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Abstract

This paper presents an efficient method to tell what hap-
pens (e.g. recognize actions) in a video sequence from only
a couple of frames in real time. For the sake of instanta-
neity, we employ two types of computationally efficient but
perceptually important features, optical flow and edge, to
capture motion and shape/structure information in video se-
quences. It is known that the two types of features are not
sparse and can be unreliable or ambiguous at certain parts
of a video. In order to endow them with strong discrimina-
tive power, we extend an efficient contrast set mining tech-
nique, the Emerging Pattern (EP) mining method, to learn
joint features from videos to differentiate action classes. Ex-
perimental results show that the combination of the two
types of features achieves superior performance in differen-
tiating actions than that of using each single type of features
alone. The learned features are discriminative, statistically
significant (reliable) and display semantically meaningful
shape-motion structures of human actions. Besides the in-
stant action recognition, we also extend the proposed ap-
proach to anomaly detection and sequential event detection.
The experiments demonstrate encouraging results.

1. Introduction
Action recognition has been extensively studied in the

literature due to its wide spectrum of applications, e.g.
video surveillance and human computer interaction. Al-
though most of the state-of-the-art methods report impres-
sive results, e.g. [7][5], the recognition engines usually re-
quire to extract a large amount of sophisticated features over
certain period of time in order to obtain a reliable action
label. Consequently, a judgment can only be made after
a long delay of feature collection. The latency can be an
entire period or even several repetitions of a whole action.
However, human usually can instantly tell what happens in
a scene only at a glance. In the literature, some researchers
studied the capability of human perception, for example, Li

et al.[8] reported that even with a glimpse of a single image,
human can reliably tell what is in the image and what event
happens in the scene. Whereas, this instantaneity property
has been rarely considered as a key criterion of action recog-
nition engines. As a result, even for the state-of-the-art ac-
tion recognition methods, if supplied with only a couple of
frames, the recognition accuracy is barely above the chance
(see example results in Fig. 3-5).

In this paper, we present an efficient method which is
able to instantly tell what happens in a video sequence based
on only a few frames. Specifically, the proposed method is
able to recognize actions using any two consecutive frames
of an action video of resolution 160 × 120 with an average
speed of 0.04s. (The experiment is conducted on an Intel
Core2 Duo 3.20GHz CPU, 3.0G RAM PC.) In order to sat-
isfy this instantaneity requirement, we employ two types of
computationally efficient (simple) but perceptually impor-
tant features, the optical flows [9] and Canny edges [11], to
capture the motion and shape/structure information in video
sequences.

Both features are fast to compute and have small mem-
ory demand. However, the optical flows are usually con-
sidered to be unreliable and ambiguous due to various rea-
sons, e.g. aperture problem and low image quality. Simi-
larly, shape features are also thought to be difficult to ex-
tract from motion sequences [12]. We admit that simple
features do have their limits, e.g. sensitive to different kinds
of variations and noise. But the situation is not always that
bad. For instances, it is known that optical flow at junc-
tions and corners usually can be accurately estimated, and
edge information has been successfully utilized to describe
object geometric and topological properties in many chal-
lenging applications [4]. In addition, although motion or
shape features alone may have weak discrimination power,
the combination of the two cues can exhibit distinctive se-
mantic characteristics as shown in Fig. 2. Based on these
observations, we strongly believe that there always exist
some reliable and inexpensive features which can be fur-
ther exploited to serve for certain challenging visual tasks.
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Figure 1. Encoding patch features as transactions. (a) Optical flows and Canny edges are quantized into four sections according to their
mean orientation indexed by 1-4. (b) A frame of action ‘Running’. (c) & (d) show its optical flows and Canny edges respectively. The
intensity indicates the magnitudes of the two features. The color in (c) encodes the optical flow orientation. (e)-(g) illustrate the encoding
method of the cells and the patch. See Section 2.2 for detailed explanation.

