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Abstract—In H.264/advanced video coding, the encoder em-
ploys the rate-distortion optimization (RDO) to select the optimal
coding mode of each block. Although it is effective to employ
the RDO technique for mode decision, the computation load
increases drastically. To reduce the computation complexity of
the RDO technique, in this paper, we propose efficient algorithms
for the estimation of block-level rate and distortion. For rate
estimation, we model the transform coefficients with accurate
generalized Gaussian distributions, and the weighted sum of
absolute quantized transform coefficients is proposed as an
efficient rate estimator, where the weights provide an implicit
mechanism for evaluating different contributions of different fre-
quency components to the coding bits. For distortion estimation,
we first analyze the origins of distortion thoroughly. Then a
direct relationship between the discarded bits in quantization
and the distortion is explored. According to this investigation,
a simple and efficient algorithm is proposed for the distortion
estimation. With above proposed algorithms, the RDO technique
can be efficiently implemented in a low-complexity way. Exten-
sive experimental results demonstrate that, compared with the
original RDO implementation, the proposed algorithms achieve
about 32% reduced total encoding time with ignorable coding
performance degradation.

Index Terms—Distortion estimation, GGD, H.264/AVC, rate
estimation, rate-distortion optimization, video coding.

I. Introduction

TO IMPROVE the coding efficiency of block-based hybrid
video coding structure, coding tools and strategies be-

come more and more flexible during the development of inter-
national video coding standards such as MPEG-1 [1], MPEG-2
[2], MPEG-4 [3], H.263 [4], and the latest H.264/advanced
video coding (AVC) [5]. One of these important developing
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flexibilities, which significantly improve the coding efficiency,
is to increase the number of candidate coding modes. For
evaluating the efficiency of each candidate mode in the high-
compression video coding, the encoder usually employs the
Lagrangian multiplier optimization technique [6], which is
expressed by

min{J} J = D + λ · R (1)

where J is the Lagrangian rate-distortion (R-D) cost function
to be minimized, λ is the Lagrangian multiplier, D and R
are the reconstruction distortion and entropy coding bits of
a coding unit with a certain candidate mode. During the mode
decision process, all available candidate modes are evaluated
by the rate-distortion cost, and the one with the minimum R-D
cost is selected as the optimal coding mode. The minimization
process of the R-D cost is the well-known rate-distortion
optimization (RDO). Although it is efficient to employ the
RDO technique for choosing the best mode, the computation
complexity is extremely high. For each candidate mode, the
encoder has to fully perform transform, quantization, entropy
coding, inverse quantization, inverse transform, and pixel
reconstruction to obtain the accurate R and D. Therefore, the
R-D cost calculation is very time-consuming, and the overall
complexity of RDO increases linearly with the number of
available candidate modes.

To reduce the computation complexity of RDO, many
fast mode-decision algorithms were proposed. Typically, these
algorithms can be classified into two categories. In the first
category, the implicit relationship between the optimal coding
mode and the corresponding spatial features or temporal fea-
tures of a block is studied with empirical experimental results.
In this way, unnecessary candidate modes are excluded from
the mode-decision process, and thus the times of calculating
the R-D cost are reduced. For intra-mode decision, a local edge
map direction histogram has been established and successfully
used in [8] to predict the most probable intra-prediction
direction, and the remaining prediction directions can be safely
skipped. For inter-mode decision, the spatial homogeneity and
the temporal stationarity of a macroblock were also properly
evaluated and successfully employed in [9] to skip unnecessary
mode trials.

In the second category, the mode decision process retains the
“try all and select the best” [9] philosophy and no candidate
mode is skipped as the algorithms do in the first category.
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Instead, efforts are dedicated to reducing the complexity of
calculating each R-D cost value. More specifically, algorithms
in this category attempt to simplify the calculation of R-D
cost by estimating the R and/or D part(s) in (1) with a low
complexity way. Related to this category, rate models observed
from quantizer (Q)-domain in [10] and ρ-domain in [11]
were established and theoretically justified for rate control in
video coding. In [12], R-D models based on Cauchy density
approximation to the transform coefficient distribution were
developed for frame bit allocation in video coding, and the
proposed models were verified to be more accurate than the
Laplacian-pdf-based models. A quadratic R-D model based on
the quantization scheme of H.264 and predicted mean absolute
difference was provided in [13] for an efficient adaptive rate-
control scheme in H.264/AVC video coding. To resolve the
inter-dependence of RDO and rate control, enhanced R-D
models for H.264 video were built in [14] with a two-stage
encoding scheme, and an enhanced header rate model was
also proposed due to the increased importance of header bits
in H.264. In [15], a rate model using a linear function of
the number and the absolute magnitudes of nonzero quantized
transform coefficients was verified in the MPEG-4 rate-control
scheme.

For the H.264/AVC mode decision process, the above model
in [15] was modified in [16] to achieve accurate mode decision
for different quantization parameters and sophisticated coding
options. However, this model was designed only for inter-
mode decisions and validated for the context adaptive variable
length coding (CAVLC) entropy coding method. Rate esti-
mation algorithms specifically designed for CAVLC entropy
coder were also proposed in [17]–[19], these algorithms
mainly utilized different linear combinations of features (e.g.,
the magnitude of nonzero coefficients, the number of trailing
ones, the number of nonzero coefficients) of quantized
transform block as efficient bit-rate estimators. Recently, a
novel rate estimation model was proposed in [20] for mode
decision of H.264/AVC, and the model employed a weighting
form for evaluating different contributions of different
frequency bands to the entropy coding bits. For the D part
in R-D cost, a distortion measurement obtained in transform
domain was proposed and combined with a proposed rate
estimation model in [16]. With the proposed method, inverse
transform and the reconstruction processes can be saved, but
the inverse quantization and some additional mathematical
manipulations were also needed. To further reduce the
computation complexity, in [21], a new fast sum of squared
difference computation algorithm based on an iterative table-
lookup method was proposed. This algorithm saves arithmetic
operations at the cost of increasing memory needed for
storing the look-up table, and the assumption of the algorithm
becomes violated when the quantization offsets are adaptively
changed [33]. Moreover, a new R-D estimation algorithm
was obtained in [22] to save the transform and quantization
computation time by modeling the transform coefficients
with spatial-domain variance, and the proposed method was
employed in both mode decision and rate-control schemes.

To obtain a general rate estimator efficient for both CAVLC
and context adaptive binary arithmetic coding (CABAC) and

to further simplify the implementation of distortion estimation,
we propose novel block-level rate and distortion estimation
algorithms in this paper, which belong to the second category
introduced above. The three main contributions of this paper
are listed as follows.

1) For rate estimation, a novel weighted sum of quantized
transform coefficients is deduced and proposed as an
efficient rate estimator. The proposed method improves
the accuracy of existing methods by weighting the trans-
form coefficients because of their different contributions
to the coding bits.

