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ABSTRACT 

 

In this paper, we aim at evaluating the perceptual visual 

information based on a novel top-down methodology: 

entropy of primitive (EoP). The EoP is determined by the 

distribution of the atoms in describing an image, and is 

demonstrated to exhibit closely correlation with the 

perceptual image quality. Based on the visual information 

evaluation, we further demonstrate that the EoP is effective 

in predicting the perceptual lossless of natural images. 

Inspired by this observation, in order to distinguish whether 

the loss of input signal is visual noticeable to human visual 

system (HVS), we introduce the EoP based perceptual 

lossless profile (PLP). Extensive experiments verify that, the 

proposed EoP based perceptual lossless profile can 

efficiently measure the minimum noticeable visual 

information distortion and achieve better performance 

compared to the-state-of-the-art just-noticeable difference 

(JND) profile. 

 

Index Terms—Entropy of primitive, visual information, 

just-noticeable difference, perceptual lossless profile. 

 

1. INTRODUCTION 

 

The human visual system (HVS) allows human beings to 

perceive visual information from the outside world, and the 

psychological process of visual information is known as 

visual perception. As the ultimate receiver of the images and 

videos is the HVS, the visual information plays an important 

role in the fields of image or video processing. For example, 

image restoration such as denoising and debluring aim to 

restore the visual information as much as possible, and 

image and video compression are meant to convey 

reproductions of visual information at the receiver side with 

the constraint of communication bandwidth. Therefore, 

there is an urgent need to effectively measure how much the 

visual information is contained in an image by a practical 

way. Basically, the visual information is highly relevant 

with the image quality; and in recent years, it is noticed that 

the traditional mean square error (MSE) or mean absolute 

difference (MAD) cannot well correlate the visual quality 

[1], which motivated many researchers involved in 

developing efficient image quality assessment algorithms, 

such as structural similarity (SSIM) [2], visual information 

fidelity [3], feature similarity [4] and internal generative 

mechanisms (IGM) [5]. However, these metrics are 

designed to measure the visual information loss given the 

distorted and original images, while the inherent visual 

information cannot be directly reflected.  

In addition to these above mentioned supra-threshold 

image quality assessment algorithms, the just-noticeable 

difference (JND) for natural images has also been 

thoroughly studied [6]-[9]. JND refers to the minimum 

visual loss results from physiological and psychophysical 

phenomena in the HVS. As long as the distortion level is 

below the JND threshold, the signal distortion will not be 

perceived by the HVS. In the previous work [6]-[9], the 

JND model is classified into two categories, spatial-domain 

JND and the transform-domain JND. Both of them are 

taking advantage of the characteristics of the HVS, such as 

contrast sensitivity function (CSF), luminance adaptation, 

contrast masking and texture masking, etc. Therefore, these 

kinds of methodologies can be classified into the “bottom-

up” method, which builds a computational system that 

functions the same way as the HVS. 

It is well-known that the HVS is such a sophisticated 

system and simulating the HVS completely is almost 

impossible at present. However, currently all of the 

“bottom-up” methods are based on a simplified HVS, which 

may not be accurate in general. In view of this, a “top-down” 

philosophy is proposed in this paper for visual information 

evaluation. This methodology is built on the statistical 

properties of the entropy of primitive (EoP), which has been 

shown to be highly correlated with the perceptual cues [10]. 

In this paper, the relationship between EoP and visual 

information is further studied. Moreover, it is observed that 

when the EoP curve tends to be stable, the reconstructed 

image has no perceptual difference with the original image. 

Based on this observation, we propose a perceptual lossless 

profile (PLP) in generating the perceptual lossless image. It 

is demonstrated that the proposed PLP can accurately 

predict the perceptual lossless information. 

The rest of this paper is organized as follows: In section 

2, the core concept of EoP is introduced, and we analyze the 

correlation between EoP and the perceptual visual quality. 

The concept of visual information and a novel EoP based 

method for measuring the visual information is presented in 

https://en.wikipedia.org/wiki/Visual_perception


section 3. In section 4, the perceptual lossless profile is then 

proposed. Section 5 provides the experimental results and 

analyses. Finally, we conclude our paper in section 6. 

 

2. ENTROPY OF PRIMITIVE (EOP) 

 
The image primitive coding is based on Sparse-Land model 

[11]. In this model, for each signal     , x can be 

represented approximately as     , where D (      ) 

is an over-complete dictionary containing k primitives. 

Since    , the representation vector   is sparse, 

indicating that ‖ ‖     where the notion ‖ ‖  represents 

the    norm in this paper. 

