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Abstract—Mobile devices such as smartphones are enabling users to generate and share videos with increasing rates. In some
cases, these videos may contain valuable information, which can be exploited for a variety of purposes. However, instead of centrally
collecting and processing videos for information retrieval, we consider crowdprocessing videos, where each mobile device locally
processes stored videos. While the computational capability of mobile devices continues to improve, processing videos using deep
learning, i.e., convolutional neural networks, is still a demanding task for mobile devices. To this end, we design and build CrowdVision,
a computing platform that enables mobile devices to crowdprocess videos using deep learning in a distributed and energy-efficient
manner leveraging cloud offload. CrowdVision can quickly and efficiently process videos with offload under various settings and
different network connections and greatly outperform the existing computation offload framework (e.g., with a 2× speed-up). In doing
so CrowdVision tackles several challenges: (i) how to exploit the characteristics of the computing of deep learning for video processing;
(ii) how to parallelize processing and offloading for acceleration; and (iii) how to optimize both time and energy at runtime by just
determining the right moments to offload.

Index Terms—Crowdprocessing, video, offload, convolutional neural networks.
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1 INTRODUCTION

MOBILE devices such as smartphones are enabling users
to generate and share videos with increasing rates. In

some cases, these videos may contain valuable information,
which can be exploited for a variety of purposes.

In this paper, we consider a video classification problem
where a task issuer asks the crowd to identify relevant
videos about a specific object or target. This requires object
detection to be performed on videos to detect these objects
of interest within the frames of the videos. The limitations
of mobile devices for these types of applications are well
known. The most obvious challenge is the computational
requirement. Although it continues to improve, video pro-
cessing using deep learning, i.e., Convolutional Neural Net-
works (CNNs), is still a demanding task for mobile devices
[1].

We anticipate that video processing can be performed
within a network of mobile devices and a powerful cloud
environment. Individuals have the option to process the
videos locally or offload them to a highly capable computing
unit in the cloud. Coupled with the computation limitation
is the cost to transmit, whether it be via WiFi or cellular (4G
LTE). Transmitting videos to the cloud over wireless links
consumes considerable energy. Additionally, when using
cellular networks, there may be data budgets that limit data
transfer without incurring extra expenses. As a result, we
consider the coupled problem of constrained resources of
computing, data transmission, and battery.

Due to these limitations, users may be reluctant to par-
ticipate in such requested video processing tasks. However,
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users could be motivated by various incentive mechanisms,
such as [2], which are not the focus of this paper. For
this paper, we consider a variation on a crowdsensing-
type scenario that we call crowdprocessing. Instead of users
collecting and sharing data to solve a larger problem, we
explore the computing capability of mobile devices and
allow individuals to process some (or all) of the data rather
than having some centralized entity process everything.

We design and build CrowdVision, a computing plat-
form that enables mobile devices to crowdprocess videos
using deep learning in a distributed and energy-efficient
manner leveraging cloud offload. In doing so we tackle
several challenges. First, to design a computing platform
specifically for video processing using deep learning, we
should take into account the characteristics of the com-
puting of deep learning. By deploying and measuring the
computing of CNNs on mobile devices, we identify batch
processing, which makes deep learning different from com-
mon computational tasks and can be exploited for comput-
ing acceleration. Second, as frames extracted from a video
arrive at a certain rate, to take advantage of the batch
processing towards optimizing the processing time, we need
to determine when to perform each batch with how many
frames. However, the problem turns out to be a NP-hard
problem. By carefully balancing the waiting time for frames
to be available and the processing time incurred by each
additional processing batch, we are able to determine the
batch processing to optimize the processing parallelized by
offloading, even with an energy constraint that is imposed
by the user. Third, When the data rate for offloading varies
widely, it is hard for mobile devices to acknowledge when
offload benefits. By correlating signal strength, data rate,
and power based on offloading attempts, we are able to
sense and seize the right moments when offloading benefits
both processing time and energy at runtime.
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We envision CrowdVision to be useful for a variety of
applications that require content information of videos from
the crowd. One common use case is emergency response
situations, where municipal agencies ask the public to assist
in identifying terrorists or criminals through scanning of
their videos, as the FBI did after the Boston Marathon
bombing. CrowdVision could handle this request in a smart
and automatic way; i.e., it first filters videos based on lo-
cation and timestamp, and then collectively performs deep
learning to find the object of interest.

Contributions: (i) We measure and characterize the pro-
cessing time and resource usage for each component of
video processing using deep learning (§3). (ii) We design a
split-shift algorithm that parallelizes frame offload and local
detection to optimize the processing time by taking advan-
tage of batch processing and two algorithms that optimize
the processing time with an energy constraint (§4). (iii) We
design an adaptive algorithm featured with a backoff mech-
anism, which determines the offloading at runtime towards
optimizing both completion time and energy (§5). (iv) We
implement CrowdVision on Android with a GPU-enabled
server for offload (§6). (v) We show experimentally that
CrowdVision greatly outperforms the existing computation
offload framework (e.g., with a 2× speed-up) and improves
speed and energy usage of video crowdprocessing, and the
split-shift algorithm closely approximates the optimum (§7).

2 RELATED WORK

There are several examples of crowdsensing frameworks
similar to CrowdVision. Medusa [3] is a platform that per-
forms crowdsensing tasks through the transfer and process-
ing of media (text, images, videos). Pickle [4] is a crowd-
sensing application to conduct collaborative learning. Gi-
gaSight [5] is a cloud architecture for continuous collection
of crowd-sourced video from mobile devices. In contrast to
these frameworks, CrowdVision is a computing platform for
video crowdprocessing using deep learning rather than the
system or platform that motivates users and collects sensed
data. For the crowdprocessing task, CrowdVision attempts
to optimize the performance of the task execution while
considering the energy usage and data usage of the par-
ticipating mobile devices through computation offload.

There is a large body of work that studies computation
offload for mobile devices [6]. These can be summarily
classified into two categories: building general models for
computation offload such as [7], [8], [9], [10] and computa-
tion offload based applications such as [11], [12], [13]. MAUI
[7] investigates code offload to reserve energy for computa-
tion. The feasibility of computation offload is studied in [8]
in term communications networks. COSMOS is presented
in [9], which bridges the gap between quick response re-
quests by mobile devices and the long setup time of cloud
frameworks. Offload scheduling is addressed in [10] which
considers the tail energy of cellular network. Computation
offload has been considered and implemented in various
applications, e.g., for interactive perception applications
[12], social sensing [11] and wearables [13]. In addition
to offloading, Tango [14] considers application replication
on mobile devices and servers, where the active instance
of the application switches between the two systems to

accelerate network-intensive applications. However, due to
the characteristics of the computing of deep learning, none
of these works can be directly and effectively applied to our
application and offloading problem.

