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Abstract: As an emerging kind of retinomorphic camera, the dynamic vision 

sensors (DVS) have shown great advantages in wide dynamic range and high 

temporal resolution in various applications such as autonomous driving and high-

speed motion photography. However, how to compress the output spike data of 

DVS still remains a big challenge. To address this challenge, this paper firstly 

analyzes the spike firing mechanism and the redundancies of the spike data 

generated from DVS, and then introduces an efficient cube-based coding 

framework. Typically, a spike in DVS contains the location (the x-, y- addresses, 

the timestamp) and the polarity (On/Off). Three key strategies are designed to 

exploit the spatial and temporal characteristics of the spike location information 

for compression, including the adaptive macro-cube partitioning structure, the 

address-prior mode and the time-prior mode. Finally, the experimental results 

demonstrate that our approach achieves an impressive coding performance, with 

the average compression ratio of 19.519 over the original spike data, which is 

much higher than the results of conventional lossless coding algorithms.   

1. Introduction 
Conventional videos are captured and stored in the form of frames. Each frame carries the 

visual information from all the pixels regardless of the change of the luminance intensity, 

which brings significant redundancies and faces the big challenge of bandwidth limit in 

transmission applications. As a bio-inspired approach, the dynamic vision sensors (DVS) 

[1][2] have been developed, in which a three-layer retina is modelled implementing a 

simplified photoreceptor-bipolar-ganglion pathway [3]. Recently, the DVS devices 

including the dynamic and active-pixel vision sensor (DAVIS) [4], and the asynchronous 

time-based image sensor (ATIS) [5] are gaining more and more attentions owing to their 

great advantages of wide dynamic range and high temporal resolution compared to 

conventional image sensors in autonomous driving, high-speed motion photography, 

robotic automation and intelligent surveillance, etc (shown in Fig. 1).  

 
Figure 1. The perspectives and challenges of DVS. 

Although these enhanced DVS devices choose different ways to represent the intensity 

information with extra circuits, a typical DVS sensor focuses on the luminance change and 
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does not acquire the absolute intensity for imaging in the conventional sense. The common 

characteristics of a typical DVS sensor can be summarized as follows. The pixels are 

sensitive to the scene dynamics and respond to the temporal luminance changes with spikes 

(or events) firing independently. Besides, the address-event representation (AER) protocol 

[6] is utilized to output the spikes. Moreover, the photoreceptor circuit of the pixel converts 

the photocurrent logarithmically to the voltage for a wide dynamic range. Generally, a 

spike consists of four essential elements: the x-, y-addresses, the timestamp and the polarity 

which can be described by a tuple < �, �, �, � >. The first three elements comprise the 

spike location in three dimensions and the last one indicates luminance change. 

The brand new spike data is quite different from the conventional frame-based video 

sequences. A spike occurs when the luminance change reaches a predefined threshold. As 

a consequence, the spike data is sparse in spatial and discrete in temporal. With the AER 

protocol, dynamic vision sensors can be built with a rather high time resolution of 1 �� 

(DAVIS 240B). The timestamp of each spike consumes the most bits. For example, in 

DAVIS 240B, the timestamp in represented with 32 bits while a spike is measured with 64 

bits. Meanwhile, the spatial resolution is limited by the output bandwidth because of the 

bit cost of the x- and y-addresses. Thus, the coding for the spike data of dynamic vision 

sensors is a challenge demanding prompt solutions. 

The rest of the paper is organized as follows. In Section 2, the conventional video coding 

techniques and the spike coding in the field of neural computation are reviewed. In Section 

3, we investigate the characteristics of the spike data. Then, a cube-based coding 

framework to compress the spike location and its polarity is described in greater detail in 

Section 4. Next, a DVS spike dataset is introduced in Section 5 along with the 

demonstration of experimental results. Finally, we conclude the paper in Section 6. 

