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Abstract — In this paper, we propose a high-throughput low-
latency arithmetic encoder (AE) design suitable for high 
definition (HD) real-time applications employing advanced video 
coding standards such as H.264/AVC or AVS and using a 
macroblock (MB) level pipeline. First, in order to derive the 
performance requirement on the AE, a buffer model in 
connected with which it is designed is thoroughly analyzed. Then, 
using joint algorithm-architecture optimization and multi-bin 
processing techniques, we introduce a novel binary arithmetic 
coder (BAC) architecture with throughput of 2~4 bins per cycle 
sufficient for real-time encoding. Furthermore, a hybrid context 
memory scheme is presented to meet the throughput 
requirement on the BAC. Simulation result shows that our 
design can support 1080p at 60 fps for AVS HDTV real-time 
coding with a bin rate up to 107K per MB line. Synthesized with 
the TSMC 0.13𝛍m technology, the AE can run at 200MHz and 
costs 47.3K gates. By operating at 130MHz, the design is also 
verified in an AVS HD encoder on a Xilinx Virtex-6 FPGA 
prototype board for 1080p at 30 fps.  

I. INTRODUCTION 
Today’s video codec adopts a series of innovative coding 

techniques to achieve high compression efficiency. Both 
H.264/AVC [1] and AVS [2] use entropy coding to reduce the 
redundancy of transformed coefficients after prediction, as 
well as the motion information etc. Context-based Adaptive 
Binary Arithmetic Coding (CABAC) [3] is adopted in 
H.264/AVC Main/High profiles which can save up to 14% bit 
rate compared to Context-based Adaptive Variable Length 
Coding (CAVLC). AVS also adopts a similar Context-based 
Binary Arithmetic Coding (CBAC) [4] in Jiaqiang profile 
which can save up to 13% bit rate than Context-based 2D 
Variable Length Coding (C2DVLC). However, the arithmetic 
coding techniques cause additional computational complexity. 
In order to implement a real-time HDTV encoder, it becomes 
necessary to develop a high-throughput AE architecture with 
strong considerations for the system latency. 

Several AE architectures have been proposed in literature 
to increase the throughput in recent years. Osorio [5] 
introduced a multi-bin BAC by packing the equally probable 
(EQ) bins with normal ones. The updates of Range and Low 
are also separated to achieve a throughput around 2bins/cycle 

in average. In Liu’s [6] article, a 4-stage pipelined BAC 
architecture is presented, which can process one bin per cycle. 
Since the delay of accessing neighboring syntax elements (SE) 
is long, the throughput of this encoder is only 0.67bin/cycle. 
Tian [7] proposed a RDO-support CABAC encoder with a 
throughput of 1bin/cycle. By using high operating frequency, 
the throughput of this encoder is higher than most of others. 
Reported by Chen [8], a 6-stage pipelined BAC with multi-bin 
processing capability is presented. By optimizing the 
renormalization step, the average throughput of 1.42bins/cycle 
can be achieved for the design.  

These state-of-the-art AEs focus on the throughput mostly, 
while for real-time coding applications, the system latency 
caused by the large size of the front-buffer of the AE is also 
important. In this paper, we analyze front-buffer behavior and 
its requirement on the BAC processing speed and then 
propose a novel BAC architecture with throughput of 2~4 
bins per cycle by using joint algorithm-architecture 
optimization and multi-bin processing techniques. A hybrid 
context memory scheme is also presented to meet the 
throughput requirement on the BAC. Implemented for AVS, 
the proposed AE can achieve low delay and real-time 
performance for HDTV (1080p at 60fps). 

The rest of this paper is organized as follows. Section II 
analyzes the buffer model and performance requirement. The 
AE architecture and optimization strategies are proposed in 
Section III. Section IV shows the implementation result and 
comparison with other works. Finally, we conclude this paper 
in Section V. 

II. BUFFER MODELING 
In AE, the throughput of BAC is the bottleneck since the 

binarizer can generate large amount of bins by, for example, 
processing multi SEs simultaneously. For real-time design, 
MB-level pipelining is usually adopted to increase the 
throughput and reduce latency. However, the quantity of input 
bins (from binarizer) of BAC for a MB could fluctuate 
tremendously, which makes the MB-level pipelining of AE 
very difficult. It is obvious that we can use a large buffer to 
smooth the input fluctuation and in our design we also make 
such an arrangement. The problem then becomes the  
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Figure 1.  The proposed buffer model. 

balancing between the input (front) buffer size and its 
throughput requirement, which directly translates into chip 
area and system latency. In the following, we analyze the 
assumed buffer model (as depicted in Fig. 1) to illustrate the 
relationship between the buffer size and the throughput 
requirement.  