Optimizing the computing of deep learning applications
on mobile devices has been recently investigated by com-
pressing parameters of CNNs [15], by distributing com-
putation to heterogeneous processors on-board [16], [17],
by trading off accuracy and resource usage [18], and by
mobile GPUs [19]. However, currently, these approaches
require custom software or hardware. Nevertheless, these
potential processing approaches can be easily integrated
with CrowdVision whenever they are available for off-the-
shelf mobile devices.

3 OVERVIEW

CrowdVision is a distributed computing platform that en-
ables mobile devices to participate in the crowdprocessing
of videos. In this environment, a task issuer initiates a
query by which mobile devices are requested to identify
some object of interest within its locally stored videos. We
consider a crowdprocessing approach to perform object de-
tection/classification of videos. This task includes filtering
of videos based on metadata, and then processing the videos
to perform object detection. This takes several steps as
described below. Caffe [20], [21], a deep learning framework,
is currently employed to perform object detection on frames
extracted from videos. Although CrowdVision is currently
built on top of Caffe, it is compatible with other deep
learning frameworks, e.g., Torch [22] and TensorFlow [23].

The details of the query can be of varying specificity
(e.g., “find people wearing red hats walking a dog in the
park on Tuesday evening”). These details may allow for
the individuals to filter out irrelevant videos (based on
location or timestamp). At the expense of some energy
usage, the user can offload the videos to the cloud, where
high performance computing can quickly process the videos
without energy usage concerns. Alternatively, the user can
process some of the frames locally and offload others.

Once these videos are processed using deep learning
either locally on the mobile device or remotely on the cloud,
the task issuer will receive information about the videos
related to the query. For frames that are processed on the
mobile devices, the user will forward either the tags, the
frames of interest, or the entire video to the cloud.

Two important aspects of this process are not in the scope
of this paper. First, incentive mechanisms for crowdprocess-
ing are important but not the focus of this paper. Second,
participation in the task may reveal personal information
and intrude on users’ privacy, but users are allowed to filter
out their personal videos. More sophisticated and rigorous
treatment of security and privacy control is left as future
work.

The overview of CrowdVision is depicted in Fig. 1. A
mobile device has several options to perform object detec-
tion on each related video. Performing object detection in
a video entails two main steps. First, video frames must be
extracted from the video and turned into images. Second,
object detection is performed on the images. These two
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Fig. 1. Overview of CrowdVision.

functions may be performed locally on a mobile device, or in
the cloud, or distributed between the two systems.

As illustrated in Fig. 1, by considering several input
parameters and constraints, e.g., network connections, bat-
tery life, and data budget, a mobile device can perform
(i) video offload by sending the whole video to the cloud.
Alternatively, the user may perform frame extraction locally
and then offload specific frames to the cloud. In this case,
it needs to determine whether each frame is processed by
(ii) frame offload in which the frame is sent to the cloud for
detection or (iii) local detection where the frame is detected
on the mobile device.

In CrowdVision, we consider both the task issuer’s query
requirements and the resource usages of mobile devices.
From the perspective of the task issuer, the quality of
CrowdVision’s response to the query can be evaluated by
two metrics. First is the timeliness of the response, mea-
suring the time required to process all related videos on
each mobile device. Second, the accuracy of the response is
measured by the frames identified as containing the event
that actually contains the event, which is determined by the
CNN model. In this work, we consider timeliness. From
the users’ perspective, its primary criteria is the resource
efficiency. Moreover, although the computational capability
of mobile devices continues to improve, video processing
using deep learning on mobile devices is still limited and
resource intensive. Therefore, the cloud is provided by task
issuers to assist in video processing.

When mobile devices perform video processing with
offloading, they may be connected to the cloud via WiFi or
cellular networks. In these two circumstances, users may
have different priorities in terms of budgeting resources.
When using WiFi, users may not care about the resource
usage as long as video processing does not affect the normal
use of their mobile devices; or they may only care about
battery life when battery recharging is not accessible. When
using cellular networks, battery life and data usage may be-
come the primary concerns since it is usually inconvenient
to recharge mobile device when connected cellular networks
and cellular data plans may be limited. Therefore, the design
of CrowdVision takes both of these into consideration.

Through the characterization of processing time, energy,
and cellular data usage for video processing, we design
CrowdVision. By considering inputs from the processing
task, constraints of users, and various network scenarios, we
optimize cloud-assisted video crowdprocessing as a func-
tion of these design parameters. CrowdVision determines
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Fig. 2. Processing time of different extraction rates on a 30-second
1080P video using DSP on smartphone.

how to quickly and efficiently process each video and takes
advantage of some actions that can be done in parallel
or pipelined. In the following, we describe each of these
processing components.

3.1 Frame Extraction
Frame extraction is used to take individual video frames and
transform them into images upon which object detection
may be performed. To target objects with different dynamics
within the video, the task issuer may request a different
frame extraction rate. For example, for an object moving at
a high speed like a car, the rate should be high enough to not
miss the object. For a slowly moving object like a pedestrian,
a lower frame extraction rate can be used, which eases the
computing burden. The setting of the frame extraction rate
for object detection is important but it is not the focus of
this paper. CrowdVision takes frame extraction rate as a
parameter defined by the task, denoted as er frame per
second (fps).

Fig. 2a and 2b, respectively, illustrate the total processing
time and the processing time per frame for frame extraction
using a hardware codec (DSP) with different extraction rates
on a 30-second 1080p video (30fps) on a Galaxy S5 (unless
stated otherwise all measurements are performed on the
Galaxy S5). In Fig. 2a, the total processing time for extracting
all the frames takes about 13 seconds, and it decreases as
the extraction rate reduces. The processing time per frame,
as illustrated in Fig. 2b, slightly and linearly increases as the
extraction rate decreases, and the average is about 16 ms.

Moreover, as shown in Table 1, the power of frame
extraction is about 1W, and the CPU usage is only about
4%.

3.2 Detection
Detection is the process of determining if the object of in-
terest is in a frame. For detection, we currently use AlexNet
[24], a 8-layer CNN, on Caffe to perform classification, but
we do not have any restriction on CNN models1. Although

1. The processing time of detection varies over different CNN mod-
els. However, the processing time of detection is just a system parame-
ter in CrowdVisionand CrowdVision supports any CNN model.

TABLE 1
Power and CPU usage of frame extraction and object detection on

smartphone

Power CPU usage

Frame Extraction 1178 mW 4%
Object detection 2191 mW 25%
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Fig. 3. Processing time of detection performed individually or in batch
on smartphone.

Caffe can be accelerated by CUDA-enabled GPUs [25], it
is currently not supported by GPUs on off-the-shelf mobile
devices. Caffe in both the cloud and mobile devices is the
same, but the cloud is equipped with powerful CUDA-
enabled GPUs and can perform object detection hundreds
of times faster than mobile devices.