2. Related Works 
Conventional video coding technologies have been researched and developed in about four 

decades, leading to several major standards including MPEG-4 AVC/H.264, MPEG-

HEVC/H.265, AVS and VP9, etc [7-10]. Among them, the block-based hybrid coding 

framework including motion compensation, transform, quantization and entropy coding 

has efficiently reduced the redundancies in the video data. However, compared to the 

frame-based videos, the spike data generated from DVS have different properties. It is not 

straightforward to apply conventional video coding techniques to the spike coding. 

The spike firing mechanism in dynamic vision sensors is inspired from the discharge 

activity of neurons. There are a number of researches trying to estimate the entropy or the 

coding capacity of the spike train in the field of neural computation. Mackay et al. [11] 

initially applied entropies into neural coding regarding the spikes as binary strings. Strong 

et al. [12] proposed the “direct method” in which the spike train is discretized into binary 

words with a particular letter size. Furthermore, the work proposed in [13][14] indicates 

that the inter-spike interval can be modelled by a suitable probability density function. The 

entropy can be estimated via numeric methods at any desired temporal resolution [14]. 

These explorations are from the point of view of a neuron based on biological models. 

Even though the rapid developing semiconductor technology enables the implementation 

of intelligent sensors to be so close to the biological neural systems, some approaches and 
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structures taken by nature are not able to be applied in a feasible way, such as the parallels 

in neural signaling and the complicated connections between neurons. Hence, we mainly 

focus on the spike coding for practical vision sensors and absorb the edifying experiences 

from the predecessors in neural computation as well as in conventional video coding. 

3. Spike Firing Mechanism and Analysis 

In this part, we will look into the spike firing mechanism of DVS from the microscopic 

analysis. The photoreceptor in the pixel captures the light and logarithmically converts the 

photocurrent into a voltage output [2]. A spike is fired when the difference of the luminance 

intensities (measured by voltage) reaches a predefined threshold �:  

 	
���� − 
����� 	 > � (1) 

where �� and ′��denote the photocurrent at current moment � and at the moment ��when 

the last spike was elicited in the same pixel, respectively. In order to analyze the spike 

generation, we should look into the luminance intensity, which is often considered to be 

proportional to the number of the recorded photons �(�, �) during the time interval (t, t +δ] . Also, we define �(�, �)  as the number of photons arriving during the same time 

interval (�, � + �]. It is generally assumed that �(�, �) is a homogeneous Poisson process 

in which the photon arrival rate � is constant in a short period of time. Thus the probability 

of � photon arrivals in any time interval of length � is given by: 

 Pr{�(�, �) = �} = ���� (��)�
�!  (2) 

In ideal circumstances, all of the photon arrivals can be recorded in the photoreceptor, 

i.e.  �(�, �) = �(�, �). However, considering the presence of the dead time between two 

consecutive photon arrival events, if the former event is recorded at �, any latter event 

arriving during the time interval (�, � + �] will not be recorded, where � (usually τ < δ) is 

the length of the dead time. Hence, �(�, �) is non-Poisson distributed [15].  

As �(�, �) is a Poisson process, the time difference � of two consecutive photon arrivals, 

also known as inter-arrival, is exponentially distributed with mean 1/λ. With the presence 

of the dead time �, the time difference of two consecutive recorded photon arrivals �# can 

be described as a shifted exponential distribution with mean τ + 1/�: 

 �# = � + � (3) 

And the corresponding probability density function starting at τ would be as follows: 

 $(�#) = %����(&'�*),           �# ≥ �0,                            �# < � (4) 

From the above, though �(�, �) is a non-Poisson process, it can be modeled as a renewal 

process, in which the inter-arrival intervals are positive, independent and identically 

distributed (IID) random variables. In this case, the intervals between one recorded photon 

and the next are independent and shifted exponential distributed. Thus, the photoreceptor 

returns to a state probabilistically equivalent to the starting state over at each recorded 
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photon arrival epoch. Because of the renewal property, each photon record can be regarded 

as a renewal . [16]. 