2) For distortion estimation, the origin of distortion in
H.264/AVC video coding is first analyzed thoroughly.
Then a new transform-domain distortion (TDD) estima-
tion method is proposed using the discarded lower bits in
the quantization process. With the proposed method, the
distortion estimation in [16] is further simplified without
loss of accuracy.

3) A low-complexity mode decision scheme is proposed
based on the novel rate and distortion estimation algo-
rithms. In the proposed mode decision scheme, the pro-
cessing of entropy coding, inverse quantization, inverse
transform and pixel reconstruction in the conventional
RDO is skipped.

The remainder of this paper is organized as follows. In
Section II, a mathematical analysis of the relationship between
self-information and magnitude of a single transform coeffi-
cient is given. The proposed rate and distortion estimation
algorithms are introduced in Sections III and IV, respectively.
Extensive experimental results and analysis are shown in
Section V. Finally, we give conclusion in Section VI.

II. Statistical Modeling and Analysis of

Block-Level Rate Estimation

In this section, we start with two motivating observations,
which provide useful guidelines for modeling the rate. Then
we employ a zero-mean generalized Gaussian distribution
(GGD) to model the distribution of transform coefficients, and
the mathematical relationship between the self-information
and the magnitude of a single quantized transform coefficient
is deduced. Based on the deduction, a novel block-level rate
estimation model is constructed. Finally, we give comparisons
of the effectiveness between our proposed rate estimator and
some previous estimators.

A. Motivating Observations of Actual Quantized Blocks and
Corresponding Coding Bits

The 4 × 4 matrices shown in Figs. 1 and 2 are two groups
of quantized transform blocks of Foreman with common
intermediate format (CIF). In Fig. 1, the l1-norms of the two
blocks are both 25, but the entropy coding bits of the left block
is 67, while the right one, where the power mainly distributes
to the low frequency components results in only 30 coding bits.
In Fig. 2, the two blocks share the same number of nonzero
coefficients, but the left block results in 85 coding bits, while
the right one of which the power is much lower results in only
27 coding bits.
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Fig. 1. Two quantized transform block from Paris in CIF format with l1-
norm both equal to 25. The entropy coding bits of the two blocks are 67 and
30 bits, respectively.

Fig. 2. Two quantized transform block from Paris in CIF format with
number of nonzero coefficients both equal to 10. The entropy coding bits
of the two blocks are 85 and 27 bits, respectively.

These two motivating observations demonstrate the limita-
tions of existing rate estimation models that even when the
l1-norms or the number of nonzero coefficients are exactly
the same, the actual coding bits can be still quite different.
The difference originates from the different power distributions
of quantized transform coefficients, i.e., different frequency
components contribute differently to the entropy coding bits.
Therefore, the quantized transform coefficients need to be
weighted before being used to estimate the rate. However, to
the best of our knowledge, there is no proposed algorithm in
the literature that weights the quantized transform coefficients
for rate estimation purposes.

B. Generalized Gaussian Modeling for Integer Transform
Coefficients of H.264/AVC

To get a theoretically justified weighting form of the quan-
tized transform coefficients, we start with modeling a single
transform coefficient Cuv with zero-mean GGD [23] described
as follows:

fuv(x) =
ηuvαuv(ηuv)

2σuv�(1/ηuv)
exp

{
−
[
αuv(ηuv)

|x|
σuv

]ηuv
}

(2a)

with

αuv(ηuv) =

√
�(3/ηuv)

�(1/ηuv)
(2b)

where fuv(x) indicates the probability density function (PDF)
of Cuv, �(·) is the gamma function, ηuv and σuv are positive
real-valued distribution parameters which control the shape
and scale of the GGD, respectively. We employ the GGD for
analyzing the distribution of transform coefficients because it
is a flexible PDF which covers a wide range of symmetrical
distributions. As shown in Fig. 3, for the particular cases
η = 1, η = 2, and η = ∞, the GGD becomes Laplacian,
Gaussian, and uniform PDF, respectively. Due to the flexibility,
GGD is efficient for simulating the various distributions of
discrete cosine transform (DCT) coefficients and has been
efficiently used in different research areas for analyzing the
DCT coefficients [24]–[27].

Fig. 3. Generalized Gaussian distribution with shape parameter η = 0.5, 1,
2, and 50.

There are several methods [28]–[30] in the literature for
estimating the GGD parameters η and σ. These methods are
mainly based on the mathematical relationship between the
moments and the parameters given by

R(η) =
�2(2/η)

�(1/η)�(3/η)
=

E2 {|X|}
E
{
X2
} (3a)

σ2 = E
{
X2
}

(3b)

where R(η) is the reciprocal of the so-called generalized
Gaussian ratio function introduced in [28], E{X} and E{X2}
represent the first-order moment and the second-order moment
of a random variable X, respectively. With (3a) and (3b), the
GGD parameters η and σ are estimated by

η̂ = R−1

⎛
⎜⎜⎜⎝
(

1
N

N∑
i=1

|Xi|
)2

1
N

N∑
i=1

X2
i

⎞
⎟⎟⎟⎠ σ̂ =

√√√√ 1

N

N∑
i=1

X2
i . (4)

In [30], a simple function H(x) = 0.2718/(0.7697 − x)
− 0.1247 is used to directly approximate the inverse function
of R(x), and we utilize this method in our simulations due to
its simplicity and efficiency. The gamma function in (2a) and
(2b) is calculated using the method introduced in [31].

C. Relationship Between Self-Information and Magnitude of
Quantized Transform Coefficient

According to the design rules of optimal entropy coders
[35], the entropy coding bits of a symbol x with occurrence
probability Px is directly dependent on the self-information
(−log2Px). Therefore, it is important to relate the entropy
coding bits of a single quantized transform coefficient to its
self-information. Let Cuv be the transform coefficient located
at position (u, v) in the 4×4 transform block, and its quantized
value is represented by Ĉuv, where u, v ∈ [0, 3]. Then the self-
information of Ĉuv being quantized as x̂ is calculated by

ruv = − log2 P{Ĉuv = x̂} (5)

where P{·} represents the occurrence probability of an event.
As the former video coding standards, H.264/AVC also

adopts a uniform scalar quantizer [32] formulated as

Ĉuv = sign(Cuv) · (|Cuv| · Q + f · 2qbits) >> qbits (6)
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Fig. 4. Quantizer structure in the H.264/AVC encoder.

where Q is the multiplication factor, f is the parameter
controlling the rounding offset, and >> denotes right shift and
rounding operation, sign(x) is −1 with negative x, and 1 for
positive x. A visualized description of the quantizer formulated
in (6) is shown in Fig. 4.

