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Abstract. In this work, we introduce a new content-adaptive compression 
scheme, called image primitive coding, which exploits the input image for train-
ing a dictionary. The atoms composed of the learned dictionary are named as 
image primitives. The coding performance between the learned image primi-
tives and the traditional DCT basis is compared, and demonstrates the potential 
of image primitive coding. Furthermore, a novel concept, entropy of primitives 
(EoP), is proposed for measuring image visual information. Some very interest-
ing results about EoP are achieved and analyzed, which can be further studied 
for visual quality assessment. 
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1 Introduction 

With the accelerative growth of high-performance computers and electronic equip-
ments, a great progress of image coding standards have been achieved. One of the 
important compression techniques is known as transform coding, which decomposes 
the image over a dictionary and provides compact image representation to obtain 
compression.  

As we know, transform-based coding techniques generally make an assumption 
that the dictionary is fixed and is built in both the encoder and decoder. For example, 
in the JPEG [1] and JPEG2000 [2] compression standards, the dictionary considered 
is the DCT or wavelet, respectively. 

The Sparseland model is an emerging and powerful method to describe signals 
based on the sparsity and redundancy of their representations [3] [4]. Obtaining an 
overcomplete dictionary from a set of signals allows us to represent them as a sparse 
linear combination of dictionary atoms. Pursuit algorithms are then used for signal 
decomposition.  
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As a matter of fact, the predetermined fixed dictionaries are targeted at general-
purpose image compression. For a specific application, by utilizing content-specific 
dictionaries optimized for a specific class of images, compression schemes have been 
demonstrated to acquire substantial gains over fixed dictionaries. For instance, in [5], 
the authors propose an algorithm for facial image compression by exploiting a sparse 
approximation of the image patches over a set of pre-trained dictionaries. The task-
aware compression method is shown to achieve a dramatic improvement over 
JPEG2000 for facial imagery. Recently, an algorithm based on iteration-tuned dictio-
naries (ITDs) for a specific class of images has also been proposed to encode the input 
image patches in [6], which is able to outperform JPEG and JPEG2000 convincingly 
for facial images. 

It is obvious to see that the main drawback of the task-specific approaches is their 
loss of generality, only restricting them to encoding a specific class of images for 
which a suitable dictionary has been pre-learned. In this work, we introduce a new 
content-adaptive compression scheme, called image primitive coding, which exploits 
the input image for training a dictionary. The atoms composed of the learned dictio-
nary are named as image primitives. We compare the coding performance between 
the learned image primitives and the traditional DCT basis, which demonstrate the 
potential of image primitive coding. Furthermore, a novel concept, entropy of primi-
tives (EoP), is proposed for measuring image visual information.  Some very interest-
ing results about EoP are achieved and analyzed. 

This paper is organized as follows: In section 2 we introduce the scheme of image 
primitive coding and sparse coding, and provide the performance between the learned 
image primitives and the traditional DCT basis in section 3. Based on image primi-
tives, a novel concept, entropy of primitives (EoP), is proposed in section 4. Section 5 
shows some very interesting results about EoP.  We conclude and discuss some fu-
ture directions in section 6. 

2 Image Primitive Coding 

In this section, we will introduce image primitive coding, showing how to achieve 
image primitives and how to utilize image primitives for coding. Then, a performance 
comparison of image representation between image primitive and DCT basis is con-
ducted. Some conclusions are also drawn.  

2.1 Image Primitive 

The scheme of image primitive coding is established on the Sparseland model, which 
assumes that natural signals, such as images, admit a sparse decomposition over a re-
dundant dictionary. More specifically, given a signal n∈x , this model suggests the 
existence of a specific dictionary (i.e., a matrix) s which contains k prototype signals, 
also referred to as atoms. The model assumes that for x , there exists a sparse linear 
combination of atoms from D  that approximates it well. Put more formally, for 

n∀ ∈x , k∃ ∈a  such that ≈ Dx a  and 
0

na . The notion 0|| ||  is 0  



676 J. Zhang et al. 

norm, which counts the number of nonzero elements in a vector. We typically assume 
k>n, implying that the dictionary D  is redundant to x . 