We find that the processing time of detection is affected
by the batch size, e.g., processing two frames in a batch takes
less time than that of two frames that are detected individu-
ally. Fig. 3 shows the measured processing time of detection
performed individually and in a batch. The processing time
grows linearly with the increase of the number of frames
for both cases. However, batch processing performs much
better, where the intercept (α) is about 240ms and the slope
(β) is 400ms. That means if we process ten frames one by
one, it takes about 6.4s, while if ten frames are processed in
a batch, it takes about 4.24s. The difference grows with the
increase of the number of frames. For detection, it is better
to put more frames in a batch to reduce processing time.
However, the system must wait longer to get the extracted
frames from the video. Therefore, it is difficult to determine
the best batch size.

This characteristic of batch processing commonly exists
in the computing of CNNs on both CPUs and GPUs, and
it also drives the design of CrowdVision’s modules of lo-
cal detection and frame offload. Although CrowdVision is
designed based on the detection using mobile CPUs, it can
be easily adapted to mobile GPUs when they are available
for the acceleration of deep learning on off-the-shelf mobile
devices, because this just requires a change of system pa-
rameters. Moreover, despite the fact that mobile GPUs can
perform several times faster than CPUs, offloading may still
be needed since CNN models go deeper and computing
becomes much more difficult (e.g., the state-of-the-art CNN,
ResNet [26], has more than a thousand layers).

Table 1 gives the measured power and CPU usage of
performing detection on the smartphone. The power is
2191mW, while the CPU usage is 25% (occupied one of
four cores). Although object detection requires considerable
computation, together with frame extraction, it will not
affect the normal operations of mobile devices, and thus
we also consider performing video processing on mobile
devices locally.

3.3 Offloading

Mobile devices can choose between video offload and local
processing as depicted in Fig. 1. When choosing local pro-
cessing, they then decide between frame offload and local

detection. These decisions are all affected by network con-
ditions that lead to divergent throughput and power. More-
over, mobile devices can be connected to the cloud via either
WiFi or cellular. Each may have different characteristics, and
users may also have different concerns in each scenario.
Therefore, we separate these two scenarios throughout the
design of CrowdVision for easy of presentation. However, it
does not mean that the solution introduced for one scenario
works exclusively in that scenario. It depends on situational
characteristics.

Note that due to the characteristic of batch processing,
none of existing offloading schemes can directly and effec-
tively apply to deep learning for video processing because
they cannot take advantage of batch processing to reduce
the completion time and energy expenditure.

4 PROCESSING UNDER WIFI

When mobile devices are connected to the cloud with WiFi,
energy usage may or may not be the concern. Therefore,
in this section, we study the optimization of the process-
ing time on a mobile device, and then we investigate the
optimization while also considering energy usage as a con-
straint, which can be imposed by the user to govern the
amount of energy the device uses for each task.

4.1 Optimizing Completion Time

When a mobile device receives a task, it first parses the
task to find the related videos based on metadata, such as
location information, or timestamp. The completion time is
the time spent processing these related videos. We say a
video is processed when the video is offloaded to the cloud,
or frames are extracted and processed by some combination
of the cloud and local device. Multiple videos are processed
in serial; i.e., we do not consider parallel video offloading
and local processing, since it is not resource-efficient. As
videos are processed in serial, optimizing the completion
time of all related videos on a mobile device is equal to
minimizing the completion time of each video. Therefore,
for each video, CrowdVision first estimates and compares
the completion time of video offload and local processing.

Mobile devices are usually connected to WiFi when users
are at home or at work. In such environments, the channel
conditions commonly vary slightly. Therefore, similar to
MAUI [7], for the processing under WiFi, the data rate
between a mobile device and cloud can be considered to be
stable during a short period time. Note that the environment
with a highly dynamic WiFi data rate can be handled by
the adaptive algorithm discussed in §5. Like MAUI, mobile
devices probe the data rate by sending 10KB data to the
cloud periodically. Let r denote the data rate.

For each video, the processing time of video offload can
be easily estimated. However, for local processing, we have
to consider the time spent on extracting a frame, offloading
a frame, and detecting a frame, and then choose between
frame offload and local detection wisely for each frame to
obtain minimal completion time of local processing.
Processing time on frame extraction. As shown in Fig. 2b,
the processing time of extracting a frame linearly increases
as extraction rate decreases. Given an extraction rate defined
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by the task, we can easily obtain the processing time to
extract a frame from a specific video. Note that videos with
different resolutions (e.g., 720p, 1080p, 4K) have varied pro-
cessing times due to different decoding workload. However,
the processing time on the frames from videos with the same
specifications varies only slightly based on our experiments.
Processing time on local detection. As illustrated in Fig. 3,
the processing time of frame detection can be calculated as
α + βx, where x is the number of frames included in a
processing batch. However, since extracted frames do not
become available at the same time, and batch processing
requires all the frames to be processed to be available
before processing, the optimized processing time of multiple
extracted frames cannot be simply computed as above. This
problem turns out to be non-trivial.

Assume there will be totally n frames extracted from
a video. Each frame will be available at a time interval γ
(i.e., the time to extract a frame). To minimize the processing
time, we need to optimally determine how to process these
frames, i.e., how many processing batches are needed and
how many frames each batch should process.

To mathematically formulate the problem, let us assume
the number of batches is also n (n can be seen as the
maximum number of batches needed to process the frames)
and let yi denote the number of frames for batch i ∈ [1, n],
where yi ≥ 0 (yi = 0 means batch i does not process any
frame). Let xi denote the time interval between the start
times of batch i and i+ 1, x0 denote the waiting time before
processing the first batch, xn denote the processing time of
the last batch. Note that if yi and yi+1 are both zero, xi is
also zero. Then, our problem can be formulated as an Integer
Linear Programming (ILP) problem as following:

min
n∑
i=0

xi (1)

s.t.
n∑
i=1

yi = n, (2)

k∑
i=0

xi ≥
k+1∑
i=1

γyi, k = 0, . . . , n− 1 (3)

xi + biα ≥ α+ βyi, i = 1, . . . , n (4)
n(1− bi) ≥ yi ≥ 0, i = 1, . . . , n (5)
bi = {0, 1}, i = 1, . . . , n. (6)

Constraint (2) regulates that all frames are processed. Con-
straint (3) makes sure that the number of frames to be pro-
cessed by a batch are available before the start of the batch.
Moreover, the previous batch must have been completed
already before processing a batch, which can be represented
as xi ≥ α + βyi if yi > 0 and else xi ≥ 0. Constraints
(4)(5)(6) are the workaround for this. If yi > 0, bi is zero
according to constraint (5). If yi = 0, constraint (4) is equal
to xi+biα ≥ α. As our problem is a minimization problem, b
will be equal to one. Since the problem (1) is ILP (NP-hard),
the optimal solution of minimizing the processing time on
detection costs too much, even for a small n. For example,
for a instance of n = 100 with parameters obtained from
Fig. 2 and 3, GLPK takes 217 seconds to solve the problem
optimally on a 16-core workstation.