With the quantization structure in (6), the probability of Cuv

being quantized as x̂ is calculated by

P
{
Ĉuv = x̂

}
=

⎧⎨
⎩
∫ (|x̂|+1−f )·Qstep

(|x̂|−f )·Qstep
fuv(x)dx x̂ �= 0

2 · ∫ (1−f )·Qstep

0 fuv(x)dx x̂ = 0
(7)

where Qstep represents the quantization step size equaling to
2qbits/Q, and x̂ = 0 is a special case in (7), because the size of
quantization interval becomes 2(1 − f )Qstep for the deadzone
shown in Fig. 4.

Although there is no closed-form solution for calculating the
probability in (7), we can approximate P{Ĉuv = x̂} using
the characteristics of the GGD function and the design rule of
the quantizer in H.264/AVC. According to the first mean value
theorem for integration [34], there exists x∗ in the quantization
interval satisfying

P
{
Ĉuv = x̂

}
=

{
Qstepfuv(x∗) x̂ �= 0

2(1 − f )Qstepfuv(x∗) x̂ = 0.
(8)

That is, fuv(x∗) equals the average probability in the corre-
sponding quantization interval, and x̂ = 0 is a special case
in (8), because the size of quantization interval becomes
2(1 − f )Qstep. Furthermore, in the Appendix, we prove that
for the shape parameter η<1, which is the most cases [26],
x∗ lies in the first half of the quantization interval, i.e.,
x∗ ∈ [(x̂ − f ) · Qstep, (x̂ − f ) · Qstep + 0.5 · Qstep]. According
to [32] and [33], the rounding parameter f is set as a constant
below 1/2 or even adaptively adjusted during encoding to
better locate the expectation value of Ĉuv inside a quantization
interval, and the quantized value x̂ also lies in the first half of
the quantization interval. Therefore, we use x̂ to approximate
x∗ when x̂ �= 0. For the particular case of x̂ �= 0, we simply
approximate x∗ using f which is the rounding offset defined
in (6). Then the probability of Ĉuv = x̂ is approximated as

P
{
Ĉuv = x̂

} ≈
{

Qstep · fuv(x̂ · Qstep) x̂ �= 0

2(1 − f )Qstep · fuv(f · Qstep) x̂ = 0. (9)

With (2a), (5), and (9), for x̂ �= 0, ruv is approximated as

ruv ≈ − log2

{
Qstep· ηuvαuv(ηuv)

2σuv�(1/ηuv) exp
{
−
[
αuv(ηuv)

∣∣∣Qstep·x̂
σuv

∣∣∣]ηuv
}}

= − log2

{
Qstep· ηuvαuv(ηuv)

2σuv�(1/ηuv)

}
− log2

{
exp

{
−
[
αuv(ηuv)

∣∣∣Qstep·x̂
σuv

∣∣∣]ηuv
}}

,

= log2(e) ·
[
αuv(ηuv)

∣∣∣Qstep

σuv

∣∣∣]ηuv · |x̂|ηuv

− log2

{
Qstep · ηuvαuv(ηuv)

2σuv�(1/ηuv)

}
= auv · |x̂|ηuv + buv

(10)

where{
auv = log2(e) · [Qstep · α(ηuv)/σuv]ηuv

buv = − log2[Qstep · ηuvα(ηuv)/(2σuv�(1/ηuv))].
(11)

For the case of x̂ = 0, ruv is approximated as

ruv ≈ − log2{
2(1 − f )Qstep · ηuvαuv(ηuv)

2σuv�(1/ηuv)

exp
{
−[αuv(ηuv)

∣∣∣Qstep·f
σuv

∣∣∣]ηuv

}}
= log2(e) · [αuv(ηuv)

∣∣∣Qstep

σuv

∣∣∣]ηuv · f ηuv

− log2

{
2(1 − f )Qstep · ηuvαuv(ηuv)

2σuv�(1/ηuv)

}
= a0

uv · f ηuv + b0
uv

(12)

where{
a0
uv = log2(e) · [Qstep · α(ηuv)/σuv]ηuv

b0
uv = − log2[2(1 − f )Qstep · ηuvα(ηuv)/(2σuv�(1/ηuv)].

(13)
Therefore, for a transform coefficient with Generalized

Gaussian distributions, the self-information is a power function
of its quantized magnitude, and the power item is exactly the
shape parameter of the GGD function.

It is observed that for the case ηuv = 1, the GGD becomes a
Laplacian distribution, and the power function in (10) and (12)
becomes a linear function with auv = log2(e) · [

√
2 ·Qstep/σuv].

Because 1/σuv is always larger with a larger index of u and v,
it is shown that the high frequency coefficients with larger auv

affect the bit rate more than the low frequency coefficients. If
we denote auv in a matrix form as A, i.e., A(u, v) = auv, it is
then observed that A is a scaling matrix, which emphasizes
the high frequency coefficients. Furthermore, the effect of
Subsection II-A that coefficients with different indexes affect
the bit rate differently is also verified by this result.

D. Proposed Rate Estimator and Comparison With Other
Estimators

If the components of a quantized transform block are
independently distributed, the self-information of a quantized
transform block is equal to the sum of self-information of
all its components. According to [36] and [37], the above
conditions are satisfied to a great extent and have been
successfully utilized in [38] for establishing a source model for
transform video coder. Due to the high correlation between the
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actual entropy coding bits and the corresponding block self-
information, we propose to use the sum of coefficient self-
information as a novel block-level rate estimator. Therefore,
with (10) and (12), our proposed block-level rate estimator is
formulated as

rB≈
∑

u

∑
v

ruv where ruv≈
{

auv · |x̂uv|ηuv + buv x̂uv �= 0

a0
uv · f ηuv + b0

uv x̂uv = 0
(14a)

R̂B = α · rB + β (14b)

where f denotes the quantization offset defined in (6), rB

represents the symbol which approximates the self-information
of the quantized transform block, R̂B represents the estimated
coding bits, α and β are model parameters. Due to the varying
spatial frame statistics and different entropy coding methods,
the proposed self-information rB in (14a) is improper to be
directly used to estimate the entropy coding bits. However, as
shown in Fig. 5(c), the proposed self-information rB is verified
to be strongly linearly correlated with the actual entropy cod-
ing bits. The two model parameters are designed to set up the
linear mapping relationship between the self-information and
the actual entropy coding bits. These two model parameters
are adjusted during the mode decision process to make the rate
estimation model adaptive to different entropy coding methods
and variously changing video contexts.

In previous works, the number of nonzero coefficients and
the l1-norm of the quantized transform coefficients [15]–[17]
are two frequently-used symbols for rate estimation. In Fig. 5,
in order to provide intuitive evaluations on the effectiveness
of these symbols, we draw a large number of samples from
the actual mode decision process for each of the symbols.
From Fig. 5 it is observed that the samples of the estimated
coding bits using proposed self-information (14a) are more
compactly and linearly distributed compared with the other
two symbols. It means that our proposed rate estimator
provides higher level of confidence when used to estimate
the entropy coding bit rate.