An overcomplete dictionary that leads to sparse representations can either be cho-
sen as a pre-specified set of functions or designed by adapting its content to fit a given 
set of signal examples. In this work, we design an adaptive overcomplete dictionary 
for input image. 

For an input image X , the dictionary learning process starts by partitioning the 
image into many overlapped patches, which are denoted by 1 2, ,..., ,ix x x  

1,2,...,N=i . These patches are then collected as training samples. Assuming a local 
Sparse-Land model on image patches, the K-SVD dictionary training algorithm [7] is 
applied to the set of patches { }ix , generating a content adaptive dictionary D : 

{ }
{ }

2

2 0
,

.,
k

L= argmin    s.t.   − < ∀
i

i i i i i
D

D Dx
a

a a a             (1) 

where { }ia  are the sparse representation vectors for { }ix . In this paper, the atoms 
of dictionary D  are named as image primitives. Fig. 1 gives an example of over-
complete DCT basis and a learned dictionary which is trained by 8×8 patches from 
Image Lena.  

 

               

Fig. 1. Left: Overcomplete DCT base dictionary; Right: Dictionary trained over image patches 

2.2 Sparse Coding 

For a patch ix , the process of finding its sparse representation vector ia  with re-
spect to a known overcomplete dictionary D  is called sparse coding. As can be seen, 
owing to the overcompleteness, the null space of D  introduces additional degrees of 
freedom in the choice of ia , which can be exploited to improve its compressibility. 
To obtain the sparse representation, sparse coding can be formulated as  

   
2

2 0
.L= argmin    s.t.    − <

i

i i i i
a

a a aDx                    (2) 

Though Problem (2) is NP-hard in general, it can be approximated by a wide range of 
techniques [4]. In this paper, we adopt orthogonal matching pursuit (OMP) [8] algo-
rithm to solve (2) for its simplicity and efficiency.  
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3 Comparison between Image Primitive and DCT Basis 

In order to prove the validity of image primitive coding scheme, this section gives the 
coding performance comparison between the image primitive and traditional DCT 
basis. The comparative setting is as follows. First, the trained dictionary composed of 
image primitives is produced by the previously mentioned algorithm to the coding 
image. The size of the trained overcomplete dictionary is set to 256, while the number 
of traditional DCT basis for 8×8 patches is 64. Then, split the coding image into some 
non-overlapped patches, and the size of image patch is set to 8×8. Next, for each 
patch, carry out the process of sparse coding with the trained overcomplete dictionary 
and traditional DCT basis by OMP. The number of image primitives to represent each 
patch (denoted by l ) is fixed each time with the range from 1 to 10. Finally, the 
PSNR and SSIM [9] comparison curves with regarding to three test images (shown in 
Fig. 2) are presented by Figs. 3–5, and the visual reconstruction results of Image Lena 
by the trained overcomplete dictionary and traditional DCT are given in Figs. 6–7. 

 

  

Fig. 2. Test Images. Left to right: Lena (512×512), Airplane (512×768), Peppers (512×512) 

It is clear to see that the reconstructed image quality becomes better and better for 
the two types of dictionaries, as the number of image primitives to represent each 
patch l  increases. Seen from Figs. 3–5, the values of PSNR and SSIM achieved by 
image primitives are both higher than those by the traditional DCT basis, especially in 
the case of low bit rate, i. e., when l  is small. From Figs. 6–7, it is obvious that the 
visual quality of the reconstructed image by image primitives is much better than that 
by DCT basis with the same value of l . For instance, when 3=l , Fig. 6(c) has 
evident block artifacts, while the block artifacts in Fig. 7(c) are almost invisible.  