Let 𝑓𝑖𝑛(𝑡) be the input to the buffer with variable, time 𝑡, 
let 𝑓𝑜𝑢𝑡(𝑡) be the output of the buffer with a constant read-out 
speed 𝐶 and let 𝑇𝑇 be the length of a continuous time period. 
Let 𝑄𝑄𝑖𝑛(𝑡,𝑇𝑇) and 𝑄𝑄𝑜𝑢𝑡(𝑡,𝑇𝑇) be the quantities of data written 
to the buffer and data read out from the buffer, respectively, 
during time period (𝑡, 𝑡 + 𝑇𝑇]. Let 𝑄𝑄(𝑡) be the quantity of data 
held in the buffer at time 𝑡 . Then we see the following 
equations hold.  

𝑓𝑜𝑢𝑡(𝑡) = {
𝐶,   𝑖𝑓 𝑄𝑄(𝑡) ≠ 0
0,   𝑖𝑓 𝑄𝑄(𝑡) = 0.                                                                 (1) 

𝑄𝑄𝑖𝑛(𝑡,𝑇𝑇) =  ∫ 𝑓𝑖𝑛(𝑡)𝑑𝑡𝑡+𝑇
𝑡 .                                                                   (2) 

𝑄𝑄𝑜𝑢𝑡(𝑡,𝑇𝑇) = {
𝑇𝑇𝐶,    𝑖𝑓 𝑄𝑄(𝑡) ≠ 0 𝑓𝑜𝑟 𝑡 ∈ (𝑡, 𝑡 + 𝑇𝑇]

∫ 𝑓𝑜𝑢𝑡(𝑡)𝑑𝑡
𝑡+𝑇
𝑡 ,   𝑖𝑓 𝑏𝑢𝑓𝑓𝑒𝑟 𝑖𝑠 𝑒𝑚𝑝𝑡𝑦 𝑎𝑡 𝑠𝑜𝑚𝑒 𝑡

.     (3) 

𝑄𝑄(𝑡) = 𝑄𝑄(𝑡 − 𝑇𝑇) + 𝑄𝑄𝑖𝑛(𝑡 − 𝑇𝑇,𝑇𝑇) − 𝑄𝑄𝑜𝑢𝑡(𝑡 − 𝑇𝑇,𝑇𝑇).                         (4) 

Based on these equations, we will prove the following 
hypothesis about the buffer model. 

Hypothesis 1: For any starting time 𝑡, if there exists an 
upper bound 𝑄𝑄0 for the total input data to the buffer in a given 
time period 𝑇𝑇0 (𝑄𝑄𝑖𝑛(𝑡,𝑇𝑇0)  ≤  𝑄𝑄0), then we can set the 𝑄𝑄0 as 
the buffer size and 𝐶 = 𝑄0

𝑇0
 as the constant output speed of the 

buffer to guarantee that the buffer will never overflow, which 
is 𝑄𝑄(𝑡) ≤ 𝑄𝑄0 for any 𝑡. 

Proof: We first prove the following lemma. 

Lemma 1: If the buffer is empty at time 𝑡0 and is full or 
overflowed at 𝑡1, then we can get that the time period from 𝑡0 
to 𝑡1 is larger than 𝑇𝑇0, that is 𝑡1 − 𝑡0 > 𝑇𝑇0. 

Proof: Because the total input data to the buffer is 
monotonically increasing and 𝑄𝑄0 is the upper bound for any 
given time period 𝑇𝑇0 , the total input data cannot exceed 𝑄𝑄0 
unless the time period is equal or larger than 𝑇𝑇0. Moreover, 
during the time period from 𝑡0  to 𝑡1 , there must have data 
output from the buffer. So the time period from buffer empty 
to buffer full or overflowed is strictly larger than 𝑇𝑇0.  

Based on Lemma 1 we can further prove the Hypothesis 1. 
Suppose at time instance of 𝑡𝑓 the buffer overflows at the first 
time, then from Lemma 1, 𝑡𝑓 > 𝑇𝑇0 must be true. Considering a 
time instance 𝑡𝑠 = 𝑡𝑓 − 𝑇𝑇0, the amount of data in the buffer at 
time 𝑡𝑠 can be obtained by the following equation. 