III. Implementation of Proposed Rate Estimation

Algorithm

In this section, we introduce the detail implementation of
the proposed rate estimation algorithm including three main
modules: rate estimation module, estimation of the distribution
parameters, initialization and updating of model parameters.

A. Implementation of Proposed Rate Estimation Algorithm

To integrate the proposed algorithm with the actual mode
decision process, we replace the original entropy coding with
the proposed rate estimation module. The input of the rate
estimation module is the quantized transform block and the
output is the estimated coding bits.

To avoid the frequent time-consuming calculation of the
power function in (14a), we accelerate the proposed algorithm
by using look-up tables. The values of self-information for
most input cases are pre-calculated to avoid redundant com-
putation in the mode decision process. For example, before

Fig. 5. Efficiency comparisons of different bit-rate estimators in Football
with CIF format. (a) Number of nonzero coefficients versus actual entropy
coding bits. (b) l1-norm versus actual entropy coding bits. (c) Proposed self-
information versus actual entropy coding bits.

encoding the current frame, the self-information for all the
16 quantized transform coefficients with magnitudes lower
than a given threshold value 200 are pre-calculated. Then a
16 × 200 lookup table is generated for the input quantized
transform coefficient values below the threshold. The threshold
value is empirically set as 200, because it covers most of
the possible input cases. However, if the input quantized
transform coefficient exceeds the threshold value, which is
a rare case in the coding process, the calculation of (14a)
becomes necessary. Therefore, to calculate the self-information
of current transform block, we simply look up the table for
each quantized transform coefficient and sum up all the 16
values to get rB in (14a). Then the linear function in (14b) is
utilized to map the self-information rB to the final estimated
entropy coding bits.

For the particular case of the I16MB mode [7], there is one
4 × 4 direct coefficient (DC) transform block and 16 4 × 4
alternating coefficient (AC) transform blocks without the DC
coefficients. Therefore, the numbers of encoded coefficients
in the AC transform block and the ordinary 4 × 4 transform
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Fig. 6. Normalized histogram of the transform coefficients and correspond-
ing discretized PDF of GGD with estimated distribution parameters.

block are different. To handle this specific issue, two different
sets of model parameters are used for the 4 × 4 DC transform
block and the 16 4 × 4 AC transform blocks, respectively.

B. Estimation of GGD Parameters

We utilize the method of [30] introduced in Section II-B
to estimate the GGD parameters. In Fig. 6, the actual distribu-
tion of transform coefficients and the corresponding discretized
GGD function with the estimated parameters η and σ are
shown. From Fig. 6 it is observed that the estimated GGD
parameters are efficient for simulating the distribution of
transform coefficients.

Note that the GGD parameters of current frame become
available only when the entire frame has been coded, and we
propose to use the GGD parameters of previous frame of the
same type for current frame. For example, at the beginning of
coding the ith P frame, the GGD distribution parameters are
initialized with the values obtained from previous P frame.

C. Initialization and Updating of Model Parameters

In our simulations, the model parameter α is initialized with
a default value 1, which can be observed from the slope of
the samples presented in Fig. 5(c). To initialize β, a prior
knowledge that a zero block will probably be coded using
only one bit is used. The self-information r0

B of a zero block
in (14a) is first calculated, after that, with the initialized alpha
and r0

B, a good initialization value for beta can be obtained
by solving (14b).

Linear regression analysis is used to update the model
parameters in our proposed algorithm. The linear regression
process is formulated as follows:

Ri = αri + β + εi (15)

where i = 0, 1, . . . , n − 1, Ri represents the actual entropy
coding bits, ri represents the self-information calculated with

(14a), εi denotes the prediction error of the ith block. Then
the least-mean-square-error estimates of α and β are given by

α =
n
∑

i
Riri−

∑
i
Ri

∑
i
ri

n(
∑

i
ri)2−

∑
i
r2
i

β =
n(
∑

i
ri)2
∑

i
Ri−
∑

i
Riri

∑
i
ri

n(
∑

i
ri)2−

∑
i
r2
i

. (16)

Two practical issues need to be handled for updating the
mode parameters. First, as the number of data pairs of Ri and ri

utilized for updating the model parameters increases, the
contributions of subsequent data pairs gradually decrease. As
a result, the adaptivity of the model parameters becomes
low when the number of input data pairs becomes large. To
handle this issue, we set an updating period for this linear
regression process. When the number of data pairs has reached
the given updating period Tupdate, all the parameters used in
linear regression are initialized with zero, and the former data
pairs will not contribute to the subsequent updating process.
Second, it is noted that when only a small number like 3
or 5 of data pairs are available after the initialization of the
linear regression progress, the calculated model parameters
could be unstable, and the prediction error will be large for the
subsequent data pairs. To overcome this problem, we propose
to control the linear regression process with an updating
threshold. The updating of model parameters will not start
until the number of available data pairs has reached Tthreshold.
With this Tthreshold, the fitted model parameters become stable
and trustable to be utilized for the rate estimation process.
The Tupdate and Tthreshold are empirically obtained and good
performance is obtained by setting Tupdate = 100, Tthreshold = 15
in our simulations.

IV. Proposed Distortion Estimation Algorithm

To estimate the distortion for complexity-reduced mode
decision, in this section, we first analyze the origin of the
distortion in H.264/AVC video coding thoroughly, then we de-
velop a direct mathematical relationship between the discarded
lower bits in quantization and the resulting distortion. Based
on this investigation, a novel block-level distortion estimation
algorithm is proposed.

A. Origin of Distortion in H.264/AVC Video Coding

Distortion in a lossy video coding system is often measured
by the sum of squared spatial difference between the reference
and the reconstructed version. Besides the quantization pro-
cess, we will show that the origin of distortion in H.264/AVC
also includes the transform, inverse transform, and reconstruc-
tion processes. The forward transform and inverse transform
for a 4 × 4 residual block in H.264/AVC are formulated [39]
as follows:

T(X) = Cf XCT
f ⊗ Ef T−1(Y ) = CT

i (Y ⊗ Ei)Ci (17)

where T(·) and T−1(·) represent the forward transform and
inverse transform, respectively, Cf and Ci are called the core
matrices with integer entries, Ef and Ei are called the scaling
matrices absorbed in the quantization process and the symbol
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⊗ indicates the element-by-element multiplication. Both T(·)
and T−1(·) are orthogonal transforms [40], and they satisfy
that

‖T(X)‖2 =
∥∥T−1(X)