     Therefore, we can derive the probability density of �(�, �). Since the expression of at 

least � photon arrivals recorded in (�, � + �], is equivalent to that the time interval 2� of � 

recorded photon arrivals is no longer than �, we have 

 

Pr{�(�, �) = �} = Pr{�(�, �) ≥ �} − Pr{�(�, �) ≥ � + 1} 
= Pr 34 �#

�

567
≤ �9 − Pr 34 �#

�:7

567
≤ �9 

= Pr{2� ≤ �} − Pr{2�:7 ≤ �} 
(5) 

where 2� = ∑ �#�567  denotes the time interval of � recorded photon arrivals. It is easy to 

derive that 2� is generalized gamma distributed with parameters �, � and �. 

 $(2�; �, �, �) = (2� − ��)��7
Γ(�) �����(AB��*);    2� ≥ ��. (6) 

Thus we have 

 Pr{�(�, �) = �} = D�(�) − D�:7(�) 
= EF�, �(� − ��)GΓ(�) − EF� + 1, �(� − �� − �)GΓ(� + 1)  

(7) 

where D�(⋅) and E(⋅) denote the cumulative distribution function of 2� , and the lower 

incomplete gamma function, respectively. 

We use a video captured by a high speed camera to validate our model. Since the pictures 

are shot within a short period of time, the photon arrival rate � is assumed constant. The 

values of a certain pixel is able to represent the luminance intensity (proportional to 

recorded photon arrivals �(�, �)) during (�, � + �] where � is the starting time of each shot, 

and � here is the exposure time. We plot the histogram of the values of a certain pixel, and 

fit the density function �(�, �). Fig.2 shows �(�, �) well fits the histogram. 

Due to � ≪ � in practical applications, �(�, �) is approximately normal distributed with 

mean J[�(�, �)]  and variance KLM[�(�, �)]. Fig.2 shows that the approximate normal 

distribution also fits the pixel value histogram well.  

 J[�(�, �)]~ ���� + 1 ,    KLM[�(�, �)]~ ��(�� + 1)N   (8) 

Once �(�, �) is approximately normal distributed, Eq.1 can be rewritten as 

 Olog ����� O = Olog �(�, �)�(�′, �)O = |log Q(�, ��, δ)| > �.  (9) 

where Q is the ratio of two independent normal random variables �(�, �) and �(��, �).  

The ratio Q can be linearly transformed as follows [17]. 
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 Q~ R��(1 + ��) + �
R���(1 + �′�) + �  (10) 

where � and � are independent standard normal random variables, and the photon arrival 

rate � and �′ are assumed to be constant during (�, � + �] and (��, �� + �), respectively. 

  

Figure 2. Histogram of the values of a certain pixel 

(in blue), the fitted density function �(�, �) (red 

line), and the approximate normal distribution 

(green line). 

Figure 3. The distribution of log Q.  

Green line: when �(�, �) and �(��, �) are 

approximately identically distributed. 

Purple and blue lines: when �(�, �) and �(��, �) 

have different probability densities. �: the spike firing threshold in DVS. 

Since Eq.10 is quite complicated, we focus on qualitative analysis of the density 

distribution, such as the shape of the density of Q which, to a certain extent, determines the 

generation of spike in DVS. Q  has either a unimodal or a bimodal density. For many 

practical situations, the densities which are theoretically bimodal, can be approximate to 

unimodal [17]. Considering the monotonically increasing of the logarithm function, the 

density shape of log Q is similar to that of Q. 

After a spike was just elicited at the moment �′, �(�, �) is similar to �(��, �), log Q is 

approximately symmetric around the ordinate origin (the green line in Fig.3), which 

indicates the probability of firing a new spike Pr{|log Q(�, ��, �)| > �} is infinitesimal. 

