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ABSTRACT 
 
To overcome the unsatisfactory encoding quality of 
conventional image compression methods at low bit rates, the 
idea of downsampling prior to encoding and upsampling after 
decoding turns out to be a good solution. Based on this 
paradigm, we propose a low-bit-rate image compression 
algorithm by use of the novel wavelet inpainting technique 
via collaborative sparsity. Superior to the existing methods 
which operate the sampling in the space domain, we merge 
the wavelet transform in the downsampling stage, which is 
verified to be able to preserve much more information. By 
investigating the local two-dimensional sparsity and the 
nonlocal three-dimensional sparsity of the image 
simultaneously, a collaborative sparsity model is exploited to 
restore the full-resolution image from the decoded 
downsampled image. Finally a Split Bregman based iterative 
algorithm is developed to solve the optimization problem. 
Experimental results demonstrate obvious visual quality 
improvements, as well as PSNR gains, compared to the state-
of-the-art methods under various low bit rates.  
 

Index Terms— Image compression, low bit rates, 
wavelet inpainting, sparsity 
 

1. INTRODUCTION 
 
Conventional image compression methods [1], e.g. JPEG and 
JPEG 2000, seek to encode every single pixel in the original 
image. This may well preserve the original information when 
bandwidth permits. In the case of low bit rate transmission 
such as the mobile network, however, severe blockiness and 
other coding artifacts would arise as a result [2, 3]. Each pixel 
could be merely allocated limited number of bits on average, 
and the large quantization step size adopted would greatly 
suppress the information left in the reconstructed picture. 
Consequently, severe deterioration of image compression 
quality would occur.  

Knowing that images tend to be generated by 
oversampling [4], a lot of redundancy exists and thus some 
representations of the pixels could be removed. According to 
research discoveries, downsampling prior to encoding and 
upsampling after decoding can improve the quality of coded 

image at low bit rates [5-7]. For this reason, some works are 
focusing on the downsampling and upsampling stage to 
derive a better encoding performance. 

W. Lin et al [8] proposes an adaptive downsampling 
method, which determines the downsampling ratio/direction 
and quantization step for each macroblock based upon the 
local visual significance of the signal. It outperforms the 
JPEG coding method to some extent but pales in comparison 
to the more advanced JPEG 2000 method. Besides, its 
modification to the coding framework plus the macroblock-
based feature makes it incompatible with traditional coding 
standards. An improved scheme called the collaborative 
adaptive down-sampling and upconversion (CADU) is 
proposed by X. Wu et al [9]. It filters the image in a spatially 
varying and directional way ahead of the uniform 
downsampling in the image space and encodes it using a third 
party codec. At the decoder, the low-resolution image is 
upconverted to the original resolution in a constrained least 
squares restoration process. This method can be applied 
without change to the current image coding standard, and 
achieves better results than the one in [8].Yet the restored 
image quality is restrained by the space-domain 
downsampling, which cannot preserve adequate information 
for the image up conversion. 

In this paper, we propose a wavelet inpainting driven 
image compression algorithm (WIDIC) at low bit rates. Our 
contribution is threefold. First, we put forward the image 
compression framework of downsampling and upsampling in 
the wavelet domain, which can be combined with any image 
codec. The low frequency component in wavelet domain is 
believed to retain more information than the simply 
downsampled one in the space domain. Second, we formulate 
the process of restoring the high-resolution image from the 
decoded low-resolution one as a wavelet inpainting 
optimization problem. We adopt a collaborative sparsity 
model as the regularization term, which adaptively enforces 
local two-dimensional smoothness and nonlocal three-
dimensional self-similarity simultaneously in a hybrid space-
transform domain. Thus it substantially exploits the intrinsic 
features of the natural image and can offer high quality results. 
Third, a Split-Bregman based iterative algorithm is developed 
to efficiently solve the optimization problem.  This proposal



 

 
Fig. 1: Block diagram of the proposed wavelet inpainting driven image compression system. 

 
provides a novel idea of integrating the prior model of an 
image into the compression framework. It is compatible with 
any third-party compression techniques and outperforms the 
highly evaluated JPEG 2000 and the above-mentioned 
CADU.  

The rest of the paper is organized as follows. Section II 
describes the details of the proposed wavelet inpainting 
driven image compression algorithm. Section III presents the 
experimental results. Lastly, Section IV contains our 
summary and derived conclusions. 

 
2. PROPOSED WIDIC ALGORITHM 

 
2.1. Problem Formulation 
 
As shown in Fig. 1, the image first goes through the wavelet 
transform and then is downsampled into a low-resolution 
image in the transform domain. Encoded by any coding 
technique, the downsampled image is to be transmitted 
through the network and received by the other side. The entire 
compression process can be expressed as 

HWy u n                          (1) 
where u  represents the original high-resolution image andy
is the directly reconstructed low-resolution image from the 
decoder. W denotes the wavelet transform operator andH is 
the downsampling operator, the two of which jointly 
downsample the original image into a low-resolution one in 
the wavelet transform domain. n is the noise induced during 
the encoding and transmission periods, which is assumed to 
be the additive Gaussian white noise. 