The key to the success is how to identify the ‘right’ ones.

The simple features are usually densely distributed in
the data (video sequences in our context), the number of
their combination is even larger. In order to quickly iden-
tify those discriminative ones from the large search space,
we employ an efficient data mining technique, the Emerg-
ing Pattern (EP) Mining method [6]. The EP mining was
originally proposed to analyze social statistics data and find
differences among social groups. In this paper, we ex-
tend the method to learn discriminative features (including
their combinations) in-between different actions. Experi-
ment results show that the learned features are discrimina-
tive, statistically significant (reliable) and they can display
semantically meaningful shape-motion structures of human
actions. Moreover, by using this method, the training can
be accomplished in a weakly-supervised way, i.e., we only
need to assign action labels to the videos without annotat-
ing the bounding-box of actions, aligning video sequences,
or labeling the start and end of actions, etc. This saves
tremendous manual work; Furthermore, the proposed fea-
ture combination and recognition strategy enables two other
challenging applications – anomaly detection and sequen-
tial event detection – to be handled in real time after re-
formulating the problems. This real-time/online feature is
not possessed by other state-of-the-art methods to our best
knowledge.

Because there is a lack of literature about action recogni-
tion using very few frames, we only identified three related
ones and introduce them as follows. Li et al. [8] recog-
nize actions in single images by integrating scene and object
level image interpretations without leveraging motion cues.
However, it is known that to obtain such high level semantic
information from an image is not only computationally ex-
pensive, but also can be unreliably in general. Wang et al.
[19] propose a hidden Conditional Random Field (hCRF)

model, which combines global and local features of motion
fields in a single frame to distinguish actions. Schindler et
al. [15] also study the problem of recognizing actions from
a small number of frames (‘snippets’). However, both these
methods require explicit annotation of the actors in training
data by bounding-boxes. Whereas, the proposed training
method only needs to specify action labels of training data.
Moreover, our method focuses on exploiting an ingenious
combination of simple features to achieve real-time perfor-
mance in action recognition which is rarely addressed in the
literature.

In the following, we first introduce the method of learn-
ing discriminative features using EP mining in Section 2.
Applications based on the proposed method are presented
in Section 3 & 4. We conclude the paper in Section 5.

2. Learning Discriminative Feature via Con-
trast Set Mining

In this section, we first introduce the EP mining method,
then we show how to extend it to learn discriminative visual
features from videos of different classes.

2.1. Emerging Pattern Mining

Emerging pattern mining is proposed to analyze the dif-
ference between two datasets/classes [6]. We follow the no-
tation in [6] to introduce the mathematical definition of the
emerging pattern. Let I = {i1, i2, ..., iN} be a set of N
items. A transaction refers to a subset T of I . A dataset
D is composed of a set of transactions. A subset X of I is
also called an itemset, and if X ⊆ T , we say the transaction
T contains the itemset X . The support of an itemset X in
a dataset D is defined to be %D(X) = countD(X)/‖D‖
where countD(X) is the number of transactions in D con-
taining X . Given an itemset X and a pair of datasets D1
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Figure 2. Mined discriminative features and their density maps for two action frame pairs from KTH dataset [16], (a) Examples of discrimi-
native features. A discriminative feature corresponds to a mined itemset (highlighted white cells) distributed in a frame patch (a transaction)
within the purple window. (b) Three feature density maps of a ‘Handwaving’ frame vs. a ‘Running’ frame, i.e., optical flow (OF), Canny
edge (EG) and combined shape-motion features (OF+EG). (c) Three feature density maps of a ‘Jogging’ frame vs. a ‘Running’ frame.

and D2, the growth ratio of an itemset X from D1 to D2 is
computed as

υD1/D2
(X) =


0, if %D1(X) = 0&%D2(X) = 0
∞, if %D1

(X) = 0&%D2
(X) 6= 0

%D2
(X)

%D1
(X) , otherwise

(1)
An itemset is said to be an ε-emerging pattern (ε > 1) from
D1 to D2, if υD1/D2

(X) > ε. Thus, intuitively, EP mining
finds the itemsets whose support ratios vary a lot from one
dataset to another. It captures the contrasts between pairs
of datasets that can be employed to design classifiers. EP
mining has been successfully applied to various fields such
as medical research and social science.