In this work, we apply the K-SVD algorithm to train 

the content-adaptive dictionary [12][13]. The algorithm 

consists of two procedures: sparse coding and dictionary 

updating. The dictionary D and the sparse representation 

vector   are obtained by this objective function: 

            
   

∑‖    ‖ 
 

 

              ‖ ‖     (1) 

For an input image X, we partition it into small patches 

          , which are used as samples to train dictionary 

D by the K-SVD algorithm. After obtaining the dictionary D, 

the sparse representation vectors {  } for each patch {  } 

are calculated by the Orthogonal Matching Pursuit (OMP) 

algorithm [14]. Fig. 1 illustrates an example of the 

dictionary trained by the 8x8 patches partitioned from Lena 

image. 

 

 
After getting the sparse representation vectors {  }, the 

times of every image primitives used for representing the 

patches can be obtained, which are denoted by           . 

Formally, the sparse representation vector    has one 

donation to the   when the     coefficient of    is nonzero. 

According to the Shannon Theory, the entropy of primitive 

(EoP) is defined as [10]: 

     ∑         
 
          , (2) 

where pi denotes the probability as follows: 
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. (3) 

We have shown that the EoP has some interesting 

statistical properties based on a large number of statistics. 

The EoP value increases with the number of primitives L, 

and tends to converge to stable values, as illustrated in Fig. 

2. Moreover, EoP also has close correlation with the image  

 

 
Fig. 2. PSNR, SSIM and EoP of Lena image in terms of L. 

 
quality, as demonstrated in Fig. 2 for the SSIM and PSNR 

curves. 

In order to quantitively evaluate the correlation 

between the EoP and perceptual visual quality, we calculate 

the Pearson Linear correlation coefficient (PLCC) to 

measure the correlation between the EoP and the widely 

employed quality measures SSIM and PSNR. Firstly, a 

nonlinear model, for a better fit for all data, is applied to the 

PSNR-EoP and SSIM-EoP respectively. The non-linear 

model is represented by: 

    [
 

 
 

 

           
]          (4) 

where    to    are model parameters using a nonlinear 

regression process. We use the PSNR-EoP {  ,  } pairs and 

SSIM-EoP{  ,  } pairs as the input of the nonlinear model 

to train the model parameters   to   . Then the PLCC can 

be calculated as follows: 

     
∑      ̅      ̅  

√∑      ̅   ∑      ̅   
. (5) 

In Fig. 3, we show the PLCC of PSNR-EoP and SSIM-

EoP respectively, with 30 frequently-used nature images, 

most of which are chosen from the LIVE database [18]. It is 

observed that for all the images the PLCC of SSIM-EoP is 

higher that of PSNR-EoP. It reveals that EoP is highly 

relevant to the perceptual quality, which motivated us to 

employ EoP in evaluating the visual information. 
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Fig. 1. Dictionary trained with overlapped image patches from 

Lena image. 



 

3. VISUAL INFORMATION EVALUATION 

. 
As such, it is concluded that the EoP is an effective 

methodology to evaluate the perceptual visual information. 

With the increasing values of L, the perceptual quality of 

reconstructed image becomes better, as shown in Fig. 4. 

When the EoP curve goes flat after L increases up to 5 in 

Fig. 2, it is observed that the HVS cannot sense the visual 

differences anymore, even if distortions are still present in 

the reconstructed image. 

In other words, after EoP value becomes steady, the 

loss of perceptual visual information is tolerable to HVS. 

Therefore, in this section, we propose an EoP based visual 

information evaluation algorithm. This algorithm can be 

applied not only to original images, but also to the corrupted 

images. 

 

 
Fig. 5. EoP curves of distorted Lena images with different QF. 

 

 
Fig. 6. The relationship between visual information and different 

distortion level (right most is the original) of different images. 

 

Let X denote the input image and      represents the 

EoP value with    , where      . N is set to be 14 in 

this work as larger L will not bring any further quality 

improvement in sparse representation. Then we define the 

threshold  ̃  indicating that the visual information at this 

stage is equal to the original image. The threshold is defined 

as follows: 

 ̃        
 

            
           

   
 

          
 

      
    (6) 

where   is a constant value and set to be 0.01 in this work. 

This definition is inspired from the statistical properties of 

EoP [10] and implies that the EoP curve will become 

relatively stable for    ̃. For example, for Lena image,  ̃ is
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calculated to be 7, and as shown in Fig. 2, EoP becomes 

stable after this value.  

Finally, the visual information of the image X is 

defined to be the EoP at the threshold  ̃: 
       ̃. (7) 

To further investigate the properties of the visual 

information, we use different quality factors (QF) to JPEG 

compress the original Lena image. Fig. 5 illustrates the EoP 

curves of Lena image with different QF values. It is noted 

that larger QF values corresponds to higher quality. It is 

observed that these images share the similar shape of EoP 

curves. However, the maximum EoP values are different, 

which implies that they have different visual information. 

Moreover, in the visual information for several original and 

compressed images are shown in Fig. 6, from which we can 

conclude that better perceptual quality corresponds to higher 

visual information. With the increase of QF, the 

reconstructed image has better perceptual visual quality, and 

the VI grows monotonically to reach the VI of original 

image. Therefore, our proposed scheme is reliable for 

evaluating the visual information in natural images. 