∥∥2
= ‖X‖2 (18)

where ‖ · ‖2 indicates the l2-norm of a matrix. However, the
actual forward scaling matrix Ef adopted in the reference
software [42] is slightly modified from Ef due to a resulting
improvement of perceptual quality at the decoder [40]. There-
fore, the orthogonality in (18) is not strictly satisfied and the
forward transform T (·) also contribute to the spatial-domain
distortion. For example, an actual 4×4 residual block obtained
from the encoding process of Bus with CIF format is⎡

⎢⎢⎣
−11 −2 4 −1
−8 −7 8 6
4 −10 −9 3

−1 −6 −11 −6

⎤
⎥⎥⎦

then the H.264/AVC forward transform and quantization are
sequentially performed on this block with the theoretical
scaling matrix in (17) and actual scaling matrix in the reference
software, respectively. For the case of QP = 18, the two scaling
matrices are⎡

⎢⎢⎣
0.2500 0.1581 0.2500 0.1581
0.1581 0.1000 0.1581 0.1000
0.2500 0.1581 0.2500 0.1581
0.1581 0.1000 0.1581 0.1000

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0.2500 0.1538 0.2500 0.1538
0.1538 0.1000 0.1538 0.1000
0.2500 0.1538 0.2500 0.1538
0.1538 0.1000 0.1538 0.1000

⎤
⎥⎥⎦ .

The outputs of the quantization process using the above two
different scaling matrices are⎡

⎢⎢⎣
−2 −2 1 2
1 −2 −2 1

−1 1 −1 −1
2 1 1 0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

−2 −1 1 1
1 −2 −2 1

−1 1 −1 −1
2 1 1 0

⎤
⎥⎥⎦

respectively. It is noted that these two quantized blocks are
different, i.e., the forward transform using the actual scaling
matrix results in additional distortion. Let Df be the part of
distortion caused by forward transform, then based on (18)
and the linearity of T (·), we obtain

Df = ||(Ef − E
′
f ) ⊗ Cf XCT

f ||2 (19)

where X is the residual block, Ef and E′
f are the theoretical

and the actual forward scaling matrices used in H.264/AVC
reference software, respectively.

In the inverse transform T −1(·), the multiplication opera-
tions with the Ci composed of 1/2 and −1/2 need rounding
operations which also result in slight distortion, and Di is
defined to represent this part of distortion. After the sequential
processing of transform, quantization, inverse quantization,
and inverse transform, the reconstructed pixel value may
exceed the dynamic range of the 8-bit pixel intensity repre-
sentation, and another clipping operation is needed to restrict

Fig. 7. Quantization process of a single transform coefficient in H.264/AVC
video coding.

Fig. 8. Implementation schemes of the original and the proposed rate-
distortion calculation. (a) Original. (b) Proposed.

the reconstructed pixel value to be lying in the range of 0
and 255. The distortion resulted from this clipping operation
is denoted by Dr.

Finally, let the distortion resulting from quantization be
Dq, then the total distortion D in H.264/AVC video coding
is caused by the contribution of four independent parts Df ,
Di, Dr, and Dq. But D is not equal to the sum of Df , Di,
Dr, and Dq due to the possible counteraction between these
four parts. Empirical results show that Dq takes the majority
part of D, and we use Dq as an estimation of D for better
complexity-performance tradeoff.

B. Proposed Block-Level Distortion Estimation Algorithm for
H.264/AVC Video Coding

It is observed that the only loss in the quantization process
for the post-scaled transform coefficients is the low q bits,
which are discarded by the rounding operation. It means that
the discarded low q bits determine the corresponding distortion
Dq. To make the relationship clear, the process of quantizing
a single post-scaled transform coefficient is illustrated in
Fig. 7. First, the scaled−coeff represented by the red point
is shifted to the blue point by adding the offset, and then by
discarding the low q−bits with the rounding operation, the
blue point which falls into a quantization interval is moved to
the black point representing recon−coeff. The final distortion
Dq is then measured by the distance between scaled−coeff
and recon−coeff, and the distance is calculated by dq=|offset-
low−qbits|. With dq, the corresponding distortion in transform
domain is calculated as

Dq = [(dq/2q bits) · Qstep]2. (20)
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Fig. 9. Estimated and actual coding bits of randomly selected 200 blocks
of different sequences with CIF format. (a) Tempete (CABAC). (b) Football
(CABAC). (c) Bus (CAVLC). (d) Carphone (CAVLC).

With (20), the distortion of a single transform coefficient
with index (u, v) is then approximated by the distortion caused
by quantization as

Duv ≈ [(|offsetuv − low−qbitsuv|/2q−bits) · Qstep]2 (21)

and the distortion of a transform block in spatial domain is
estimated as

D≈
∑

u

∑
v

Duv=
∑

u

∑
v

[( |offset−low−qbitsuv|
2q−bits

)
·Qstep

]2

.

(22)
To save the number of multiplication operations, we manip-

ulate the function in (22) as

D ≈ [d · Q2
step + r] >> (2 · qbits) (23)

where d =
∑

u

∑
v |offset− low−qbitsuv|2, and r is a rounding

factor which equals 22·qbits−1. Finally, a new distortion esti-
mation method is obtained by building a bridge between the
discarded bits and the corresponding distortion in (23). The
proposed distortion estimation algorithm in (23) can be easily
integrated with the quantization module without any additional
mathematical manipulations. The original 16 multiplications in
the inverse quantization process for a 4 × 4 transform block

Fig. 10. Estimated and actual distortion of 4000 macroblocks for sequences
with CIF format.

Fig. 11. Performance comparisons of different mode decision algorithms for
sequences with QCIF format and CABAC entropy coding method.

are reduced to a single multiplication with Q2
step in (23), which

can be alternatively absorbed in the λ in (1).
The proposed distortion estimation algorithm can cooperate

with the proposed rate estimation algorithm to save more
computation time of the overall encoding process. The differ-
ence between the original and the proposed implementation
structure of the rate-distortion calculation is illustrated in
Fig. 8. The major difference is that the entropy coding is
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replaced with the low-complexity rate estimation module,
and the inverse quantization, inverse transform and pixel
reconstruction are replaced with a simple distortion estimation
module.

V. Experimental Results

To validate the accuracy and efficiency of proposed block-
level rate and distortion estimation algorithms, we integrated
our proposed algorithms to the H.264/AVC reference software
JM12.0 [42]. In this section, we design three experiments:
1) comparison between estimated values and the correspond-
ing actual values; 2) the complexity reduction and the cod-
ing performance compared with the conventional RDO; and
3) Comparisons with Tu et al.’s rate-distortion estimation
algorithm in [16].