In this paper, we extend the EP mining method to study
visual data, in particular, to learn discriminative features be-
tween different classes of videos. A major reason we em-
ploy this method as a component of our framework is that
the method is so efficient that it is able to find EPs from
tens of thousands transactions in seconds. In the following,
we introduce how to learn discriminative visual features be-
tween different video classes with EP mining.

2.2. Representing Video Patches as Transactions

Because EP mining method was originally proposed to
study transaction data, in order to extend the method to
video analysis, the first step is to convert videos from a vi-
sual feature representation into a transaction representation.

The feature quantization is illustrated in Fig. 1. For a
video sequence, we first compute its optical flow and Canny
edges at each frame. Then, in a patch of size M × N pix-
els, we encode its visual features into a transaction in the
following steps. (i) The patch is equally divided into a grid,
of which each cell is m × n pixels (Fig. 1(e)&(f)). In our
implementation, M = N = 40 and m = n = 8. The op-

tical flow and Canny edges in a cell are quantized into two
integers respectively, each ranges from 1 to 4 according to
their mean orientation (see Fig. 1(a)). (ii) The features of a
cell are treated as an item of the transaction, and is encoded
by concatenating its location in the patch and the quantized
feature values. For example, the cell highlighted by a yel-
low dotted rectangle in Fig. 1(e) is located at the 7-th cell
of the patch, and its optical flow feature is quantized to be
4. Hence, the digitized optical flow feature item of the cell
is 74. Similarly, its shape item are 72 (Fig. 1(f)). If consid-
ering both shape and motion, the encoded item is 742. (iii)
The transaction of a patch is composed of the items of all
its cells. Noted that if the mean magnitude of the features in
a cell is smaller than a threshold, the cell is ignored in the
transaction and denoted as ‘X’ in Fig. 1(e)-(g).

2.3. Learning Simple Discriminative Features

To learn discriminative features between different video
classes, frame patches are sampled from both the positive
video set and the negative one. On each frame, we sequen-
tially extract overlapping image patches whose centers are
5 pixels away either vertically or horizontally. Then we
convert these patches into transactions using the method
described above. From the obtained positive transaction
dataset and the negative one, discriminative features are
mined as emerging patterns using the method described in
Section 2.1. The two parameters used in EP mining are the
support in positive dataset and growth ratio as defined in
Section 2.1. The support parameter measures how statis-
tically significant (or descriptive) a mined pattern is in the
positive dataset. Whereas, the growth ratio reflects the dis-
criminative power of a mined pattern.

Some learned discriminative features are illustrated in
Fig. 2 (a). A discriminative feature corresponds to an
itemset (the highlighted white cells) residing in a patch
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(a) (b)

Figure 3. (a) Confusion matrix of the frame-based action recog-
nition method on KTH dataset using shape-motion features. (b)
Comparison of recognition accuracies using different feature com-
binations (OF: optical flow, EG: Canny edge, OF+EG: shape-
motion), also with two other methods in [13] and [5]).

(highlighted in blue). An itemset encodes discriminative
shape/motion information as well as its spatial distribution
in an image patch. Fig. 2 (b) & (c) show density maps of
three types of learned discriminative features distributed in
two action image pairs, including optical flow (OF), Canny
edge (EG) and combined shape-motion features (OF+EG).
As can be observed, the mined discriminative features of
each type capture the semantic structures of actions from
different aspects. For instance, in Fig. 2 (b), the optical flow
features differentiate the ‘Waving’ frame from the ‘Run-
ning’ frame by the arm motion, whereas they distinguish
the ‘Running’ from ‘Waving’ by the motion of leg and torso
(which generally move horizontally). The Canny edge fea-
tures discriminate the two action frames by the poses of
leg contours. The combined features capture the two action
frames’ characteristic differences of motion and shape/pose
on both the arm and leg simultaneously.