 
4. PERCEPTUAL LOSSLESS PROFILE 

 
In this section, we further demonstrate the application of the 

visual information evaluation scheme. We define the 

perceptual lossless profile  ̃  of an input image as the 

reconstructed one by  ̃ primitives using the OMP algorithm. 

The perceptual lossless profile means that it has no visual 

difference compared with the input one. It is a powerful tool 

to estimate the maximum difference between distorted and 

original image that is tolerable for the HVS, which is also 

common known as just-noticeable difference (JND).  

Therefore, the proposed EoP based JND model is 

defined as follows, 

    [   ]     ( ̃[   ]   [   ])  (8) 

The notion       represents the absolute value. 

    [   ] represents the maximum range that the luminance 

of  [   ] can change without being noticed by the HVS. In 

another word, if the luminance of  [   ] is varied beyond 

the threshold     [   ]  this variation is then noticeable. 

The EoP based JND map of the Lena image with 

different L value is demonstrated in Fig. 7. With the 

increasing values of L, the error energy in the EoP based 

JND map decreases gradually until the L reaches 7, which 

inspires us to employ the reconstructed image by 7 

primitives as the perceptual lossless profile.  

 

5. EXPERIMENTAL RESULTS 

 

In this section, we have conducted several experiments to 

verify our proposed perceptual lossless profile model. The 

experiments are based on a two-alternative forced choice 

(2AFC) approach, which has widely been applied in 

verifying video processing algorithms [15][16][17]. 

Specifically, in 2AFC a subject is shown an image pair and 

forced to choose the better-quality one by his/her visual 

feelings. The said pair consists of the original input image, 

and either an image distorted by the traditional JND injected 

[7][8] noise or EoP based JND injected noise. 

This method for evaluating JND is to inject JND-guided 

noise into images: 

 ̂                                    (9) 

(a) L=1 (b) L=2 (c) L=3 (d) L=5 

(e) L=7 (f) L=9 (g) L=11 (h) L=13 

Fig.7. Scaled EoP based JND maps with different L. 



where        is the pixel in original image,   is the 

parameter of the noise level,              equals either +1 

or -1 randomly,        represents the JND value in 

pixel     . And  ̂ is the noise-injected image. The parameter 

  must be adjusted to make sure that different JND-guided 

noise has the same error energy (the same PSNR), and the 

better perceptual image quality means the better JND profile. 

The EoP based JND noised image can be obtained in the 

same way.  

 

 
 

 
These experimental results are shown in Fig. 8, which 

reveals the percentage   of the correct choice of the original 

image. It is evident that the average   of EoP based JND 

model is very close to 50% (54.7%), that means the HVS 

cannot distinguish the original and the EoP based JND-

noised images. On the other hand, the average  of 

traditional JND model is much higher than 50% (84.2%). It 

indicates that the observers can easily distinguish the 

distortions. From these results, we concluded that the EoP 

based JND profile performs better than the traditional JND 

profile. 

To further demonstrate the differences between EoP 

based JND and traditional JND model, the JND map and the 

JND injected images are illustrated in Fig. 9 and Fig. 10, 

respectively. It is shown that the traditional JND model may 

overestimate the maximum tolerable visual information, 

especially in the flat and texture area, like the body of the 

plane and the hair of Lena. Hence it causes bad visual 

quality in the reconstructed images. However, in our model, 

the edge and texture area are retained with better perceptual 

quality. 

In order to further verify the hypothesis that the 

proposed EoP based JND is the maximum loss threshold of 

the visual information, we conducted another 2AFC 

experiment. In each pair, one of them is the EoP based JND-

noised image created by applying the aforementioned 

method, and the other one is reconstructed with L=15 

primitives with OMP algorithm. Fig. 11 shows the results of 

this experiment. It is observed that the average percentage   

is approximate to 0.5 (0.47), from which we can reach the 

conclusion that the HVS cannot sense the differences 

between the proposed EoP based JND injected images and 

the one reconstructed with more primitives in sparse 

representation. 
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(b) Lena 

(c) Plane 

Fig. 10. Comparison of EoP based JND-noised image (left) and 

traditional JND-noised image (right). 

(a) Lena. 

(b) Plane. 

Fig. 9. Comparison of the EoP based JND map (left) and the 

traditional JND map (right). 



 

 
 

6. CONCLUSIONS 

 

In this paper, we propose a top-down methodology to 

evaluate the visual information. The novelty of this paper 

lies in employing the entropy of primitive for the visual 

information evaluation and defining a perceptual lossless 

profile based on the visual information. Extensive subjective 

experiments are conducted to verify the accuracy and 

efficiency of the proposed scheme. It also shows good 

potential in the field of perceptual coding and quality 

assessment. 
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