A. Comparison Between Estimated and Actual Values

In this subsection, comparisons of the estimated and ac-
tual values are made for different sequences under different
quantization parameters (QPs) with both CAVLC and CABAC
entropy coding methods. In Fig. 9, the estimated and actual
coding bits of randomly selected 200 blocks for each test are
shown. We see from Fig. 9 that the proposed rate estimation
algorithm is accurate and robust for different video contexts
and different coding configurations, and the estimated bits are
closely matched with the actual coding bits for both low-bits
and high-bits blocks. To validate the accuracy of the proposed
distortion estimation algorithm, the estimated and the actual
distortion values of 4000 macroblocks for different sequences
with CIF format are shown in Fig. 10, and it is observed that
our algorithm outputs accurate distortion estimations.

Actually, the mode decision process presents a certain level
of tolerance for the accuracy of rate and distortion estimations,
because the only issue that matters the result of mode decision
is the relative order of the R-D cost values of candidate modes.
Therefore, small prediction errors do not affect the mode
decision result until it is large enough to change the relative
order of R-D cost values.

B. Performance of the Proposed Block-Level Rate and Distor-
tion Estimation Algorithms

In this experiment, we compare the coding performance and
complexity between our proposed low-complexity mode deci-
sion algorithm and original RDO in JM12.0. When comparing
the coding performance difference, we utilize the popular
method proposed in [41] for calculating the average peak
signal-to-noise ratio (PSNR) differences between R-D curves.
When evaluating the complexity reduction, we calculate 	T
in [16] and [19] defined as

	T =
Tpro−RDO − Torg−RDO

Torg−RDO
× 100% (24)

where Torg−RDO and Tpro−RDO indicate the coding time with
the original implementation and with the proposed algorithm,
respectively. When comparing 	T , we indicate the total
encoding time including the non-RDO processes. Some impor-
tant encoding configurations are set as follows: all available

Fig. 12. Performance comparisons of different mode decision algorithms for
sequences with CIF format and CABAC entropy coding method.

Inter and Intra modes for both Inter frame and Intra frame
are enabled; fast motion estimation algorithm is used; motion
search range is 33 by 33; the number of reference frames
is 1 for IPP coding type and 2 for IBP coding type; Intra
Period is set as 8; the frame rate is 30 frames/s for both CIF
and quarter common intermediate format (QCIF) sequences;
FastCrIntraDecision is disabled.

To verify the robustness of the proposed rate-distortion
estimation algorithm, extensive experiments were performed
on standard sequences with QCIF and CIF formats. For both
CIF and QCIF sequences, we employ two different kinds
of mode-decision strategies. One is the original RDO with
only the proposed rate estimation algorithm (proposed RE),
and the other is the original RDO using both the proposed
rate and distortion algorithms (proposed RE and DE). The
experimental results for CIF and QCIF sequences are shown
in Tables I and II, respectively. The experimental results
tabulated in Tables I and II show that the average PSNR loss
compared with the original RDO is ignorable, while about
average 32% of the total encoding time is saved for both
CABAC and CAVLC. The R-D performance comparisons of
the proposed algorithm to the default RDO are also shown in
Fig. 11 and Fig. 12, and it is seen that, the PSNR loss with
the proposed algorithm over the full range of QP values is
ignorable.

C. Comparisons With Tu et al.’s Rate-Distortion Estimation
Algorithm

In this experiment, the proposed algorithms are compared
with Tu et al.’s rate and distortion estimation algorithms
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TABLE I

Performance of the Proposed Algorithms (Compared With the Original Rate-Distortion Optimization Technique) for CIF

Sequences at 30 Frames/s

Entropy Coding CABAC CAVLC
Sequences 	PSNR∗ 	TTotal

∗ 	PSNR∗∗ 	TTotal
∗∗ 	PSNR∗ 	TTotal

∗∗ 	PSNR∗ 	TTotal
∗∗

Stefan (352 × 240)
IPP.. −0.0382 −34.8% -0.0494 −50.7% −0.0551 −33.9% −0.0618 −38.2%

IBP.. −0.0539 −29.6% −0.0811 −32.6% −0.0682 −27.4% −0.0848 −31.2%

Coastguard
IPP.. −0.0341 −32.6% −0.0388 −35.2% −0.0417 −33.9% −0.0485 −37.8%

IBP.. −0.0361 −26.0% −0.0395 −30.5% −0.0431 −26.0% −0.0499 −28.7%

Bus
IPP.. −0.0350 −33.9% −0.0444 −36.4% −0.0500 −34.5% −0.0549 −38.3%

IBP.. −0.0324 −27.3% −0.0382 −31.2% −0.0492 −26.7% −0.0519 −30.1%

Foreman
IPP.. −0.0363 −24.6% −0.0447 −27.1% −0.0386 −27.4% −0.0493 −31.5%

IBP.. −0.0345 −11.5% −0.0385 −14.1% −0.0286 −21.6% −0.0429 −24.9%

Football
IPP.. −0.0491 −25.3% −0.0530 −35.9% −0.0643 −28.6% −0.0714 −40.7%

IBP.. −0.0455 −20.2% −0.0596 −25.8% −0.0641 −20.8% −0.0730 −24.7%

Mobile
IPP.. −0.0293 −37.7% −0.0366 −40.3% −0.0473 −37.3% −0.0565 −41.6%

IBP.. −0.0277 −33.9% −0.0379 −37.9% −0.0454 −25.4% −0.0544 −28.9%

Paris
IPP.. −0.0387 −33.1% −0.0427 −35.5% −0.0714 −33.9% −0.0730 −38.2%

IBP.. −0.0414 −28.0% −0.0445 −33.4% −0.0571 −28.8% −0.0610 −32.4%

Tempete
IPP.. −0.0367 −46.8% −0.0381 −48.3% −0.0525 −34.6% −0.0592 −38.8%

IBP.. −0.0396 −39.7% −0.0397 −43.1% −0.0614 −27.3% −0.0629 −30.5%

Flower
IPP.. −0.0441 −40.8% −0.0522 −42.1% −0.0835 −36.4% −0.0928 −40.2%

IBP.. −0.0317 −56.1% −0.0383 −26.2% −0.0664 −28.3% −0.0726 −31.9%

Akiyo
IPP.. −0.0328 −19.0% −0.0493 −22.3% −0.0391 −23.9% −0.0479 −28.8%

IBP.. −0.0256 −14.1% −0.0395 −36.2% −0.0006 −16.6% −0.0218 −21.0%

Carphone
IPP.. −0.0392 −20.5% −0.0468 −23.0% −0.0306 −26.4% −0.0426 −30.8%

IBP.. −0.0429 −18.1% −0.0433 −22.7% −0.0471 −20.3% −0.0477 −23.4%

Container
IPP.. −0.0416 −27.5% −0.0522 −29.5% −0.0468 −30.8% −0.0645 −35.5%

IBP.. −0.0379 −22.0% −0.0427 −27.5% −0.0422 −23.1% −0.0584 −26.1%

Hall
IPP.. −0.0167 −21.6% −0.0328 −24.8% −0.0237 −27.0% −0.0386 −31.3%

IBP.. −0.0182 −20.3% −0.0242 −25.5% −0.0304 −20.8% −0.0339 −24.9%

Silent
IPP.. −0.0436 −27.2% −0.0578 −29.2% −0.0713 −29.6% −0.0810 −34.3%

IBP.. −0.0426 −24.8% −0.0611 −38.1% −0.0583 −24.7% −0.0763 −27.8%

Average
IPP.. −0.0368 −30.4% −0.0456 −34.3% −0.0511 −31.3% −0.0601 −36.2%

IBP.. −0.0364 −26.6% −0.0449 −30.4% −0.0473 −24.1% −0.0565 −27.6%

∗Only rate estimation enabled.
∗∗Both rate and distortion estimations enabled.