For the confusing action frame pair ‘Jogging’ vs. ‘Run-
ning’ (Fig. 2 (c)), the motion feature alone cannot distin-
guish them well. However, the edge features identify the
‘Jogging’ frame using the vertical lines along the torso, and
pick up the slant lines along the leg as discriminative fea-
tures of the ‘Running’ frame. This may due to the mo-
tion magnitude difference between the two actions. Com-
pared to the shape feature, the shape-motion features fur-
ther include some new bits around the arms for the ‘Run-
ning’ frame. These observations confirm the enhancement
of the discriminative power brought by combining motion
and shape features.

The detection of a learned discriminative feature (emerg-
ing pattern) in a frame patch is also very efficient. It is re-
alized by just checking whether the emerging pattern (an
itemset) is contained in the transaction related to the patch.

3. Action Recognition

In this section, we present two efficient action recogni-
tion methods using the learned discriminative features.

3.1. Frame-based Action Recognition

We adopt a boosting framework [17] to recognize ac-
tions using any frame of an action video. A strong classifier
Hc(I) of action class c ∈ C is trained by integrating the
learned discriminative features as weak classifiers hfc(I),
where I denotes an action video frame, and fc is a learned
discriminative feature of c. The discriminative features are
learned in two directions, i.e., the EPs are mined either from
the negative class to the positive one or vice versa.

Each learned feature fc has a discriminative score sfc(I).
It is defined as a function of its support %D∗(fc), growth
ratio υD·/D∗(fc) (defined in Section 2.1 and (1)), and
the number of instances of fc detected in I is denoted as
n(I, fc).

sfc(I) = %D∗(fc) ·
υD·/D∗(fc)

υD·/D∗(fc) + 1
· n(I, fc), (2)

where D+ is the positive training set, which contains video
frames of a target action. D− is the negative one, which is
composed of all action frames of other types. D·/D∗(fc)
can be D−/D+(fc) or D+/D− depending on which direc-
tion fc is mined from.

The output of a weak classifier hfc(I) = 1, if sfc(I) >
τ ; otherwise, 0. τ is learned by minimizing the training
error using sfc(I).

After training as in [17], the action label for
an action video frame can be determined by
arg maxc

(∑
fc
αfchfc(I)

)
, where αfc is the learned

weight of hfc .

3.2. Video-based Action Recognition

We further apply the frame-based method to recognize
actions using more frames or even whole videos. The as-
sumption is, if we can get good predictions using some of
the frames in a video, by accumulation, the prediction ac-
curacy can be improved over the whole video sequence.

For training, we use the same method as in Section 3.1.
Action recognition on a given video clip is accomplished
by the following steps. (i) Key-frames are sampled from
the video clip every four frames to reduce computational
cost. (ii) Because the key-frames are sampled without any
preference – some snapshots of actions can be ambiguous,
while some are very distinguishable – different frames pro-
vide diverse confidence in judging its action label. Taking
this into consideration, we propose to further select a sub-
set of confident key-frames to participate in recognizing ac-
tions as follows. We compute a confidence score of a frame
It as conf(It) = maxc

∑
fc
αfc(It), where αfc(It) is the

learned weak classifier weight of a detected feature in It. If
conf(It) > 0.7, the key-frame is a confident key-frame. The
selected confident key-frame set is denoted as K. (iii) We
recognize the action in these confident key-frames using the
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Figure 4. Recognition accuracy comparison between the proposed video-based action recognition method and the methods in [13] and [5])
on the KTH dataset. The proposed method uses shape-motion features.

method in Section 3.1. The recognition result is denoted as
Hc(It) ∈ {0, 1}. (iv) The action label of the video is deter-
mined by majority voting

c = arg max
c′

∑
It∈K

Hc′(It). (3)

3.3. Evaluation

We use two public action datasets to evaluate the pro-
posed method, the KTH dataset [16] and the YouTube
dataset [14]. The KTH dataset contains 25 people perform-
ing 6 types of actions, such as boxing, and hand waving.
Videos of the YouTube dataset are captured under uncon-
trolled environment with camera motions, cluttered back-
ground and variations in view-points. This dataset contains
11 types of sports actions, such as jumping and diving.