Processing time on frame offload. Besides detecting frames
locally, mobile devices can also choose to offload frames to
the cloud to accelerate the processing. Let δ denote the time
a mobile device spends offloading a frame, where δ = df/r
and df is the data size of an extracted frame. Note that
the extracted frame may be resized to feed different CNN
models and thus df is not a fixed size. When offloading a
frame takes less time than extracting a frame (i.e., δ ≤ γ),
the completion time of local processing is about γn, which
is the processing time of frame extraction. However, when
δ > γ (the most common case), there will be frame backlog
and local detection is needed. However, as discussed above,
minimizing the processing time of local detection is already
an NP-hard problem. The problem that considers both frame
offloading and local detection to minimize the processing
time of local processing is even more difficult to solve.
Therefore, we propose a split-shift algorithm to solve the
problem.

4.2 Split-Shift Algorithm

For each extracted frame, we have two options: frame of-
fload and local detection, which are two processes working
in parallel to reduce the completion time of a video. Intu-
itively, the offloading process should keep sending extracted
frames to the cloud. For the detection process, it is better to
reduce the number of processing batches (i.e., increase batch
sizes), since each additional batch incurs more processing
time. However, as the batch processing requires the input
frames be available before the processing starts, it is better
to not wait too long for the extracted frames. Based on this
intuition, we design the split-shift algorithm.

If only frame offload is deployed, the completion time
is δn (accurately it is δn + γ, but γ is small and cannot be
reduced and thus we consider δn for simplicity). We treat
the detection process as a helper to reduce δn. The main idea
is to shift the workload from the offloading process to the
detection process to balance the completion times of these
two processes by determining the number of processing
batches and the number of frames to be processed in each
batch.

First, let us assume that all frames are available at the
beginning. Then, let n∗p denote the number of frames to be
detected locally that minimizes the completion time, and we
have

δ(n− n∗p) = α+ βn∗p,

which can be employed to approximate the case where
δ � γ and α � γ. Moreover, n∗p can be seen as the
maximum number of frames to detect for all cases. As
frames are extracted at a certain rate, the number of frames
for location detection should be less than n∗p.

Since the offloading process keeps sending frames to the
cloud, for the detection process, the extracted frame arrives
every δγ

δ−γ , denoted by γ′. Then, frame detection can be
determined by the following steps. Let b denote the number
of processing batches and initially b = 1.
1. First, we compare n∗pγ

′ and α. If n∗pγ
′ ≤ α, then we can

calculate np by solving

δ(n− np) = npγ
′ + α+ βnp,
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where np = b δn−α
γ′+β+δ c. For this case, there is only one

processing batch and np frames.
2. If n∗pγ

′ > α, which means the waiting time before n∗p
frames are available is more than the processing time
for an additional processing batch (i.e., α), it is better to
schedule more than one batch. Therefore, we increase b
by one. Then, n1

p, i.e., the number of frames of the first
processing batch, will be calculated by

n1
pγ
′ + α+ βn1

p ≥ n∗pγ′

to guarantee that all other frames (i.e., n∗p − n1
p) are

available for detection after n1
p is processed, and n1

p =

dn
∗
pγ
′−α

γ′+β e.
3. However, there may still be n1

pγ
′ > α. If so, it is better

to split the first processing batch into two, similar to the
previous step. The split process continues until n1

pγ
′ ≤ α

and then we have the number of scheduled batches and
also the number of frames for each batch.

4. n∗p is derived based on the assumption stated above.
However, the frames to be locally detected must be less
than n∗p. Therefore, we need to rebalance the completion
time between these two processes by shifting frames
from local detection to frame offloading. To do so, first
we calculate np by

δ(n− np) = n1
pγ
′ + αb+ βnp.

If
∑b
i=1 n

i
p − np ≥ nbp, decrease b by one and recal-

culate this equation. The shift process is repeated until∑b
i=1 n

i
p − np < nbp and nbp is set to nbp + np −

∑b
i=1 n

i
p.

Finally, local detection will process total np frames by b
batches, and each batch i will process nip frames.
The computational complexity of the algorithm is O(n),

which is desirable for mobile devices. Moreover, it is also
easy to be implemented on mobile devices; i.e., the offload-
ing process simply keeps sending frames one by one until
frame queue is empty, while the detection process initiates
batch processing when the number of frames required by
each batch are available in the frame queue.

Overall, for each video, a mobile device first estimates
the completion time of video offload and local processing,
respectively, and then chooses the approach that has a better
completion time.

4.3 Optimization with Energy Constraint

In this section, we first look into the energy consumption of
each processing module and then investigate the problem of
optimizing the completion time with an energy constraint.

Fig. 4 shows the measured power of WiFi transmission
in terms of different data rates on the smartphone. The
power linearly increases with the data rate, similar to that
shown in [27]. From the experiment, the sending state of
WiFi consumes about 1W, denoted by ei, and the power
increases about 25mW for every 1Mbits/s increase in data
rate, denoted by ∆e. For a video v with data rate dv and
length lv , the energy consumption of offloading video v
using WiFi can be represented as

Ev =
dvlv
r

(ei + r∆e).
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Fig. 4. Power of WiFi in terms of different uplink rates on smartphone.

Let ee denote the power of frame extraction and ep denote
the power of frame detection, which are measured on the
smartphone and shown in Table 1. Then, the energy con-
sumption of frame extraction is

Eev = lvreγee.

The minimal energy consumption of locally detecting all
frames extracted from video v is

Epv = (α+ βlvre)ep.

Local detection can yield Epv only when all frames are pro-
cessed in one batch. Moreover, the energy cost of offloading
all frames extracted from video v is

Eov =
lvredf
r

(ei + r∆e).

When considering energy consumption only, it is better to
offload frames rather than to perform local detection when
Epv > Eov . Also, it is straightforward to decide between
video offloading and local processing based on Ev , Eev , Epv
and Eov . However, the optimization of energy consumption
may not necessarily optimize the completion time; i.e., we
cannot always optimize the energy consumption and com-
pletion time simultaneously.

Since the minimum and the maximum energy consump-
tion for video processing can be easily calculated, we will
let users to choose between the minimum and maximum
amount of energy to be consumed. Then, the selected
amount of energy E′ can be used as a constraint to optimize
the completion time.