𝑄𝑄(𝑡𝑠) = 𝑄𝑄(𝑡𝑓) − 𝑄𝑄𝑖𝑛(𝑡𝑠 ,𝑇𝑇0) + 𝑄𝑄𝑜𝑢𝑡(𝑡𝑠 ,𝑇𝑇0)                                       (5) 

TABLE I.  STATISTICAL RESULTS OF 𝑄𝑄0 AND 𝑇𝑇0 (GOP OF IBBP) 

Sequence QP Bit rate 
(Mbps) 

𝑄𝑄0 
(Bins) 

𝑇𝑇0 Throu. 
(Bins/cy.) Cycle MB 

bluesky 14 114.3 100657 49020 120 2.05 
sunflower 12 121.6 96706 49020 120 1.97 

mobcal_ter 21 99.4 107160 49020 120 2.19 
fireworks 40 106.3 71686 49020 120 1.46 

pedestrian_area 20 103.7 77930 49020 120 1.59 
BasketballDrive 16 113.5 79688 49020 120 1.63 

It is obvious that 𝑄𝑄(𝑡𝑓) > 𝑄𝑄0  and 𝑄𝑄𝑖𝑛(𝑡𝑠,𝑇𝑇0) ≤ 𝑄𝑄0 . For 
𝑄𝑄𝑜𝑢𝑡(𝑡𝑠,𝑇𝑇0) , we have two mutually exclusive situations as 
follows. 

1) From 𝑡𝑠 to 𝑡𝑓, the buffer is empty at time instance 𝑡𝑒. 
2) From 𝑡𝑠 to 𝑡𝑓, the buffer has never been empty. 

For Situation 1), we get that the time period from buffer 
empty (𝑡𝑒) to buffer overflowed (𝑡𝑓) is 𝑡𝑓 − 𝑡𝑒 < 𝑇𝑇0, which 
contradicts with Lemma 1. For Situation 2), since the buffer is 
never empty, the total output data from the buffer is 
𝑄𝑄𝑜𝑢𝑡(𝑡𝑠,𝑇𝑇0) = 𝑇𝑇0𝐶 = 𝑄𝑄0. Then (5) becomes 

𝑄𝑄(𝑡𝑠) = 𝑄𝑄(𝑡𝑓) − 𝑄𝑄𝑖𝑛(𝑡𝑠 ,𝑇𝑇0) + 𝑄𝑄𝑜𝑢𝑡(𝑡𝑠 ,𝑇𝑇0) > 𝑄𝑄0 − 𝑄𝑄0 + 𝑄𝑄0 = 𝑄𝑄0. 

This means that at time 𝑡𝑠 the buffer already overflows and 
this contradicts with the assumption that the time 𝑡𝑓 is the very 
first time that buffer overflows. The Hypothesis 1 is thus 
proved. 

With this buffer model, if we find 𝑄𝑄0 for a given 𝑇𝑇0 (this 
implies that when a window of time 𝑇𝑇0 is checked across the 
entire input bin stream, there are at maximum 𝑄𝑄0 number of 
bins), the buffer size can be set to 𝑄𝑄0 and the throughput to 𝑄0

𝑇0
, 

and this can guarantee the buffer will never overflow. In order 
to obtain these two parameters, we tested a number of HD 
(1080p) sequences at level 6.0.3 in AVS, which supports 
resolution of 1920x1152@60fps and bit rate up to 100Mbps. 
Table I shows the detailed results. From the test result, our 
design is set to aim at using a buffer capable of holding the 
data of a MB line (120MBs for 1080p) and achieving the 
throughput of 2.2 bins per cycle when operating at 200MHz. 

III. PROPOSED ARITHMETIC ENCODER 
A. Top-level Arithmetic Encoder Architecture 

The proposed AE architecture, which consists of three 
main functional blocks, is shown in Fig. 2. Block Binarizer 
converts the input SE into bin string. A line buffer holding 
neighboring SE for context selection purpose is also located in 
this block. Block CM (context management) contains the 
proposed hybrid memory scheme and the context updating 
logic. BAC block can support a throughput of 2~4 bins per 
cycle. Since these three blocks are data independent (no 
feedback loop), we adopt a 3-stage pipelined scheme among 
them to increase the throughput. For the critical path in CM 
and BAC, we optimize them according to the following 
strategies. 