In the experiments, we set the growth ratio threshold as
2; the support threshold of each action is chosen such that
there are at least 500 discriminative features mined. (These
thresholds remain the same in the anomaly and sequential
event detection applications in Section 4.)

Evaluation on KTH Dataset Fig. 3 shows the com-
parison results of the frame-based action recognition task
between the proposed method and two popular action
recognition methods that use spatiotemporal interest point
(STIP) detectors proposed in [13] and [5]. To test the per-
formance of the STIP based method, we use the same train-
ing/testing frames as that for our method. The STIPs are
clustered into 400 clusters by the K-means algorithm as in
[13] and [5]. As can be seen, (i) the combined shape-motion
feature is superior to either of the single type features in dif-
ferentiating actions; (ii) the proposed method performs bet-
ter than the STIP based methods even when the comparison
conditions are not equal. (Extracting STIPs requires usu-
ally more than 6 frames, whereas our method just use the
information from single frames.)

Tab. 1 shows another comparison result to the method
introduced in [19], which also recognizes actions in a frame
based manner and obtains good results. The result show
that although the proposed method uses much less training
data, it still achieves a comparable performance. Moreover,
our method is much more computationally efficient (mak-
ing prediction in 0.04s on average), and it does not require
explicitly tracking people in the videos as [19] does.

Method Ours [19]
Average accuracy 65.4% 66.9%
Train/test data ratio 20%/80% 50%/50%
Inference method Linear aggregation hCRF

Table 1. Comparison of the proposed frame-based method to a
method in [19] on the KTH dataset.

(a) (b)

Figure 5. (a) Confusion matrix of the proposed frame-based action
recognition method on YouTube dataset [14] using shape-motion
features. (b) Comparison of recognition accuracies using different
feature combinations (OF: optical flow, EG: Canny edge, OF+EG:
shape-motion), also with two other methods in [13] and [5]).

We also compare the performance of the proposed
method on the video-based action recognition task to the
STIP based methods. The interesting results shown in Fig. 4
worth further discussion: (i) For the other methods, the
recognition accuracies gradually improve along with the in-
creasing number of involved frames; whereas, the perfor-
mance of the proposed method stabilizes quickly (usually
within 20 frames). The reason might be that the actions
in the KTH dataset are short cycled actions, the proposed
method quickly captures the discrepancies among different
actions. Even fed with more frames, the simple repetition
does not provide extra information to improve the perfor-
mance. (ii) The proposed method outperforms the other
two methods in four action classes except ‘Handwaving’
and ‘Running’. This may reveal one limitation of the pro-
posed, i.e. some actions can only be reliably recognized by
considering the feature correlation over certain period. For
instance, to differentiate ‘Running’ and ‘Jogging’, the tem-
poral frequency (can be obtained from more frames) may
play a more important role than body poses (can be obtained
from a single frame).

Evaluation on YouTube Dataset For the YouTube
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(a) (b)

Figure 6. (a) Confusion matrix of the proposed video-based action
recognition methods on YouTube dataset [14] using shape-motion
features. (b) Recognition accuracy comparison between the pro-
posed video-based action recognition method and the methods in
[13] and [5]) on the YouTube dataset. The proposed method uses
shape-motion features.

dataset [14], we randomly select 8 groups out of 25 as train-
ing data and use the rest for testing. (The grouping are
provided by [14].) Fig. 5 shows the frame-based action
recognition results. From the comparison result, we see that
the proposed method especially with the combined shape-
motion features still out performs the other two methods.

