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Abstract. In this paper, we proposed a new edge-directed image interpolation 
algorithm which can preserve the edge features and natural appearance of 
images efficiently. In the proposed scheme, we first get a close-form solution of 
the optimal interpolation coefficients under the sense of minimal mean square 
error by exploiting autoregressive model (AR) and the geometric duality 
between the low-resolution and high-resolution images .Then the coefficients of 
the Nonlocal Edge-directed interpolation (NLEDI) are derived with structure 
similarity in images, which are solutions of weighted least square equations. 
The new image interpolation approach preserves spatial coherence of the 
interpolated images better than the existing methods and it outperforms the 
other methods in terms of objective and subjective image quality. 
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1   Introduction 

Image interpolation is one of the most prevalent techniques in digital image 
processing with a variety of applications. One obvious application of image 
interpolation is the reproduction of images captured by digital cameras for high 
quality prints. Another important application is that it can make Standard-definition 
video frames fit to the High-Definition DTV (HDTV) receiver. Moreover, in 
consumer electronics area, image interpolation is beneficial and necessary in 
computer vision, surveillance, medical imaging, remote sensing and other fields.  

In recent studies on image interpolation, it is agreed that for many applications, the 
main emphasis should be on the perceptual quality of images. Sharpness of edges and 
freedom from artifacts are two critical factors in the perceived quality of the 
interpolated images. Therefore, the main purpose of image interpolation is to recover 
sharp edges and textures, while suppressing pixel blocking (known as jaggies) and 
other visual artifacts. Classical techniques, such as pixel republication, bilinear or 
bicubic interpolation have the problem of blurred edges or artifacts around edges, to 
which the human visual system are highly sensitive. To tackle this problem, several 
methods [1]-[8] have been proposed to improve the subjective quality. Adaptive 
interpolation techniques [1]-[4] can spatially adapt the interpolation coefficients to 
better match the local structures around the edges. Wang and Ward proposed to make 
use of the gradient to get the edge direction and got the best correlation pixels with 
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the interpolated pixel [5]. Zhang and Wu adaptively fused two interpolation results in 
two mutually orthogonal directions using the statistics of a local window [6]. Li and 
Orchard [7] proposed a Wiener-filtering like interpolation scheme utilizing the 
covariance of the low-resolution (LR) image to estimate the high-resolution (HR) 
image covariance, which represents the edge direction information to some extent. 
Since this method needs to compute the covariance matrix in a local window for each 
interpolated pixel, it may introduce some artifacts due to the local structures changes 
and, hence, the incorrect estimation of covariance. Asuni and Giachetti proposed 
INEDI (Improved New Edge-Directed Interpolation) to improve the algorithm of Li 
by adopting circular windows and adaptively selecting the size of windows [8]. 
However, in the region of fast luminance change, the windows are too small to get a 
stable solution. 

In this paper, we propose a new edge-directed method for image interpolation 
(NLEDI). The proposed method can depress the artifacts caused by the difference of 
the geometry configuration in local window, and make the solution stable. The 
optimal interpolation coefficients are derived in the weighted least square sense. By 
further taking advantage of the idea of nonlocal means filter [9], we obtain different 
weights for samples with different structures from the interpolated position. 

The rest of the paper is organized as follows. Section 2 presents the detail 
description of our proposed NLEDI. Section 3 gives the experimental results, in 
objective and subjective quality respectively. Finally this paper is concluded in 
Section 4. 

2 Nonlocal Edge-directed Interpolation method 

2.1  AR interpolation model 

In statistics and signal processing, AR model is a type of random process which is 
often used to model and predict various types of natural phenomena. AR model can 
be formulated as (1), 
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where is the order of the AR model, p 1ϕ ,…, pϕ are the parameters of the model, 
is a constant and c tε is white noise. Since it can adaptively represent local features 

of signals, many research works introduced it into the image interpolation to predict 
the unknown pixels. Without loss of generality, we assume that the LR image ,i jX of 

sized M N× directly comes from the HR image of sizedY 2 2M N× , i.e., 
. The task of image interpolation is how to interpolate the interlacing 

lattice  from the lattice . Therefore, we can formulate missing 
pixel in HR images using a fourth-order AR model as follows (refer to Fig.1 (a)): 
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where is the estimation of the missing pixel2 1,2 1
ˆ
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four 8-connected neighbors and 2 1,2 1i jn + +  is the noise.  
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Fig. 1 The spatial configuration of image interpolation with AR model. The solid dots are 
pixels in LR or already interpolated. The circles are to be interpolated HR pixels. (a) The 
spatial configuration when interpolating 2 1,2 1i jY + + from . (b) The spatial configuration when 

interpolating (i+j is odd) from (i+j is even). 
2 ,2i jY

,i jY ,i jY
With equation (2), we can get a cost function defined as 
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where is the interpolation coefficients in vector form, 
is the vector of four 8-connected neighboring 
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pixels. For simplicity, we just consider the noise-free case. Under the assumption that 
the natural image can be modeled as a locally stationary Gaussian process., we can 
get the optimal interpolation coefficients under minimum mean square error sense as  