B. Optimization of BAC Architecture 
First, we construct a baseline BAC architecture with a 

constant throughput of 2bins/cycle. The critical path in BAC is 
the calculation of Low in the iteration, especially in LPS. 
Hence the worst case of 2-bin calculation is in processing two  
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Figure 2.  Proposed arithmetic encoder architecture. 
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Figure 3.  Timing diagram of the worst case for two LPS bins. 

consecutive LPS bins. By further observation we found two 
useful characteristics that can be used for speeding up the 
worst-case processing. One is that the calculation of Range 
only depends on itself in the iteration and the operating time is 
much shorter than Low. In this situation, some operation of 
Low (calculation of rMPS and rLPS as shown in Fig. 3, rMPS 
and rLPS indicates the widths of interval for MPS and LPS, 
seperately), can be pre-calculated in the first iteration after the 
calculation of Range is done, which significantly reduces the 
operating time of Low in the second iteration. The other one, 
e.g. in CBAC, is the initialization of Range when LPS 
happens. In logarithm domain, the Range is represented by 
two parameters which are its integral part and its decimal part. 
The integral part will be initialized when LPS happens, which 
can make calculation of Low in the second iteration much 
easier. By applying this strategy (i.e. time borrowing), we can 
achieve a joint algorithm-architecture optimization that makes 
it possible a constant throughput of 2bins/cycle and a latency 
33% lower than in the case of an architecture with a 
performance of 1bin/cycle. 

Moreover, we adopt the multi-bin processing to further 
increase the throughput. For coefficient coding, with the 
quantization parameter (QP) getting smaller, the number of 
bins increases dramatically when the bit rate rises. Taking 
AVS as an example, which is also applicable for H.264/AVC, 
the coefficients are coded by Level (absLevel and Sign) and 
Run pairs and the type of binarization is unary as shown in Fig. 
4. For the context model selection, the bins whose indexes are 
equal or larger than 2 for absLevel and 1 for value of Run use 
the same contexts, which are called same-context (SC) bins. 

0
Bin 

index

0 0 0 0 0 1 0 0 0
0 1 2 3 4 5 6

Bin 0 0 0 1 0
0 1 2 3 4 5

Ctx 
index 0 1 2 0 1Bypass

absLevel = 6 Sign Run = 5

Normal two bins coding Four or three MPS coding  
Figure 4.  Speed up using multi-bin processing for coefficients. 
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Figure 5.  Hybrid memory scheme. 

The SC bins consists of several consecutive ‘0’s and a ‘1’ at 
the end. It is obvious that the MPS of the context for SC bins 
is ‘0’ in most cases. Since the calculation of MPS is much 
simpler than LPS, we can process multi consecutive ‘0’s in 
one cycle. Considering the matching of circuit delay with 
processing two LPS bins, we adopt 4-bin MPS processing 
circuit which can encode four or three MPS bins in one cycle 
(shown in Fig. 3). This multi-bin processing technique further 
increases the throughput by 15% than the throughput of 
2bins/cycle in average. 

C. Hybrid Memory Scheme 
In the AE architecture, we adopt a two-level memory 

architecture, consists of context RAM and local context buffer, 
to speed up the memory access [7]. However, in our constant 
2bins/cycle scheme, the consecutive two bins may belong to 
different SEs, which is a bit difficult for context RAM 
mapping. For example, in AVS, if the first bin is the last bin of 
SE mb_type, the second bin may be part of the SE 
mb_part_type or reference index. We call this type of SE the 
Collision SE (CSE), which must be located in different RAMs. 
To fulfill all these CSEs, 4 ~ 5 dual-port RAMs and the 
corresponding local buffers are needed at least. After further 
careful observation, we found that in all bin pairs associated to 
the CSEs, the bin index of the second bin in bin pair is always 
0 (means the first bin of SE). According to this observation we 
propose a hybrid memory scheme as shown in Fig. 5. All 
context models used by the first bin of CSEs are stored in 
register groups for fast access and the other context models are 
stored in a dual-port RAM for high storage density. For the 
context weighting technology adopted in AVS [4], two 
context models may be used for coding one bin (WBin). In our 
constant 2bins/cycle scheme, the WBins cannot be 
consecutive and we use a single-port RAM to store the 
associated context models. Finally, totally 324 context models 
are stored which is only one more than the 323 context models 
required to support AVS standard. This memory scheme can 
also be applied to H.264/AVC due to the same concept. 
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TABLE II.  SIMULATION RESULT WITH 1080P SEQUENCES (GOP IS IBBP) 