One important observation from Fig. 7 is when > 4l , the reconstructed image is 
very close to the original image in visual perception. For example, one cannot distin-
guish between the original Image Lena and Fig. 7(f) visually. That means, as > 6l , 
it will add little visual information for human visual system. 

Although the results of image primitive coding are encouraging, one key problem is 
that it requires transmitting the image primitive dictionary along with the compressed 
data. Thus, mining the trained dictionary structure and compressing the trained dictionary 
efficiently are very significant, which are also the directions of our future work. Fortu-
nately, recent studies have shown that training sparse dictionary with Sparse K-SVD is 
possible, where each atom of dictionary is a sparse combination of atoms from pre-
specified base, such as DCT or wavelet [10]. This technique allows relatively low-cost 
transmission of image primitives, thus greatly reducing the number of coding bits.  
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Fig. 3. PSNR and SSIM comparison curves for Image Lena with regarding to image primives 
and DCT basis 
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Fig. 4. PSNR and SSIM comparison curves for Image Airplane with regarding to image 
primives and DCT basis 
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Fig. 5. PSNR and SSIM comparison curves for Image Peppers with regarding to image 
primives and DCT basis 
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(a) 1=l                                      (b) 2=l  

   
(c) 3=l                                   (d) 4=l  

   
(e) 5=l                                     (f) 6=l  

Fig. 6. Visual reconstruction results of Image Lena by traditional DCT basis when l  equals 
from 1 to 6. Here, l  denotes the number of image primitives to represent each patch. 
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(a) 1=l                                      (b) 2=l  

   
(c) 3=l                                     (d) 4=l  

   
(e) 5=l                                    (f) 6=l  

Fig. 7. Visual reconstruction results of Image Lena by its trained image primitives when l  
equals from 1 to 6. Here, l  denotes the number of image primitives to represent each patch. 
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4 Entropy of Primitive and Visual Quality Assessment 

According to the above scheme of image primitive coding, in this section, a novel 
concept, namely, Entropy of Primitives (EoP) is put forward to measure the amount of 
image visual information, and some very interesting results about EoP are also pro-
vided. Our motivation is as follows. On one hand, a set of image primitives can be 
learned from an image. On the other hand, the image primitives can also be utilized to 
approximate the original image. It can be observed that an image with its image pri-
mitives have a good corresponding relationship. Therefore, we can measure the 
amount of visual information of images by the amount of information taken by image 
primitives. Here, we use the concept of entropy in Shannon theory to describe the 
amount of information. The details are provided below.  

Take Image Lena (512×512), for example. There are four steps to calculate its EoP. 
Step 1, image primitives are generated by the previously mentioned method. Here, 

the size of image patch is set to 8×8, and the number of image primitives is set to 256.  
Step 2, divide Image Lena into non-overlapped image patches, with the patch num-

ber equaling ´512 512 / 64 = 4096 .  
Step 3, for each patch, conduct the process of sparse coding using the trained image 

primitives, while the number of image primitives (denoted by l ) to represent each 
patch is fixed, e. g., 4=l . Thus, the total number of image primitives used for de-
scribing the whole image is ´= 4096 4 = 16384tatal . Further, the number of every 
image primitive used for sparse coding can be calculated, denoted by  

, = 1,2,...,256i inum . Therefore, the probability of each primitive can be expressed 
as /=i ip  num tatal . 

Step 4, according to Shannon Theory, the entropy of primitives (EoP) for Image 
Lena is written as ( )åEoP = - logi ii

p p . For instance, when 4=l , 
EoP = 4.3183 . 

5 Comparison of PSNR, SSIM and EoP 

With the concept of EoP, what can we achieve? With the changes of image quality, 
what are the statistical laws of EoP? Can EoP be exploited to characterize the amount 
of visual information of an image? The followings will answer the above questions. 

When l  increases, the quality of reconstruction image becomes better. We can 
compute PSNR and SSIM for the reconstruction images. Given l , according to the 
procedures above, we can also compute EoP. Figs. 8–10 present the PSNR, SSIM and 
EoP results for three test images with respect to the number of image primitives to 
represent each patch, i. e., l .  