The performance of the proposed video-based action
recognition method is shown in Fig. 6. It can be seen
that, different from the performance on the KTH dataset,
the recognition accuracy of the proposed method increases
when more video frames are provided. This is because that
the actions in the YouTube dataset are more complicated
and natural than KTH. More information of different as-
pects of the actions (due to variation) is provided along the
time, which helps to improve the recognition accuracy.

Tab. 2 shows the comparison result between our method
and a method proposed in [14], which achieves the best per-
formance on the YouTube dataset to our knowledge. It can
be seen that even using much less training data and fewer
number of features, the proposed method still reaches a
comparable performance.

4. Two Other Applications
The proposed discriminative feature learning method can

have more applications besides action recognition. In this
section, we extend the method and apply it to detecting
anomaly and sequential events in videos. Since there are
few published datasets exclusive to the two visual tasks, we
built a dataset for each task by collecting videos from some
existing video datasets, such as the ones used in [3][12][10]
and Google Video on the web. The anomaly detection
dataset contains 9 videos of about 3 minutes, it includes
abnormal human actions and traffic accidents, etc. The se-
quential event dataset contains 8 videos of about 37 min-
utes, it consists of events happening at airports and traffic
junctions, etc. Some examples are shown in Fig. 7.

The proposed algorithms aim to locate the starting
frames of anomaly events and novel events in the videos.

Figure 7. Sample frames of (a) the anomaly detection dataset and
(b) the sequential event dataset.

Method Ours Method in [14]
Motion Static Hybrid

Accuracy 67.2% 65.1% 63.0% 71.2%
Train data ratio 8/25 24/25 24/25 24/25
Feature number 3000 400 8000 8400

Table 2. Comparison results on video-based action recognition
task. The method [14] use three types of features: motion, static
and hybrid. The feature number is the average number of detected
features in each training video.

To quantitatively evaluate the performance of the methods,
we recruit 5 undergraduate students to annotate the starting
and ending time stamps of anomaly events and the sequen-
tial events in the videos, and use the average as the ground
truth. Given a detected starting point t, we find its nearest
ground-truth starting point ts and the corresponding ending
point td of the event. t is considered as a correct detection
if

|t− ts| < min
(
α ∗ (td − ts),Γ

)
(4)

where α ∈ (0, 1) is a scaling factor for the event and Γ
is a time interval threshold. In our implementation, we set
α = 0.3 and Γ = 4s.

4.1. Anomaly Detection

The proposed action recognition method in Section 3 be-
longs to weakly-supervised learning. Here we extend it to
detecting abnormal actions/events in videos in an unsuper-
vised manner. We define an action/event to be abnormal in
a video, if (i) it happens locally in time, (ii) it occurs rarely
in the video, and (iii) it “looks” different from its neigh-
bors. To detect anomalous actions, a given video sequence
is equally divided into a number of 40-frame-long subsec-
tions. We mine emerging shape-motion features from each
pair of adjacent sub-clips using the method proposed in Sec-
tion 2.1. Then the anomaly detection problem becomes a
new problem, i.e., detecting “changes” between two con-
secutive chunks of the video. If the “change” is significant,
an anomaly happens.

To mine the emerging features on the sub-clip pairs, the
frames in the preceding sub-clip are designated as positive
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Figure 8. Anomaly scores of frames (shown in blue curve) in a video from Weizmann dataset [3]. Some abnormal frames are highlighted
by red rectangles, and the identified abnormal feature density maps are displayed in heat maps.