After decoding, the reconstructed low-resolution image 
y  can be displayed on devices with small screens such as the 
mobile phone. For regular-sized screens like the computer, it 
is expected to be upsampled to a high-resolution image in the 
wavelet domain, which may be considered as an inverse 
process of the downsampling. So in order to find a restored 
image û closest to the original imageu , we can formulate it 
into an optimization problem as follows. 
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Since Eq. (2) above is an ill-posed problem and no 
specific solution could be found, we need to incorporate a 
regularization term and hereby get 
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where ( )uY stands for the regularization term, which 

describes the prior knowledge of the image.  is a 
regularization parameter that controls the tradeoff between 
the two terms. 

Recently, many works concentrating on utilization of 
both local smoothness and nonlocal self-similarity have 
achieved great success in image restoration applications [10, 
14 and 15]. Therefore, to find a suitable regularization term 
to well exhibit the intrinsic characteristics of the image, this 
paper adopts the collaborative sparsity model, which is first 
proposed in [10, 14] for image compressive sensing recovery 
and written as 

λτ( ) ( )   ( )N3DL2Du u u+ ⋅= ⋅ YY Y          (4) 
In this model, two sparse features of the image are 
investigated, the local smoothness and the nonlocal self-
similarity, which are denoted by ( )L2DY u  and ( )N3D uY  

respectively.  and  are their corresponding parameters 
and collaboratively weigh the contributions of the two terms.  

Specifically, the local smoothness is formulated as two-
dimensional sparsity in the space domain, which can be 
described by the follow equation. 

1 11v h
( )

L2D
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where [ ]
v h
;=D D D  and  are vertical and horizontal finite 

gradient operators. Given the observation that image gradient 
values are close to zero and roughly conform to the Laplacian 
Distribution, we suppress the L1-norm of the gradients to 
ensure the image local smoothness. 

The nonlocal self-similarity is exploited as three-
dimensional sparsity in the transform domain. We first stack 

τ λ



similar image patches in a three dimensional way, and then 
transform the group of patches into a domain where the 
coefficients demonstrate salient sparsity. This feature could 
be characterized by  
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where 3DT  the operator of a three-dimensional transform 
and uZ

k is a three-dimensional array containing similar 
patches corresponding to the image patch u k . 

Readers may refer to [10] for more details about the 
formulation of the collaborative sparsity model. Moreover, it 
is worth emphasizing that any image prior model can be 
incorporated into our proposed WIDIC algorithm. For this 
reason, it establishes an interesting and direct connection 
between natural image priors and image compression. 

So far, Eq. (3) could be rewritten as 

τ λ    2
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To solve the optimization problem defined in Eq. (7), a 
Split Bregman based iterative scheme is devised and will be 
elaborated in Subsection 2.2.  
 
2.2. Split Bregman based Iterative Algorithm 
 
First, for convenient representation we introduce the 
proximal map ( )( )tprox g x defined by [11]. 
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In Eq (8), g refers to a proper closed convex function and t is 
a positive scalar. 

Note that Eq. (7) is essentially not a convex problem and 
quite difficult to solve directly. Applying Split Bregman 
algorithm [12] to Eq. (7) leads to the following iterative steps: 
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Further, an alternating direction technique is employed 
for the split problem in (9), which alternatively minimizes 
one variable while keeping the other variables. Thus, the 
following three sub-problems are yielded. Similar to [10], we 
argue that every separated sub-problem has an efficient 
solution. For simplicity, the subscript j is omitted without 
confusion. 

 
2.2.1. u  sub-problem 

Given andw  x , the optimization problem associated with 

u    can be  expressed as  
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           (11) 

Since (11) is a minimization problem of strictly convex 
quadratic function, there is a closed form expressed as  
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where B = HW ,
1 2( + ) ( + ),B by w c xq    T I  is 

identity matrix and 
1 2    . To avoid the operation of 

matrix inversion, owing to the particular structure of Matrix 
B  that satisfies T

B B I , applying the Sherman-Morrison-
Woodbury matrix inversion formula to (12) yields  
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2.2.2. w sub-problem 

With the aid of ,u x , the w  sub-problem is equivalent to 

 ( )( )L2Dproxw pY                 (14) 

where -p u b  and  1   .  
Indeed, the proximal map ( )( )L2Dprox Y p  can be 

solved efficiently by fast iterative shrinkage/thresholding 
algorithm (FISTA) [11].  
 
2.2.3. x sub-problem 

With the recovered u  and w , x  sub-problem is  

ˆ α ( )( )N3Dproxx rY                  (15) 

where r u c   and 2α λ . 
According to [10], the solution to the proximal map 

( )( )N3Dprox Y rα  can be obtained analytically by just 
utilizing hard thresholding function. 

In light of all derivations above, the complete description 
of proposed WIDIC via collaborative sparsity model is 
given in Table 1. 