Let Ep denote the sum of Eev and Epv , Eo denote the
sum of Eev and Eov , Emin = min{Ev, Ep, Eo}, and Tmin =
min{T ∗, Tv}, where T ∗ denotes the minimum completion
time of local processing and Tv denotes the completion time
of video offloading. Since the processing option that con-
sumes the most energy may not be the fastest one and video
processing can only be accelerated locally by parallelizing
frame offloading and local detection, we choose the energy
consumption of the fastest processing as the maximum
energy consumption, denoted as Emax = E(Tmin). By doing
so, we can guarantee that, given an energy constraint, the
completion time can be optimized.

In general, the solution to optimize the completion time
with an energy constraint works as follows. First, we can
easily calculate the energy consumption of each processing
option and leverage the split-shift algorithm to compute
T ∗, and accordingly E(T ∗). Then, by comparison, we have
Tmin, Emin, and Emax. When Emin = Ev and Tmin = Tv ,
video offloading is the most efficient and fastest way; i.e.,
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it optimizes the energy consumption and completion time
simultaneously. When Emin = Ev and Tmin = T ∗, then
we need to obtain the minimum completion time for local
processing with the energy constraint E′. Let Tmin(E′) de-
note the minimum completion time. If Tmin(E′) > Tv , video
offloading will be selected, otherwise, the local processing
that produces Tmin(E′) is chosen. When Emin = Eo or
Emin = Ep, we need to compare the local processing that
yields Tmin(E′) with video offloading. If Tmin(E′) ≥ Tv
and E′ ≥ Ev , video offloading is preferred, otherwise, local
processing is selected.

Therefore, we can see that to process each video, we have
to solve the optimization problem that minimizes the com-
pletion time of local processing with an energy constraint.
This problem is non-trivial when Emin < E′ < Emax and
df
r > γ. To solve the problem, we need to consider two

cases: Emin = Eo and Emin = Ep.
Frame Offloading with Extra Energy. When Emin = Eo,
then Eo < Ep, which generally means offloading a frame
consumes less energy than detecting a frame. Therefore, the
problem is how to maximally reduce the completion time
by parallelizing local detection with frame offloading by
exploiting the extra energy ∆E = E′ − Emin. The local
detection can be determined as follows to obtain Tmin(E′).
1. The spending of the extra energy can be represented as

∆E = (bα+ βnmax)ep − nmax
df
r

(ei + r∆e). (7)

The first part of the r.h.s of (7) is the energy cost to per-
form detection on nmax frames and the second part is the
energy to offload nmax frames. From (7), the maximum
number of locally detected frames can be calculated as

nmax = b ∆E − bαep
βep − dfei

r − df∆e
c.

Note that nmax frames are processed by b batches, where
b is set to one initially.

2. Let T pmin(nmax, b) denote the optimized completion time
of local detection, which can be obtained by solving (1)
and approximated by the split process of the split-shift
algorithm. If T pmin(nmax, b) ≤ (n − nmax)

df
r , Tmin(E′) =

(n− nmax)
df
r .

3. If T pmin(nmax, b) > (n − nmax)
df
r and b = 1, when

nmaxγ
′ ≤ α, the local detection completion time can-

not be reduced by increasing the number of processing
batches. Therefore, we need to reduce nmax to ensure
nmaxγ

′ + α + βnmax ≤ (n − nmax)
df
r and then we have

nmax = b ndf−αr
df+rβ+rγ′ c and Tmin(E′) = (n− nmax)

df
r .

4. If T pmin(nmax, b) > (n− nmax)
df
r , b = 1 and nmaxγ

′ > α,
or if T pmin(nmax, b) > (n − nmax)

df
r and b > 1, we

need to examine whether the increase of the number of
processing batches can reduce the local detection com-
pletion time. If the completion time cannot be reduced,
Tmin(E′) = T pmin(nmax, b); otherwise, b is increased by
one. Since increasing the processing batches increases the
energy consumption in order to process nmax frames (by
the additional α), we need to recalculate nmax according
to (7) and thus the process has to be repeated. The
process stops until T pmin(nmax, b) cannot be decreased,
i.e., T pmin(nmax, b) ≤ T pmin(nmax, b+ 1).

Local Detection with Extra Energy. When Emin = Ep, the
extra energy ∆E = E′ − Ep can be utilized to increase the
number of processing batches, and it can also be used for
frame offloading. Therefore, we need to compare these two
options in terms of energy cost and completion time, which
can be determined as follows.
1. Initially, since Epv is the minimal energy consumption

of local detection, we have one processing batch and n
frames to be processed; i.e., b = 1 and nmax = n.

2. For each iteration, first we calculate γ′ (i.e., δγ
δ−γ )

and T pmin(nmax,b). Then, we compare Tp
min(nmax,b)

αep

−T
p
min(nmax,b+1)

αep
and rβ

df (ei+r∆e)−rβep , which represent
the efficiency of increasing the processing batch and
frame offloading, respectively, to reduce the completion
time in terms of energy cost.

3. We will choose the more efficient option for each itera-
tion. If the processing batch is selected, we reduce ∆E by
αep and increase b by one, and then repeat the process. If
frame offloading is more efficient, we first decrease nmax

by one and then determine whether n−nmax frames can
be offloaded before nmax frames are detected locally. If
so, we need to update δ to Tp

min(nmax,b)

n−nmax
, which will be

used to recalculate γ′. Due to the change of γ′, we need
to reset b = 1 and ∆E = E′ − ep(α + βnmax) − df

r (n −
nmax)(ei + δer), and repeat the process.

4. The process stops when ∆E ≤ 0 or when n − nmax

frames cannot be offloaded within T pmin(nmax, b). Finally,
local detection will process nmax frames using b batches,
n − nmax frames will be offloaded, and Tmin(E′) =
T pmin(nmax, b).
The solutions of both cases have low computational

complexity O(n2) and can be easily implemented on mobile
devices to obtain the completion time of a video with energy
constraints.

5 PROCESSING UNDER CELLULAR

When mobile devices have only cellular connections, it is
better to not offload videos, due to the limitation of cellular
uplink speed and limitations on data usage. Since data
transmission rates may vary widely over time, e.g., due to
movement, the solution for processing under WiFi may not
be valid for the cellular scenario.

Obviously, if all frames are detected locally, there is no
cellular data usage. However, this may consume signifi-
cant amounts of energy and severely increase completion
time. Although users may be more sensitive about data
usage rather than energy, energy usage is a concern. Data
usage can be easily controlled, while the energy cost of
frame offload varies with data transmission rate and signal
strength, and thus it is hard to tell how much energy will be
consumed to offload a frame beforehand.

