficult to give its theoretical 
proof for global convergence. Here, we only provide empirical evidence to illustrate the 
nice convergence of the proposed CS recovery scheme. Figure 4 plots the evolutions of 
PSNR versus iteration numbers for four test images with various ratios of measurements.
It is observed that with the growth of iteration number, all the PSNR curves increase mo-
notonically and ultimately become flat and stable. 

(a) Original image                     (b) DWT (22.05 dB)                      (c) TV (22.66 dB) 

   

(d) MH (24.54 dB)                      (e) CoS (27.38 dB)                    (f) SGSR (28.61 dB) 
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Figure 3: Visual comparison of CS recovered results for Vessels by different methods (ratio = 20%).

The complexity of SGSR is provided as follows. Assume that the number of image 
pixels is N, that the average time to compute similar patches for each reference patch is 

sT . The SVD of each group rG k
with size of s�cB  is s�cB 2( )� . Hence, the total com-

plexity of SGSR is s scN TB 2( ( ))+� . For a 256×256 image, the proposed algorithm SGSR 
and CoS [21] requires about 6~7 minutes for CS recovery on an Intel Core2 Duo 2.96G 
PC under Matlab R2011a environment, while the other four comparative methods require 
about 1~3 minutes. 

6. Conclusion 
In this paper, a novel sparse representation modeling, called structural group sparse re-
presentation (SGSR), is proposed, which efficiently characterizes the intrinsic sparsity 
and self-similarity of natural images in an adaptive group domain. Extensive experiments 
manifest that the developed CS recovery strategy via SGSR is able to increase image re-
covery quality by a large margin compared with the current existing methods. Ongoing 
work includes the extensions on a variety of other image restoration applications by tak-
ing advantage of the proposed SGSR.  
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