 
 

3. EXPERIMENTAL RESULTS 
 
To evaluate the proposed WIDIC method, we carry out the 
experiments on four groups of standard gray-level images: 
“Butterfly”, “Lena”, “Leaves” and “Boat”. Compressing 
these test images under various bit rates, we compare the 
restoration performance of our method with that of JPEG 
2000 (J2K for short) and CADU [9]. Both subjective quality 
and objective quality results will be demonstrated. 



Table 2：PSNR comparisons among different methods at various bit rates 

 

 
Fig. 2: Comparison of different methods at 0.25 bpp. Left: J2K 
(PSNR=23.18 dB, SSIM=0.7699); Middle: CADU (PSNR=23.24 dB, 
SSIM=0.7748); Right: WIDIC (PSNR=23.88 dB, SSIM=0.8130).  

 
Fig. 3: Comparison of different methods at 0.25 bpp. Left: J2K 
(PSNR=29.82 dB, SSIM=0.8297); Middle: CADU (PSNR=29.83 dB, 
SSIM=0.8250); Right: WIDIC (PSNR=30.17 dB, SSIM=0.8340).  

 
Fig. 4: Comparison of different methods at 0.35 bpp. Left: J2K 
(PSNR=24.29 dB, SSIM=0.8298); Middle: CADU (PSNR=24.62 dB, 
SSIM=0.8394); Right: WIDIC (PSNR=25.72 dB, SSIM=0.8878).  

 
Fig. 5: Comparison of different methods at 0.35 bpp. Left: J2K 
(PSNR=28.80 dB, SSIM=0.7906); Middle: CADU (PSNR=27.62 dB, 
SSIM=0.7847); Right: WIDIC (PSNR=28.37 dB, SSIM=0.7961).  

The PSNR comparisons among the three methods are 
shown in Table 2. At each bit rate, the best PSNR results are 
marked in bold for each image. We can see that our WIDIC 
always beat JPEG 2000 and CADU for almost all the cases 
under extremely low bit rates from 0.10 bpp to 0.30 bpp. Even 
when the bit rate reaches as high as 0.3 bpp to 0.40 bpp, it can 

still demonstrate obvious advantages over the other methods, 
and remain the best for most of the test groups. It can provide 
PSNR gains up to 1.44 dB compared to JPEG 2000, and up 
to 1.42 dB compared to WIDIC. In contrast, CADU can only 
achieve slight PSNR increases than JPEG 2000. 

Fig. 2 through Fig. 5 give the visual quality comparisons 
of the restored images with the three methods. Fig. 2 and Fig. 
3 are the restoration results of the images “Butterfly” and 
“Lena” under the bit rate 0.25 bpp, respectively. It is easy to 
notice that compared to JPEG 2000 and CADU, which both 
lead to annoying artifacts, our WIDIC can produce clear 
images which are much more pleasant to human eyes. Fig. 4 
and Fig. 5 are restoration results of the images “Leaves” and 
“Boat” under the bit rate 0.35 bpp, respectively. At the higher 
bit rate, WIDIC yields the purest image of the three, which is 
consistent with the PSNR and SSIM [13] results in Fig. 4. In 
Fig. 5,   although WIDIC cannot achieve a higher PSNR value 
than JPEG 2000, it does generate a better visual image 
without the burr effects surrounding the mast. 
 

4. CONCLUSION 
 

In this paper, we propose a wavelet inpainting driven 
image compression algorithm at low bit rates. Instead of 
directly encoding the original high-quality image, we base 
our scheme on the framework of downsampling prior to 
encoding and upsampling after decoding. We believe that 
downsampling in the wavelet domain can better preserve the 
original information than the space domain through sufficient 
experiments. Hence, we integrate the wavelet inpainting 
technique at the receiver side and devise a joint statistic 
model by exploiting the local and nonlocal sparsity of the 
image. Extensive experiments demonstrate that our method 
can distinctly outperform the well-known coding standard 
JPEG 2000 and the most state-of-the-art method CADU, both 
in subjective image quality and PSNR.  
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Rate 
(bpp) 

Butterfly Lena Leaves Boat 
J2K CADU WIDIC J2K CADU WIDIC J2K CADU WIDIC J2K CADU WIDIC

0.10 18.91  18.75  19.17  25.38  25.08 25.69 17.85 18.20 18.07 23.54 23.35 23.66
0.15 20.82  20.84  20.76  27.16  27.16 27.69 19.77 19.75 20.11 25.11 24.95 25.53
0.20 21.99  22.17  22.43  28.53  28.38 28.87 21.12 21.19 21.70 26.29 25.93 26.54
0.25 23.18  23.24  23.88  29.82  29.83 30.17 22.62 22.52 23.09 27.10 26.74 27.42 
0.30 24.01  24.11  25.06  30.73  30.75 31.33 23.26 23.48 24.34 27.97 27.18 27.92 
0.35 24.85  25.17  25.97  31.16  31.37 31.74 24.29 24.62 25.72 28.80 27.62 28.37 
0.40 25.44  25.86  26.30  32.23  31.87 32.61 24.95 24.98 26.39 29.71 27.80 28.78 
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