1−=α R r  , (4) 

where , and , (,[ ] ( T
k lR E= =R Y )Y 2 1,2 1[ ] ( )k i jr E Y + += =r Y 0 , 3k l≤ ≤ ) are the local 

covariances at the high resolution. Utilizing the similarity between the high-resolution 
covariances and the low-resolution covariances which couple the pair of pixels at the 
different resolution but along the same orientation, we can estimate covariances for 
HR from the pixels in LR as  
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where is the vector containing the 21[ ... ... T
k W

y y y=y ] W W× pixels inside a local 

window and C is a  matrix whose k-th row vector is the four 8-connected 
neighbors of along the diagonal direction. According to (4) and (5), we get the 
interpolation coefficients. 
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By substituting (6) into (2), the interpolated value of 2 1,2 1i jY + +

)

/ 4

can be obtained. When 

interpolating the interlacing lattice from the lattice , the 
interpolation coefficients are obtained in the same way. From Fig.1 (a) and (b), we 
can see that they are isomorphic, if we rotate Fig.1 (a) 

, (i j i j oddY + = , ( )i j i j evenY + =

π clockwise and then down 
to a scaling factor of . A detail interpretation can be found in [7]. 1/ 22

2.2   Nonlocal Edge-directed Interpolation 

In this section, we extend the AR interpretation to derive the nonlocal edge-directed 
interpolation algorithm by analyzing the AR interpolation coefficients. We take the 
interpolation of  as an example and the pixels  can be 
interpolated in the same way. 

2 1,2 1i jY + + , ( )i jY i j odd+ =

2.2.1 Covariances Estimation for HR 
From (5), we can take low-resolution pixels with the same geometry configuration to 
estimate the high-resolution covariances. In a general situation, the covariance 
estimation ,  and the coefficient R̂ r̂ α  should be as follows. 
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where 1 1 1 1[ p p p p=P ]  and 1p  is a vector whose components are composed 
of the probability of every sample of in C, Y 21[ ... ... ]T

k W
y y y=y are the samples of 

and  represents the i-th column of . The operator ‘.*’ represents 
element-by-element multiplication of two matrix. Therefore, we can see that the prior 
estimation of high-resolution covariance is a special case that all the samples have the 
same probability, which is not always reasonable. The samples used to calculate 
coefficients in a local window should have the similar geometric structure with the 
region centered in the interpolated pixel. Otherwise, the geometric duality can not be 
satisfied in a local window where the geometric structure is different. In smooth or 
large scale edge region, where the samples in a small local window have equal 
probabilities may be reasonable, because all of them can reflect similar structures (i.e. 
edge direction). However, in the close-grained region with more different structures 
and different samples reflect different image structures, even opposite structure, i.e. 
Fig.2. 
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Fig. 2 Scheme of NLEDI strategy. Samples with similarity structure are assigned large 
probabilities, i.e. p1, p2; samples with disparity structure are assigned small probabilities, i.e. 
p3 



From Fig 2, we can see that there are three kinds of samples in the local window A. 
First kind is non-edge sample. They do not include edge direction information. The 
second kind is edge on 45°direction (black edge) and the last one is edge on 135°
(white edge). Although the interpolated pixel in A is on 45°direction, the edge 
information included in the covariance may vanish as a result of all samples with 
equal probabilities. Therefore, we proposed that samples with different structure 
should have different probabilities. If we can assign appropriate probabilities to 
different samples, it can not only improve the estimation of the high-resolution 
covariances, but also break the limit of a local window. This is because in a natural 
image, similar structure may have recurrence not only in local area but also other 
areas [10]. In next section, we set up a probability model just as [9]. 

2.2.2 Probability modeling 
Reviewing the interpolation coefficients in (9), we can transform the equation in the 
following form, 
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From Equation (10), we can see that the AR interpolation coefficient should fits 
all the sample pixels in LR lattice. Therefore, weighted least square can be used to 
find an approximated solution to the overdetermined systems. 