Therefore, for processing under cellular, we consider the
problem of optimizing both completion time and energy
consumption with a data usage constraint so that decisions
are made while considering tradeoffs between these two
objectives. However, due to the variation of cellular data
rates, we cannot solve the problem traditionally by Pareto
optimal solutions. Thus, we design an adaptive algorithm
that makes a decision on each extracted frame (i.e., between
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Fig. 5. Power of LTE in terms of different uplink rates on smartphone.

frame offload and local detection) towards optimizing both
objectives.

To perform video processing under cellular, users must
specify a data usage constraint D′ between zero and a max-
imum, which can be easily calculated, i.e., video duration
× frame extraction rate × frame data size. If D′ is equal
to zero, the problem is trivial and all extracted frames are
detected locally. If the user does not care data usage, D′ is
simply set to the maximum. In the following, we consider
the case that D′ is greater than 0.

5.1 Estimation of Uplink Rate and Power
Before deciding between detection and offloading for each
frame, we need to know the cost in terms of processing
time and energy. For frame detection, both processing time
and power are stable and can be accurately estimated,
although the processing time varies with the number of
processing batches. The difficulty lies in estimating these for
frame offload. The offloading time and power are related to
many factors, such as signal strength, channel conditions
and network traffic. However, from measurements on the
smartphone, we can see the power of LTE uplink exhibits
an approximately linear relationship with data rates as
depicted in Fig. 5. Similar results are also found in [28].
Therefore, during a short period time, we can explore the
history of previous frame offloads to correlate data rates
and power. Moreover, among the factors that affect cellular
uplink rates, signal strength, which is mainly impacted by
the users’ location and movement, can be treated as an
indicator of data rate during a short period of time, where
the coefficients of the linear relation between data rates and
power are steady.

To estimate the uplink data rate and power, first we
record the data rate and energy consumption for each
offloaded frame. Then, these records can be exploited to
derive the linear relation between data rate and power using
regression, to maintain an up-to-date correlation estimate.
Moreover, we also record the cellular signal strength level
during each frame offload. Since generally data rate has a
linear relationship with signal strength during short periods
of time, we can exploit current signal strength level to
roughly estimate current data rate based on the records of
previously offloaded frames. Then, the estimated data rate is
exploited to gauge energy consumption to offload a frame.

5.2 Adaptive Algorithm
As aforementioned, we try to optimize completion time
and energy consumption together. However, due to the

dynamics of cellular uplink data rate and power, we propose
a tailored solution for this specific problem rather than a
scalar treatment of these two objectives.

For the processing under cellular, we have two options:
frame offload and local detection. Frame offload may im-
prove completion time or energy consumption or both,
depending on the cellular data rate and power consumed
by cellular during offloading. For a number of frames, local
detection can be exploited to reduce the completion time by
increasing the number of processing batches, although this
incurs an additional energy cost. Moreover, local detection
usually takes multiple frames as input, and once it starts
processing, the frames should not to be offloaded to avoid
duplicate processing. Therefore, it is difficult to determine
the number of frames included in batch processing, since
offloading frames may improve performance during batch
processing.

Frame offload may be exploited to reduce both com-
pletion time and energy consumption simultaneously; local
detection cannot optimize these two objectives together, and
hence it may be preferred only when both completion time
and energy cannot benefit from frame offload. In addition,
we do not parallelize frame offload and local detection, since
this always sacrifices one objective for another. Based these
considerations, we design an adaptive algorithm for the pro-
cessing under cellular, towards optimizing both completion
time and energy cost with the cellular data usage constraint,
which works as follows.

Frames are continuously extracted from a video into a
frame queue. When a frame is available, a mobile device
will offload a frame to the cloud. If both the offloading time
and energy consumption are less than those estimated for
local detection, this offloading is called a successful attempt;
otherwise, it is referred to as an unsuccessful attempt.

After the first successful attempt, the mobile device will
offload another frame. If this is also a successful attempt,
then we can derive the linear relationship between data
rate and energy consumption, and the relation between
signal strength and data rate. For subsequent offloads, the
mobile device can estimate the completion time and energy
consumption based on current signal strength and the linear
functions. If both are less than those estimated for local
detection, it will offload another frame.

Whenever an attempt is unsuccessful, or the estimate
indicates an unsuccessful attempt will occur, the mobile
device will switch to local detection and set a backoff timer to
ω for frame offload (i.e., frame offload will not be performed
during ω). Let T pmin(nr) denote the minimal completion time
if all the remaining frames nr are detected locally, no denote
the number of previously offloaded frames, and nd denote
the maximum number of frames that can be offloaded to the
cloud under the data usage constraint D′, where nd = bD

′

df
c.

Then, ω =
Tp
min(nr)

nd−no
2u, where u is the number of consecutive

unsuccessful attempts.
For local detection, each time the mobile device will

process as many frames from the frame queue (it may wait
for frames to be extracted from a video), which can be
completed within ω. After a timeout of the backoff timer, the
mobile device will switch back to frame offload. The process
iterates until frame offload reaches the limit nd or all frames
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Fig. 6. Illustration of video processing under cellular.

are processed. If limit is reached, then local detection will be
the only option to process the remaining frames.

Frame offload and local detection are performed al-
ternately to find the moments when frame offload can
improve both energy and completion time, or when local
detection should be performed. The backoff timer exponen-
tially increases with the number of consecutive unsuccessful
attempts. This is designed to capture different network
conditions. When the network condition is constantly poor,
offloading is less frequently attempted and the frequency is
exponentially reduced. When the network condition varies,
offloading is attempted more frequently to seize the mo-
ments when frame offload benefits both.

We use Fig. 6 as an example to illustrate how the
adaptive algorithm works. Since the first offloading attempt
is successful, it offloads the second frame. However, the
offloading time is more than detecting a frame locally. Thus,
the frame offloading backoff timer is set at ω =

2Tp
min(n−2)

nd−2
and local detection is performed instead during ω. After the
timeout, another frame is offloaded, but it fails. Therefore,
the mobile device switches to local detection again, and
the backoff timer is set to 22Tp

min(n−6)

nd−3 since there are two
consecutive attempt failures. After switching back to frame
offload, several successful attempts are made, and hence the
mobile device can estimate the data rate and the energy
to be consumed based on the signal strength. However, a
subsequent estimate indicates that the next attempt will be
unsuccessful and hence it performs local detection instead.

Instead of parallelizing frame offload and local detection,
we choose to perform them alternatively. Frame offload is
employed to optimize both completion time and energy
consumption. However, due to the variation of network con-
ditions, frame offload is selected only if it outperforms local
detection in terms of both completion time and energy and
meets the data usage constraint. The adaptive algorithm is
simple and efficient, and it can also be easily implemented.