Fig. 13. Comparison of our proposed method with Tu et al.’s method in
[16] for the rate estimation.

described in [16]. For the rate estimation, the method in
[16] is designed for inter-mode decision and Intra modes
are disabled for coding Inter frames in the experiments. In
our experiments, Tu et al.’s algorithm is implemented and
it works efficiently when only the Inter modes are enabled.
However, for the intra-mode decision, the rate estimation
becomes a more challenging task due to the high energy of

the residual. Fig. 13 shows the actual coding bits of 200
actual blocks and the corresponding estimated values of both
algorithms, and it is shown that the predicted values of our
proposed algorithm are closer to the actual values.

For the distortion estimation, the first 20 actual distortion
values in the mode decision process of coding Football with
CIF format and the corresponding estimated values of both al-
gorithms are tabulated in Table III. Theoretically, the proposed
algorithm outputs exactly the same estimated distortion values
of the algorithm in [16], but the implementation is simpler
and the inverse quantization and some additional mathematical
manipulations needed in [16] are also saved. From Table III, it
is seen that the actual estimated values of these two algorithms
present slight differences which are caused by the different
rounding operations for some additional mathematical manip-
ulations needed in Tu et al.’s method.

To compare the coding performance and complexity re-
duction, all the available Inter and Intra modes are enabled,
and both rate and distortion estimation algorithms are used
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TABLE II

Performance of the Proposed Algorithms (Compared With the Original Rate-Distortion Optimization Technique) for QCIF

Sequences at 30 Frames/s

Entropy Coding CABAC CAVLC
Sequences 	PSNR∗ 	TTotal

∗ 	PSNR∗∗ 	TTotal
∗∗ 	PSNR∗ 	TTotal

∗ 	PSNR∗∗ 	TTotal
∗∗

Foreman
IPP.. −0.0427 −27.8% −0.0521 −32.5% −0.0370 −29.2% −0.0472 −33.4%

IBP.. −0.0286 −22.9% −0.0401 −26.2% −0.0447 −23.4% −0.0409 −27.3%

Bus
IPP.. −0.0319 −35.7% −0.0298 −40.2% −0.0581 −35.7% −0.0653 −39.9%

IBP.. −0.0400 −30.0% −0.0444 −32.3% −0.0486 −27.2% −0.0583 −30.6%

Football
IPP.. −0.0444 −29.6% −0.0443 −34.1% −0.0595 −31.3% −0.0658 −34.9%

IBP.. −0.0443 −24.2% −0.0503 −26.7% −0.0651 −24.3% −0.0640 −27.2%

Tempete
IPP.. −0.0287 −37.9% −0.0341 −42.3% −0.0600 −38.2% −0.0649 −42.1%

IBP.. −0.0368 −31.9% −0.0339 −34.2% −0.0556 −29.7% −0.0617 −34.2%

Coastguard
IPP.. −0.0348 −31.9% −0.0395 −36.7% −0.0411 −34.5% −0.0452 −37.9%

IBP.. −0.0379 −25.8% −0.0426 −28.8% −0.0408 −26.7% −0.0435 −29.2%

Container
IPP.. −0.0651 −28.8% −0.0789 −32.8% −0.0776 −30.7% −0.0915 −35.0%

IBP.. −0.0489 −24.0% −0.0547 −27.6% −−0.0675 −24.4% −0.0868 −29.7%

Hall
IPP.. −0.0378 −27.9% −0.0511 −31.9% −0.0498 −29.6% −0.0688 −34.0%

IBP.. −0.0076 −23.9% −0.0170 −26.6% −0.0589 −25.1% −0.0576 −29.6%

Mother−daughter
IPP.. −0.0439 −23.4% −0.0516 −27.6% −0.0438 −26.4% −0.0555 −31.7%

IBP.. −0.0186 −19.0% −0.0350 −22.2% −0.0273 −20.8% −0.0352 −25.6%

Silent
IPP.. −0.0585 −28.8% −0.0652 −33.7% −0.0823 −31.9% −0.0954 −37.1%

IBP.. −0.0321 −23.9% −0.0465 −27.9% −0.0631 −25.4% −0.0635 −29.5%

Average
IPP.. −0.0431 −30.2% −0.0496 −34.6% −0.0566 −32.0% −0.0666 −36.2%

IBP.. −0.0327 −25.1% −0.0405 −28.1% −0.0524 −25.3% −0.0568 −29.2%

∗Only rate estimation enabled.
∗∗Both rate and distortion estimations enabled.

Fig. 14. Coding performance comparison with Tu et al.’s method in [16].

for mode decision. The experimental results for several stan-
dard test sequences are tabulated in Table IV, and the R-D
performances are also shown in Fig. 14. From Table IV, it
is shown that our proposed algorithm prevents more coding
performance degradation, and the complexity reduction is also
a little superior due to a simpler implementation of distortion

TABLE III

Comparison With Tu et al.’s Method in [16] for the Distortion

Estimation

IPmode∗ True Distortion Tu et al.’s Method Proposed
10 (2) 1821 1781 1781
9 (2) 87 81 82
9 (1) 106 107 108
9 (2) 104 103 104
9 (8) 122 123 123
9 (0) 86 89 90
9 (2) 108 95 96
9 (3) 138 137 137
9 (7) 93 86 87
9 (0) 158 156 156
9 (1) 190 178 178
9 (2) 166 171 172
9 (3) 179 159 160
9 (4) 203 190 191
9 (5) 111 117 117
9 (6) 171 166 165
9 (7) 172 156 155
9 (8) 150 137 139
9 (1) 101 87 87
9 (2) 115 106 105

∗IPmode indicates I4MB (9) or I16MB (10). The number in bracket
denotes the prediction direction index (I4MB: 0–8, I16MB: 0–3).

estimation. The superior coding performance originates from
the improved rate estimation algorithm, and the complexity
reduction stems from the simplified distortion estimation. An
enlarged version of the R-D curve in Fig. 14 is also shown in
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TABLE IV

Coding Performance Comparison With Tu et al.’s Method in [16]