α
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Where 1p is a probability vector just as prior section. Equation (11) expresses that 
minimizes the weighted sum of square errors between the true values and the 

interpolated values. Compared with structure in the region to be interpolated, the 
more similar the sample structure is, the better the geometry duality is. Therefore, the 
probability should reflect the similarity of structures between the samples and the 
interpolated region (we call it as center region below). 

α

Since we introduce probability into the AR model, the samples should not 
necessary be limited in a small local window. More samples can be selected even in 
the whole images. Small probability can be assigned to the samples which have high 
disparities with the center region. Referring to Fig.2, the sample in E has different 
structure from the center region B, so the probability 3p approximates to zero. In order 
to reflect the structure similarity, we compare the structures of two windows (we call 
them as similarity windows below, sized m n× ) centered the sample and the 
interpolated region respectively. The probability of the j-th sample of the i-th center 
region can be given by 
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where sjW and are matrices whose elements are pixel values in similarity windows, h 
is a constant to control the decay of the exponential function , C is a normalization 
constant. 

ciW

( , )K x y is a weight value for each pixel in similarity window, which 
decrease with the distance from the center of similarity window. This is similar with 
the well-known Non-local means filter, which uses probability to represent the 
similarity between two pixels [9]. We use probability to measure the similarity 
between two samples. Furthermore, we also consider the distant effects on the 
structure similarity. Therefore, the difference between two similarity windows 
multiplies a weight matrix K, which decays with the Euclidean distance.  

With introducing probability, samples are not limited in a small local window. We 
can select more samples in a larger window, even in the whole image. Thus, the 
solution of (9) will be more stable. However, In order to reduce the complexity of the 
algorithm, we also estimate covariances in a local window and only use the proposed 
interpolation method in edge areas. At the same time, in order to exclude the case that 
the matrix  can not be invertible, AR coefficients are calculated only under 
the condition that its determinant is larger than a given threshold. In non-edge areas 
and regions where the determinant is too small, conventional bilinear interpolation 
method is good enough for pleasing result. 

( )TC C•∗P

3   Experimental results  

To verify the performance of the proposed NLEDI, extensive experiments were 
conducted with comparison to its predecessors, including two typical AR 
interpolation methods. They are the new edge-directed interpolation (NEDI) in [7], 
improved NEDI (INEDI) in [8] and the classical interpolation method bilinear.  

In order to compare objective quality, we firstly downsample HR images every 
other pixel both in horizontal and vertical directions to get the input LR images, and 
then utilize different methods to improve the resolution up to original size. In order to 
validate our method, several images in different resolution are used for testing. The 
resolution of test images is as follows, Cameraman and Parrot (256x256), Lena and 
Baboon (512x512), Plane and Bike (768x510). Fig.3 depicts all these images. Table 1 
tabulates the PSNR results. On all instances, the proposed NLEDI algorithm 
consistently ranks the first among all methods in terms of PSNR performance. The 
objective qualities, which result from NEDI, vary severely for different images. 
However, INEDI and our proposed method can be adaptive according to the content 
of images. 



Table 1.  PSNR values (dB) obtained on 2x enlarged images with different methods.  

 bilinear NEDI INEDI proposed 
Cameraman 25.5137 25.4395 25.6623 25.9197 
Parrot 32.4210 32.2567 32.2571 32.6752 
Lena 33.4353 33.7021 34.0126 34.3756 
Baboon 21.8706 21.7548 21.8815 22.0315 
Plane 30.1370 28.7327 30.5982 30.8878 
Bike 25.6324 25.6865 26.1371 26.3787 

 
In Fig. 4 and Fig. 5, we compared results of our proposed method with bilinear, 

NEDI [7] and INEDI [8]. In Fig.4, We interpolate the original image into 2 times size. 
Fig.4.(a) is the original LR image (size of 200×200). The bilinear interpolation 
blurred the edges and produces many jags on edges in (b). NEDI, INEDI and our 
proposed methods can preserve edges very well in Fig.4 (c), (d) and (e) respectively. 
However, NEDI and INEDI also produce artifacts on edge in the red box, because the 
edge too thin and the AR coefficients with local structure can not reflect the edge 
significantly. The INEDI depress the artifacts in structure varying area through 
reducing the local window size. While our proposed method can also get visual 
pleasing results through the assignment of the different probabilities to different 
samples in local windows. In Fig.5, we interpolate the original image into 2 times 
size. We can see that bilinear, NEDI and INEDI all blur the lines in Fig.5 (b), (c) and 
(d), respectively. Because NEDI and INEDI assign equal probability to all samples 
and the samples on edge in local windows are not enough to preserve edge 
information in variances. Although INEDI can resize the window, it also induces to 
unstable solution when amount of samples are too small. Our proposed method gives 
visual pleasing results in Fig.5 (e) because we can use nonlocal samples with different 
probabilities. 