Once the luminance intensity variation causes significant differences between �(�, �) and �(��, �), the changed distribution of log Q (the purple or the blue line in Fig 3), is more 

likely to satisfy the spike firing condition. When a new spike is fired, �′ is reassigned to the 

latest firing moment and the time distance between � and �′ returns to be close, then the 

variation of log Q starts again from scratch.  

Based on the analysis above, we conclude that, 

� The process between two successive spikes at a certain pixel can be described with 

a specific probability model, such as a renewal process. For a certain pixel, only 

when the probability density is significantly changed, a spike is elicited. Thus, the 

spike generation mechanism of DVS has taken advantage of reducing the temporal 

redundancies. 

� When the luminance intensity is stably changing, such as in linear increasing or 

decreasing, the time intervals between consecutive spikes at the same pixel appear 

to be nearly equal, which may induce temporal correlations.  
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� Besides, considering that the pixels are independently recorded and the adjacent 

pixels receive almost the same luminance intensities simultaneously, the spatial 

redundancies still exist.  

In section 4, we design several strategies and concentrate on removing the redundancies. 

4. The Spike Coding Framework 

 

Figure 4. The spike coding framework 

To exploit the temporal and spatial redundancies analyzed in Section 3, a cube-based spike 

coding framework (shown in Fig. 4) is proposed which proceed as follows.   

A DVS spike sequence can be partitioned into multiple macro-cubes in temporal, each 

of which has the full spatial resolution of the pixel array. A macro-cube is then spatially 

split into small spike-cubes (shown in Fig. 6). The encoding process for the spike-cube 

consists of the spike location coding and the spike polarity coding. The former is performed 

with the optimization decision of the address-prior (AP) mode and the time-prior (TP) 

mode, while the latter utilizes the previous coding information as the reference to predict 

the imminent polarity. The prediction residuals in AP mode, TP mode and the polarity 

coding are fed into an adaptive context-based entropy coder. We describe these in more 

details in the following sections. 

  
Figure 5. The adaptive macro-cube 

partitioning structure. Figure 6. A macro-cube is divided into small spike-cubes. 

4.1. Adaptive Macro-cube Partitioning 
In practical, the spike numbers are highly volatile in the fixed time period, associating with 

the luminance change and objects’ motion. To smooth the fluctuation and to limit the 

context size of the entropy coder, the macro-cubes shall be adaptively allocated with 

approximately equal number of spikes.  
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At the first stage, the macro-cube is initially set to the maximum time-length STUV , as 

the root of a binary tree. Starting from the root, if the total number of the spikes in each 

node is smaller than a predefined threshold, it shall be equally split into two small macro-

cubes recursively. The leaf nodes of the binary tree form the final shape of the macro-cube 

partitioning. Each node is encoded with a split flag identifying that whether current macro-

cube is about to be split or not. Fig. 5 demonstrates the partitioning process. 

4.2. Spike Location Coding 
The spike distribution in spatial can be classified into two types: spatial-centralized and 

spatial-decentralized.  Objects’ movements usually lead to a number of adjacent pixels to 

elicit spikes (spatial-centralized). Moreover, the luminance variation would cause spike 

firing globally (spatial-decentralized). Thus, the time-prior (TP) mode and the address-

prior (AP) mode are designed for these two types, respectively. Each mode will be tried 

and the best one with minimum rate cost is chosen. 

 

Figure 7. The location histogram map (orange blocks refer to non-empty blocks) and the location 

histogram counts. 

A. Address-Prior Mode 
The AP mode is designed for the spatial-decentralized spike-cubes. By projecting all 

the spikes in a spike-cube to the xy plane, a location histogram is depicted [18]. We 

represent the location histogram using location histogram map and location histogram 

counts. The former is a binary map indicating whether the spikes exist or not, while the 

latter records the number of spikes at each pixel.  