6 IMPLEMENTATION

We have implemented CrowdVision on Android and a
workstation with a GTX TITAN X GPU as the cloud to assist
mobile devices for video crowdprocessing. Tasks are issued
from the workstation to mobile devices through Google
Cloud Messaging. Messaging between the cloud and mobile
devices are implemented using Protocol Buffers. The archi-
tecture and App of CrowdVision are illustrated in Fig. 7. The
implementation of CrowdVision on mobile devices consists
of three components: core services, monitors, and a GUI.
Core Services. Core services contain an executor service,
a frame extraction callable, a Caffe callable, an offload-
ing callable, a multithreaded frame queue, and a video

Fig. 7. Architecture and App of CrowdVision.

database. The video database stores the metadata of local
videos such that CrowdVision can quickly screen videos for
the processing task. The Multithreaded frame queue stores
extracted frames from videos and supports multithreading
access. The executor servce is able to call any of the callables
to perform frame extraction, Caffe for frame detection, or
offloading of a frame or video. The executor service takes
inputs from tasks, GUI and monitors, and employs the
selected strategy to process each video.
Monitors. There are two monitors to measure network state
and battery level, which provide inputs to the core services.
The network monitor tells the cores services current net-
work connection with distinct metrics for WiFi or cellular
networks. For WiFi, it measures the uplink data rate from
a mobile device to cloud using probing data. For cellular,
it monitors the signal strength level. The battery monitor
measures the energy consumption for each offloaded frame
for the cellular case.
GUI. The GUI allows mobile users to configure the energy
usage, cellular data usage, and access to videos. Energy
control ranges from the minimum to the maximum energy
cost of local video processing. It is enabled using WiFi. For
cellular, the data usage limits can be specified by users.
Additionally, users can select videos to not be processed
by CrowdVision, for privacy concerns or any other manual
filtering requirements.

7 EVALUATION

In this section, we evaluate the performance of Crowd-
Vision. We first compare CrowdVision against alternatives
under various system settings based on empirically gath-
ered measurements to understand when and why Crowd-
Vision outperforms alternatives and then confirm the gains
of CrowdVision through experiments on our testbed. We
also investigate how the split-shift algorithm approximates
the optimum for determining processing batches.

7.1 Performance under Various Settings
We first use empirically gathered measurements of process-
ing time and energy taken from a Galaxy S5 to investigate
the impact of system parameters, such as WiFi/cellular
data rate, frame data size and frame extraction rate. Under
WiFi, CrowdVision is compared against MAUI [7] (the most
popular generic computation offload system), where MAUI
is adapted to optimize the completion time. Under cellular,
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Fig. 8. Performance of CrowdVision and MAUI under WiFi in terms of WiFi data rate, frame data size, and frame extraction rate.

as MAUI does not adapt to varying data transmission rates,
CrowdVision is compared against basic processing options
(i.e., solely frame offload and solely local detection). The
simulation is carried out on a 1080p 30-second video. Note
that the video specification and duration do not affect their
relative performance.
WiFi. Fig. 8a illustrates the completion time of MAUI and
CrowdVision in terms of WiFi data rate, where the frame
data size df is 500kB and frame extraction rate re is 6fps.
When the WiFi data rate is high enough, e.g., 2620KB/s in
Fig. 8a, video offload costs the least and both MAUI and
CrowdVision choose video offload and hence perform the
same. Similarly, when the WiFi data rate is low enough,
local detection will be selected by both MAUI and CrowdVi-
sion and thus they perform equivalently again, e.g., 20KB/s
in Fig. 8a. When between these two rates, CrowdVision out-
performs MAUI. This is because the split-shift algorithm
employed by CrowdVision can improve completion time by
taking advantage of batch processing and by parallelizing
frame offload and local detection. The completion time of
CrowdVision is as low as 60% of MAUI as depicted in
Fig. 8a.

Since CNN models may require different resolutions of
images as input, we also investigate the effect of frame data
size on the completion time. As illustrated in Fig. 8b, similar
to the effect of WiFi data rate, when frame data size is large
enough, it is always better to offload videos. When frame
data size is small enough, frame offload is the best option.
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Fig. 9. Optimized completion time with energy constraint, where (a) r =
500KB/s, df = 200KB, re = 6fps, (b) r = 40KB/s, df = 200KB, re =
6fps.

In both regions, MAUI and CrowdVision perform equally.
However, between them, CrowdVision always outperforms
MAUI as depicted in Fig. 8b due to the same reason dis-
cussed above.

To detect different objects, different frame extraction
rates may be defined by the task issuer. Similar to the effect
of WiFi data rate and frame data size, CrowdVision outper-
forms MAUI as shown in Fig. 8c.

Fig. 9 illustrates the completion time with different
energy constraints between Emin and Emax. In Fig. 9a,
Emin = Eo (i.e., frame offload consumes the least energy),
Emax is the energy consumption of the fastest processing
option. When the energy constraint increases from Emin to
Emax (i.e., from 80J to 120J), the completion time gradually
decreases from 75 seconds to 35 seconds. Fig. 9b shows the
case that Emin = Ep (i.e., local detection consumes the least
energy). As the energy constraint is relaxed, the completion
time approaches the minimum. From Fig. 9 and Fig. 9b, we
can see that our solution acts as a linear function to correlate
completion time and energy constraint.
Cellular. Based on the measurements of the LTE module on
a Galaxy S5 under different uplink rates, as illustrated in
Fig. 5, we perform the evaluation over cellular networks.

To model the dynamics of cellular data rate, we adopt a
Markov chain [29]. Let R denote a vector of transmission
rates R = [r0, r1, . . . , rl], where ri < ri+1. The Markov
chain advances at each time unit. If the chain is currently
in rate ri, then it can change to adjacent rate ri−1 or ri+1,
or remain in ri, but staying in current rate has a larger
probability than changing. Therefore, for a given vector, e.g.,
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Fig. 11. System performance of different processing options with various settings and different WiFi data rates.

of five rates, the transition matrix is defined as

P =
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In the experiments, we consider two vectors of cellular data
rates, which are R1 = [20, 100, 150, 250, 400] (KB/s) and
R2 = [20, 100, 150, 500, 600] (KB/s), and the time unit of
the Markov chain is two seconds. Moreover, we set the data
usage constraint of CrowdVision to half of total extracted
frames.

Fig. 10a and 10b illustrate their performance under R1

and R2, respectively. As depicted in Fig. 10a, CrowdVi-
sion outperforms frame offload in terms of both completion
time and energy; its performance is similar to local detec-
tion. When cellular data rates increase to R2 in Fig. 10b,
frame offload performs better than before as expected. Since
cellular data rates do not affect local detection, its perfor-
mance remains the same. CrowdVision performs the best. It
has less completion time than others and slightly less energy
consumption than frame offload, with half of cellular data
usage.