We can achieve some very interesting observations from these experimental re-
sults. 

a. The EoP curves are monotonically increasing with the number of image primi-
tive l  and gradually become flat.  

b. When l  reaches a certain point, 6 in the curve, the EoP value nearly gets to its 
peak and becomes stable thereafter. This shows that no more visual information could 
be supplied from the additional image primitive when l  is larger than 6, which is in 
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Fig. 8. PSNR, SSIM and EoP results for Image Lena with respect to the number of image pri-
mitives to represent each patch 
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Fig. 9. PSNR, SSIM and EoP results for Image Airplane with respect to the number of image 
primitives to represent each patch 
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Fig. 10. PSNR, SSIM and EoP results for Image Peppers with respect to the number of image 
primitives to represent each patch 
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conformity with the foregoing conclusions. We illustrate this observation in Figs. 8–
10. By contrast, the PSNR and SSIM curves are still increasing when 6³l . 

Based on these two points, we can say that the proposed concept EoP can evaluate 
the visual information of images to some extent, which can be further exploited as a 
criterion for visual quality assessment. 

6 Conclusions 

In this work, a new content-adaptive compression scheme, called image primitive 
coding, is introduced and demonstrates the good potentials over the traditional DCT 
coding. Moreover, a novel concept based on image primitives, namely, entropy of 
primitives (EoP), is proposed for measuring image visual information. Some very 
interesting results about EoP are achieved and analyzed, which has a close relation-
ship with visual quality assessment. Future work includes two aspects. For one thing, 
try to effectively compress image primitives by taking advantage of dictionary struc-
ture; for another, it is also very interesting to design a new algorithm for visual quality 
assessment with the study on EoP. 

References 

1. Pennebaker, W.B., Mitchell, J.L.: JPEG still image data compression standard. Springer, 
New York (1993) 

2. Taubman, D.S., Marcellin, M.W.: JPEG2000: Image compression fundamentals, standards 
and practice. Kluwer Academic Publishers, Norwell (2001) 

3. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over 
learned dictionaries. IEEE Trans. on Image Processing 15(12), 3736–3745 (2006) 

4. Elad, M.: Sparse and redundant representations–From theory to applications in signal and 
image processing. Springer (2010) 

5. Elad, M., Bryt, O.: Compression of facial images using the K-SVD algorithm. Journal of 
Visual Communication and Image Representation 19(4), 270–283 (2008) 

6. Zepeda, J., Guillemot, C., Kijak, E.: Image Compression using the Iteration-Tuned and 
Aligned Dictionary. In: 36th IEEE International Conference on Acoustics, Speech, and 
Signal Processing, pp. 793–796. IEEE Press (2011) 

7. Aharon, M., Elad, M., Bruckstein, A.M.: The K-SVD: An Algorithm for Designing of 
Overcomplete Dictionaries for Sparse Representation. IEEE Trans. on Signal 
Processing 54(11), 4311–4322 (2006) 

8. Tropp, J.A., Gilber, A.A.: Signal Recovery from Random Measurements via Orthogonal 
Matching Pursuit. IEEE Trans. on Information Theory 53(12), 4655–4666 (2007) 

9. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: From 
error visibility to structural similarity. IEEE Trans. on Image Processing 13(4), 600–612 
(2004) 

10. Rubinstein, R., Zibulevsky, M., Elad, M.: Double sparsity: learning sparse dictionaries for 
sparse signal approximation. IEEE Trans. on Signal Processing 58(3), 1553–1564 (2010) 


	Image Primitive Coding and Visual Quality Assessment
	Introduction
	Image Primitive Coding
	Image Primitive
	Sparse Coding

	Comparison between Image Primitive and DCT Basis
	Entropy of Primitive and Visual Quality Assessment
	Comparison of PSNR, SSIM and EoP
	Conclusions
	References