Sequence QP Bit rate 
(Mbps) 

Throu. needed 
(Bins/cycle) 

Throu. actually 
(Bins/cycle) 

bluesky 14 114.3 2.05 2.34 
sunflower 12 121.6 1.97 2.36 

mobcal_ter 21 99.4 2.19 2.41 
fireworks 40 106.3 1.46 2.17 

pedestrian_area 20 103.7 1.59 2.39 
BasketballDrive 16 113.5 1.63 2.35 

Average  109.8 1.82 2.34 
 

 
Figure 6.  Actual performance of different frame types for 1080p. 

IV. IMPLEMENTATION RESULT 
Table II shows the performance of our architecture in 

encoding HD (1080p@60fps, bit rate up to 100Mbps) 
sequences. The actual throughputs of these sequences, under 
the given buffer size for storing the data for a MB line, are all 
higher than the requirement. The simulation results for 
different bit rates and frame types are shown in Fig. 6. The 
throughputs needed for I frame per MB line increases from 
0.66bins/cycle to 2.50bins/cycle when bit rate is from 20Mbps 
to 130Mbps, while the actual performance of our AE (from 
2.31bins/cycle to 2.60bins/cycle) can follow this trend to meet 
the throughput requirement. Because the coefficients take the 
most calculations when bit rate is rising, in this situation, our 
multi-bin processing for coefficients becomes more and more 
effective. P and B frames have much less bins than I frame, 
and the actual throughputs are also lower but still sufficient. 
Thus the real-time coding for AVS level 6.0.3 can be achieved 
with low delay. 

Our design is synthesized using the TSMC 0.13μm process. 
The detailed result is shown in Table III. The gate count 
includes all functional blocks in CBAC and memories for 
contexts. The comparison with previous works is shown in 
Table IV. Our design is the best on the throughput per cycle 
and also has an additional advantage of low system delay, i.e. 
less than a MB line for 1080p video coding. The gate area of 
computational logic of CBAC in AVS costs less than the 
CABAC in H.264/AVC. However, the memory cost of CBAC 
(13bits x 323) is much more than CABAC (7bits x 400). 
Hence the total gate count of our design is more than other 
works targeting H.264/AVC. The functions are also different 
between these designs as shown is Table IV. In addition, our 
design has been successfully verified in an AVS HD encoder 
on a Xilinx Virtex-6 FPGA prototype board operating at 
130MHz for 1080p at 30 fps. 

TABLE III.  SUMMARY OF THE IMPLEMENTED RESULT 

Process technology TSMC 0.13 μm CMOS 
Max frequency 200MHz 

Memory count 
Single-port RAM: 208bytes 
Dual-port RAM: 241bytes 

Register group: 78bytes 
Total gate count 47.3K 

Processing ability 1080p at 60fps with bit rate up to 100Mbps 
System latency Less than a MB line for 1080p 

TABLE IV.  COMPARISON WITH PREVIOUS WORKS 

 Osorio [5] Tian [7] Chen [8] Ours 
Standard H.264/AVC H.264/AVC H.264/AVC AVS 

Technology (μm) 0.35 0.13 0.13 0.13 
Max frequency 186 578 222 200 

Throu. (bins/cycle) 1.9~2.3 1 1.42 2.34 
Gate count 19.4K 44.6K 46.0K 47.3K 

Function BAC + part 
of BI Full Full Full 

 
V. CONCLUSION 

In this paper, a high-throughput AE architecture for HD 
real-time video coding is proposed, with the minimized 
latency of a MB line. We establish a buffer model about the 
relationship between buffer size and throughput requirement. 
A novel BAC architecture with throughput of 2~4 bins per 
cycle and the corresponding hybrid context memory scheme 
are proposed. Simulation results show that our design is far 
more superior than the ones in the literature and can support 
1080p at 60 fps for AVS HDTV real-time coding, bin rate up 
to 107K for a MB line. Synthesized with the TSMC 0.13μm 
technology, the proposed AE can run at 200MHz and costs 
47.3K gates. We have successfully implemented this AE in an 
AVS HD encoder on a Xilinx Virtex-6 FPGA prototype board 
operating at 130MHz for 1080p at 30 fps. 
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