Entropy Coding CABAC CAVLC
Sequences IPPPP IBPBP IPPPP IBPBP

	PSNR 	TTotal 	PSNR 	TTotal 	PSNR 	TTotal 	PSNR 	TTotal

Carphone (CIF) Tu et al.’s −0.0889 −19.7% −0.0755 −20.3% −0.0995 −25.1% −0.0969 −19.0%
Proposed −0.0468 −23.0% −0.0433 −22.7% −0.0426 −30.8% −0.0477 −23.4%

Tempete (CIF) Tu et al.’s −0.1109 −44.4% −0.0900 −42.1% −0.1415 −33.6% −0.1221 −26.3%
Proposed −0.0381 −48.3% −0.0397 −43.1% −0.0592 −38.8% −0.0629 −30.5%

Hall (CIF) Tu et al.’s −0.0882 −20.6% −0.0668 −36.4% −0.1143 −26.3% −0.0984 −20.1%
Proposed −0.0328 −24.8% −0.0242 −25.5% −0.0386 −31.3% −0.0339 −24.9%

Coastguard (CIF) Tu et al.’s −0.1199 −31.4% −0.1166 −27.5% −0.1164 −32.9% −0.1309 −24.6%
Proposed −0.0395 −36.7% −0.0426 −28.8% −0.0485 −37.8% −0.0499 −28.7%

Mot−daught (QCIF) Tu et al.’s −0.1636 −23.9% −0.1203 −19.2% −0.1575 −26.4% −0.1099 −20.4%
Proposed −0.0516 −27.6% −0.0350 −22.2% −0.0555 −31.7% −0.0352 −25.6%

Football (QCIF) Tu et al.’s −0.0992 −29.9% −0.0881 −24.5% −0.1275 −29.4% −0.1284 −23.8%
Proposed −0.0443 −34.1% −0.0503 −26.7% −0.0658 −34.9% −0.0640 −27.2%

Foreman (QCIF) Tu et al.’s −0.1434 −29.1% −0.1369 −23.7% −0.1438 −28.0% −0.1400 −23.6%
Proposed −0.0521 −32.5% −0.0401 −26.2% −0.0472 −33.4% −0.0409 −27.3%

Fig. 15. Comparison of enlarged R-D curve in Fig.14.

Fig. 15, and it is observed that the R-D sample points of our
method are more closely matched with the R-D sample points
of the original RDO. From Fig. 14, it is also observed that for
the cases of high bit-rate coding, the R-D sample points of
our method are visibly closer with the R-D sample points of
original RDO than Tu et al.’s method. This observation is also
verified by the high bit-rate cases shown in Figs. 5 and 13.

VI. Conclusion and Future Work

In H.264/AVC, the RDO technique is important for choos-
ing the optimal coding mode. However, the encoding complex-
ity increases drastically because of the expensive calculation
of R-D cost. In this paper, we propose novel rate and distortion
estimation algorithms to accelerate the RDO process. For
rate estimation, we utilize the flexible GGDs to model the
transform coefficient and derive a block-level rate estimation
algorithm, which employs the weighted sum of quantized

transform coefficients as an efficient rate estimator. For dis-
tortion estimation, the origin of distortion was first analyzed
thoroughly, and then a novel TDD estimator was proposed
with a compact implementation scheme. With proposed rate
and distortion estimation algorithms, about 32% total encoding
time is saved with ignorable coding performance degrada-
tion compared with conventional RDO. In the future work,
efficient combination of R-D estimation and mode skipping
will be studied to present more powerful fast mode decision
algorithms.

APPENDIX

In this appendix, a detailed derivation of the conclusion that
x∗ lies in the first half of the integration interval is given. First,
we will prove that fuv(x) is a convex function when x ≥ 0
and ηuv < 1 by calculating its first derivative as

f
′
uv(x) = d

{
ηuvα(ηuv)

2σuv�(1/ηuv)
exp

{
−[α(ηuv)

x

σuv

]ηuv

}}/
dx

= − ηuvα(ηuv)

2σuv�(1/ηuv)
· exp {−(νx)ηuv} · ηuvν

ηuvxηuv−1

= −κ · exp {−(Vx)ηuv} · xηuv−1 (25a)

where

ν =
α(ηuv)

σuv

κ =
ηuvα(ηuv)

2σuv�(1/ηuv)
· ηuv · νηuv . (25b)

With (25a) and (25b), the second derivative of fuv(x) is then
calculated as

f
′′
uv(x) = d

{−κ · exp {−(νx)ηuv} · xηuv−1
}/

dx

= κ{exp {−(νx)ηuv} ηuvν
ηuvx2ηuv−2.

+(1 − ηuv)exp {−(Vx)ηav} · xηuv−2}
(26)

It is observed that κ is positive-valued because ηuv, σuv and
α(ηuv) are all positive-valued, and (1 − ηuv) exp {−(νx)ηuv} ·
xηuv−2 > 0 when ηuv < 1, then the second derivative of fuv(x)
is proved to be positive. Therefore, we obtain the conclusion

Authorized licensed use limited to: Peking University. Downloaded on May 07,2010 at 09:25:21 UTC from IEEE Xplore.  Restrictions apply. 



ZHAO et al.: NOVEL STATISTICAL MODELING, ANALYSIS AND IMPLEMENTATION OF RATE-DISTORTION ESTIMATION FOR H.264/AVC CODERS 659

that fuv(x) is a convex function when x ≥ 0 and ηuv < 1.
Then the integration of fuv(x) in a certain quantization interval
[a, b] is reformulated as∫ b

a

fuv(x)dx =
∫ a+b

2

a

fuv(x)dx +
∫ b

a+b
2

fuv(x)dx

=
∫ a+b

2

a

fuv(x)dx+
∫ a

a+b
2

fuv(a+b−x)d(a+b−x)

=
∫ a+b

2

a

fuv(x)dx +
∫ a+b

2

a

fuv(a + b − x)dx

=
∫ a+b

2

a

(fuv(x) + fuv(a + b − x))dx. (27)

Based on the derived conclusion that fuv(x) is a convex
function when x = 0 and ηuv < 1, we have that

fuv(x) + fuv(a + b − x) > 2fuv(
a + b

2
). (28)

Because fuv(x*) in (8) represents the average probability
value in a quantization interval [a, b], i.e., fuv(x∗) = 1

b−a
·∫ b

a
fuv(x)dx, with (27) and (28), we obtain that

(b − a)fuv(x∗) =
∫ a+b

2

a

(fuv(x) + fuv(a + b − x))dx.

>

∫ a+b
2

a

2fuv

(
a + b

2

)
dx

= (b − a)fuv

(
a + b

2

)
(29)

Then we have fuv(x∗) > fuv((a + b)/2), with fuv(x) being
continuous monotonic decreasing when x ≥ 0, we finally
derive that x∗ ∈ (a, a+b

2 ).
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