In prior experiment, we also take account of the complexity. In Table 2, we list the 
running time for each method and the measurement is second (s). The situation of our 
experiment is as follows, matlab 7.0, intel Core2 Duo CPU and 3.25GB memory. All 
the three AR interpolation methods have much higher complexity than bilinear. As a 
result of the probabilities calculation, our proposed method has higher complexity 
than NEDI, but has lower complexity than INEDI. 

Table 2.  Running time on 2x enlarged images with different methods.  

 bilinear NEDI INEDI proposed 
Cameraman 0.0310 3.2500 46.5310 23.4060 
Parrot 0.0320 3.2810 51.4840 24.6880 
Lena 0.1410 14.3750 217.0780 114.3280 
Baboon 0.1560 15.5470 300.3440 195.6720 
Plane 0.2190 20.0310 209.6720 115.0940 
Bike 0.2190 23.0310 392.5310 252.4540 

 



4   Conclusion 

In this paper, we present an analysis of AR-based interpolation methods and point out 
its defects. In particular, we introduce probabilities to each sample and make samples 
not limited in local area of the interpolated position. We propose a method that uses 
image structure similarity as probabilities of samples. The experimental results show 
that the proposed algorithm can not only enhance the objective quality of the 
interpolated images, but also improve the subjective quality significantly. However, 
the high complexity is still a problem, and we will try to tackle this problem in our 
further research work. 

References 

1. S. Battiato, G. Gallo, F. Stanco, “A locally-adaptive zooming algorithm for digital images,” 
Image and Vision Computing, Vol. 20, No. 11, pp. 805-812, September 2002 1, 2 

2. K. Jensen and D. Anastassiou, “Subpixel edge localization and the interpolation of still 
images,” IEEE Trans. Image Processing, vol. 4, pp. 285-295, Mar. 1995. 

3. S. Carrato, G. Ramponi, and S. Marsi, “A simple edge-sensitive image interpolation filter,” 
in Proc. IEEE Int. Conf. Image Processing, vol. 3, 1996, pp. 711-714 

4. B. S. Morse and D. Schwartzwald, “Isophote-based interpolation,” in Proc. IEEE Int. Conf. 
Image Processing, vol. 3, 1998, pp. 227-231 

5. Q. Wang and R. Ward, “A new edge-directed image expansion scheme,” in Proc. IEEE Int. 
Conf. Image Processing, vol. 3, 2001, pp. 899-902 

6. L. Zhang and X.L. Wu, “An edge-guided image interpolation algorithm via directional 
filtering and data fusion,” IEEE Trans. Image Processing 15 (2006), pp. 2226–2238 

7. X. Li and M. T. Orchard “New edge-directed interpolation,” IEEE Trans. Image Process , 
vol. 10, pp. 1521, Oct. 2001 

8. N. Asuni and A. Giachetti. “Accuracy improvements and artifacts removal in edge based 
image interpolation.” In Proc. 3rd Int. Conf. Computer Vision Theory and Applications 
(VISAPP’08), 2008 

9. A Buades,., B.Coll, , and J. M.Morel, (2005) “A non-local algorithm for image denoising,” 
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 2, pp 
60–65 June. 

10. M. Protter, M. Elad, H. Takeda, and P. Milanfar, “Generalizing the non-local-means to 
super-resolution reconstruction,” IEEE Trans. Image Processing, Vol. 18, pp.36-51,Jan. 2009. 

 
 

 
(a)        (b)        (c)         (d)           (e)           (f) 

Fig. 3 test images for objective quality. (a) Cameraman, (b) Parrot, (c) Lena, (d) Baboon, (e) 
Plane, (f) Bike 
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 (b)                                   (c) 

  
 (d)                                      (e) 

Fig. 4 (a) original image, (b) bilinear interpolation result, (c) NEDI result, (d) INEDI result, (e) 
proposed method result 
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(d)                                       (e) 

Fig. 5 (a) original image, (b) bilinear interpolation result, (c) NEDI result, (d) INEDI result, (e) 
proposed method 