CrowdVision outperforms frame offload and local detec-
tion under different cellular data rates, because the adaptive
algorithm of CrowdVision is designed to adopt different
processing options according to real-time cellular data rate
and energy to be consumed. Generally, when the cellular
data rate is high, it tends to offload frames, otherwise, it
is apt to perform local detection. Moreover, the backoff
mechanism of the adaptive algorithm avoids unnecessary
frame offload when the cellular data rate is low.

7.2 Performance on Testbed
Testbed. We deployed CrowdVision on a Galaxy S5, which
can connect to the Internet using either WiFi or cellular. The
workstation can be reached by a public IP address. For the
experiment using WiFi, we configured a WiFi router with
different 802.11 protocols to get different uplink data rates.
The experiments under cellular (4g LTE) were carried out at
three different locations (i.e., a lab, a lobby, and a restaurant
in downtown) to acquire different signal strengths, uplink
data rates, and traffic conditions. The performance is eval-
uated based on the processing of a 1080p 30-second video
under different settings in terms of completion time and
energy, where energy is measured by the Monsoon power
monitor.

WiFi. Fig. 11 illustrates the completion time of MAUI and
CrowdVision. The experiments are conducted using the
following parameters: uplink data rates (0.7, 1.66 and 4.93
MB/s), frame data sizes (72, 252, and 519 KB, which are
the sizes of JPG images with resolutions 640×360, 1280×720
and 1920×1080, respectively), and frame extraction rates (1,
5, 10 fps). Fig. 11a, 11b and 11c depict the completion time
in terms of WiFi uplink data rate, frame data size and frame
extraction, respectively. They exhibit the similar pattern as
depicted in Fig. 8a, 8b and 8c. CrowdVision outperforms
MAUI in all the settings. For example, when WiFi uplink
data rate is 0.7MB/s, the completion time of CrowdVi-
sion is less than a half of MAUI (i.e., 2x speed-up). These
experiments further confirm the gain of CrowdVision over
MAUI. Moreover, as shown in Fig. 11d, the estimated
completion time is very close to the measured completion
time. Therefore, CrowdVision can reliably make the best
decision based on the estimate. When an energy constraint
is imposed, CrowdVision can improve the completion time
as the energy constraint is relaxed, and vice versa, as illus-
trated in Fig. 11e, which confirms the effectiveness of the
optimization with energy constraints.
Cellular. We measured the average uplink data rates at the
three locations and correlated the performance with these
rates, as illustrated in Fig. 12. When the data rate is low,
CrowdVision outperforms frame offload in terms of both
completion time and energy. Since CrowdVision has to send
some frames to acknowledge the current cellular data rate,
it incurs slightly longer completion time and uses more
energy than local detection. When the data rate increases,
CrowdVision and frame offload perform better than be-
fore. CrowdVision has similar completion time with local
detection but uses less energy. When the data rate further
increases, CrowdVision is faster and uses less energy than
the others. When the data rate is sufficiently high such that
offloading a frame commonly outperforms locally detecting
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Fig. 12. System performance of different processing options under dif-
ferent cellular uplink rates, where df = 252KB, re = 1fps.
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Fig. 13. Comparison between Optimum and Split-Shift.

a frame in both completion time and energy cost, Crowd-
Vision tends to offload more frames but avoids the time
when the data rate is low. Therefore, CrowdVision adapts to
different cellular data rates to reduce completion time and
save energy.

7.3 Performance of Split-Shift

Although the split-shift algorithm is designed to handle
the local processing under WiFi, it can also be exploited to
solve the ILP problem (1) by assuming δ → +∞ (recall δ
is the time spent to offload a frame). The ILP problem is
meaningful. It can be employed to minimize the processing
time of deep learning on frames extracted from videos,
no matter the processing is performed on CPUs or GPUs.
Therefore, we investigate the performance of the split-shift
algorithm on (1), comparing to the optimum obtained by
GLPK using LP relaxation and integer optimization on a
small scale.

Fig. 13a illustrates their comparison with the parameters
of batch processing on the CPU of Galaxy S5. We can
see split-shift achieves the optimum under this setting.
In Fig. 13b, we use the parameters of Tegra K1 GPU on
performing AlexNet, where α and β is close to γ (the
time spent to extract a frame from a video). Under this
setting, although split-shift continuously deviates from the
optimum with the increase of the frame number, split-shift
is still close to the optimum. The different performance
of split-shift under these two settings can be explained
intuitively as: (i) when detecting a frame takes much longer
time than extracting a frame from a video, it is relatively
easy to determine the optimal batch processing; (ii) when
they are close, it is much more difficult to do so. This is
also evidenced by GLPK, which spent much more time on
finding the optimal solution under the setting of Fig. 13b
than Fig. 13a for the same number of frames (minutes vs.
hours). In summary, split-shift, a suboptimal algorithm with
the complexity O(n), is practical and affordable to solve
the ILP problem, which commonly exists in optimizing the
performance of deep learning applications.

8 DISCUSSION

Crowdprocessing. Unlike crowdsourcing or crowdsensing,
we define crowdprocessing as a computing-oriented ap-
proach. Instead of simply sensing and sharing data, we
focus on exploring the computing capability of mobile
devices; i.e., mobile devices process their own data using

deep learning and results are centrally collected to solve
problems. For crowdprocessing, the key problem, which is
also the focus of this paper, is to enable resource-constrained
mobile devices to efficiently perform such complex comput-
ing.
Compatibility. CrowdVision is currently built on top of
Caffe. However, as shown in Fig. 7, Caffe works only as
a callable to perform detection on mobile device and cloud.
Therefore, it can be easily replaced by other deep learning
frameworks. Moreover, CrowdVision can be easily adapted
to mobile GPUs when they are available for the acceleration
of deep learning on off-the-shelf mobile devices, because it is
just the change of system parameters. It is worth noting that
the computing capability of mobile devices even equipped
with mobile GPUs is still far behind GPU-accelerated cloud.
Generality. The characteristic of batch processing com-
monly exists in the computing of deep learning, not just
for convolutional neural networks. Therefore, CrowdVi-
sion that is particularly designed to take advantage of batch
processing can be used for other applications with minor
modifications. Moreover, the split-shift algorithm can be
exploited to determine batch processing so as to optimize
the performance and resource usage in these applications
with/without computation offload.

9 CONCLUSIONS

In this paper, we present CrowdVision, a computing plat-
form for crowdprocessing videos using deep learning.
CrowdVision is designed to optimize the performance on
mobile devices with computational offload and by taking
into consideration the characteristics of the computing of
deep learning for video processing. CrowdVision is im-
plemented and evaluated on the off-the-shelf smartphone.
Experimental results demonstrate that CrowdVision greatly
outperforms the existing computational offload system or
basic processing options under various settings and net-
work conditions. We envision CrowdVision to be a great
computing framework for crowdprocessing applications us-
ing deep learning.
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