Video Precision Recall F-score
Weizmann part[3] 9/13 9/12 71.9%

Crowd part[12] 5/8 5/7 66.7%
Traffic part (Web) 4/5 4/4 88.9%

Table 3. Performance statistics of anomaly detection.

samples D+; the frames in the posterior chunk are nega-
tive samples D−. We define an anomaly score of a mined
feature f as

ζ(f) =
1

%D+(f)
·

υD−/D+
(f)

υD−/D+
(f) + 1

(5)

where %D+
(f) and υD−/D+

(f) has been defined in Sec-
tion 2.1. Different from the discriminative score in Eqn. (2),
the support %D+

(f) is in the denominator. Thus, the mined
features that occur rarely are preferred. The anomaly score
of a video frame It is defined as the summation over the
anomaly scores of all the mined features appearing in the
frame, ζ(It) =

∑
f∈It ζ(f). A higher anomaly score indi-

cates that the frame contains many differences from its con-
text, i.e. it is abnormal. Fig. 8 shows the anomaly scores of
frames in a video sequence.

In our implementation, we set an adaptive threshold to be
the 90% largest anomaly scores of all the frames in a video.
The frames with anomaly scores higher than the threshold
are detected as an anomalous frame, and only when more
than 5 continuous anomalous frames are detected, the al-
gorithm issues an anomaly alert. The anomaly detection
results are listed in Tab. 3 using the combined dataset.

4.2. Sequential Event Detection

In a complex dynamic scene, dominant events change
overtime. For instance, at a traffic junction, when traffic
lights alter, traffic flows will also change correspondingly.
To obtain an abstract description of a video, we propose to

Video Precision Recall F-score
Cross road 15/20 15/20 75.0%

Traffic1[10] 17/23 17/20 79.1%
Traffic2[18] 9/13 9/11 74.9%
Airport[1] 8/14 8/11 63.9%

Train Station[2] 22/36 22/25 72.1%

Table 4. Performance statistics of sequential event detection.

identify representative sequential events in the video. The
technique may facilitate many applications including video
summary, rule mining, dependency discovery, etc. More-
over, by promptly identifying a change, it helps a right
model switching (e.g. different object tracking models) so
as to correctly respond to new coming data.

Different from the abnormal event definition in Sec-
tion 4.1, a sequential event should occur frequently in a
sub-clip, e.g. many cars drive in the same direction dur-
ing green light, because it is dominant in certain period of
a video. It also should be distinguished from the preceding
event within a local window. Similarly, each input video
is equally divided into 40-frame-long sub-clips. Between
each consecutive sub-clip pairs (D−/D+), we mine emerg-
ing shape-motion features using the method in Section 2.1.
The novelty score of a mined feature f is defined as

ξ(f) = %D+
(f) ·

υD−/D+
(f)

υD−/D+
(f) + 1

(6)

It favors the features that are “novel” to the preceding sub-
clip and frequently occur in the current one. We define a
frame novelty score as ξ(It) =

∑
f∈It ξ(f). Fig. 9 shows

the novelty scores of frames in a traffic video. It can be
seen that the frames with local maximum novelty scores
correspond to the changes of traffic events. For exam-
ple, in Fig. 9(a), the mined novel features are strongly re-
lated to ‘car stops’ in the east side of the crossroad. Simi-
larly, Fig. 9(b)(c)(d) show several other identified meaning-
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Figure 9. Novelty scores of frames in a traffic video. Some ‘novel frames’ are shown, and the zoomed-in areas are places where sequential
events happen. Densities of the novel feature in the frames is represented by heat maps.

ful traffic events incurred by the change of traffic lights. We
use the same method to detect the starting points of new
events as the one to detect anomaly. The sequential event
detection results are listed in Tab. 4.

5. Conclusion
In this paper, we present a method to instantly recognize

actions in a video using only a couple of frames in real time.
The instantaneity is achieved by employing the simple and
discriminative visual features, which combine the percep-
tual important motion and shape information extracted from
video frames. We further extend the frame-based action
recognition method to detect actions on the whole videos,
and apply it to anomaly detection and sequential event de-
tection. Experimental results are encouraging.
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