Similar to the location histogram map coding in [18], we code the blocks utilizing a 

context-based arithmetic coder and use the information of coded blocks in neighborhood 

as references to adaptively update the context. Moreover, the corresponding blocks of the 

histogram map in the previous spike-cube are also used as references to help adjust the 

context for current block. The non-empty blocks of the location histogram counts are 

encoded as individual symbols. 

In general, the luminance changes smoothly. The time intervals between consecutive 

spikes for a certain pixel show the temporal relevance which can be used to predict the 

occurring time of the subsequent spike. In this way, the timestamps of the spikes fired at 

each pixel are differential coded one after another (shown in Fig. 7).  

B. Time-Prior Mode 
To code the spatial-centralized spike-cubes, the time-prior mode is an appropriate 

solution. We first find a center point (�W∗, �W∗) and project all the other spikes to its time axis 

which appears to be a timeline. The center point is determined by: 

 �W∗, �W∗ = LM� minVY,&Y|�5 − �W| + |�5 − �W| (12) 
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where (�5, �5)  denotes the spike address in spatial. The center point (�W∗, �W∗)  is either 

encoded directly or differential encoded by referencing the center point (�W,�Z\^∗ , �W,�Z\^∗ ) 

of the previous collocated spike cube. 

 

Figure 8. The motion vectors of the spikes to the center and the differences of timestamps are encoded 

in TP mode. 

As the spikes are centralized in spatial, the offsets of the spatial location (�5, �5) to the 

center point (�W∗, �W∗) form a motion vector (Δ�5, Δ�5) which is fed to the entropy coder. 

The timestamps of the spikes in the center point’s timeline are also differential encoded 

like that in AP mode (shown in Fig. 8).  

4.3. Spike Polarity Coding 

 
Figure 9. The temporal correlation of the polarity pairs of two consecutive spikes (statistics on three 

different DVS sequences). 

In DVS, the spike polarity indicates the luminance change, while “On” means luminance 

increase and “Off” means decrease [2]. By analyzing the polarity pair of two consecutive 

spikes in three DVS sequences, the temporal correlation of the polarity is relatively high. 

In Fig. 9, if the previous spike contains an “On” (or “Off”) polarity, there is a large 

probability that the following spike will have the same polarity of “On” (or “Off”). This is 

mainly because that in general, the luminance is increasing or decreasing in a steady state. 

Thus, the encoding of the spike polarity exploits the previous spike polarity as the context 

for the current one. 

5. Experiments 
To evaluate the performance of the proposed coding framework, we constructed the PKU-

DVS dataset for spike coding [19]. The PKU-DVS dataset is classified into two categories 

(Class A for indoor and Class B for outdoor scenarios), which are captured under various 

circumstances including daytime, night, near view, distant view and high speed movements.  

Table 1 demonstrates the results of the coding experiments on the PKU-DVS dataset and 

we can find that compared to the original spike data, the average compression ratios are 
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21.482 for Class A, 17.230 for Class B, and 19.519 for the whole. In contrast, the 

conventional lossless coding algorithms only achieve average compression ratios of 4.407 

(Lempel-Ziv compression algorithm, LZ77) [20] and 12.642 (Lempel-Ziv-Markov chain 

algorithm, LZMA) [21] in total, respectively. Notably, for high speed motion scenarios 

with high spike firing rates, such as the sequence waterdrop, fluorescent and lighter, our 

approach manifests an impressive coding performance. For night scenarios, due to the 

influence of noise, the instinct temporal correlation is disturbed which may slightly lower 

the coding performance. In general, the proposed framework is still capable of coding the 

spike data efficiently. 

Table 1. Performance evaluation of the proposed coding framework and comparison against 

conventional lossless coding algorithms (each spike is 64 bits). 

Sequence Time (s) Total spike 
number 

Compression ratio (compared to the original data) 
Our approach LZ77 LZMA 

C
la

ss
 A

: i
nd

oo
r 

waterdrop 3.80 11563244 59.594 13.364 52.953 

fluorescent 5.44 11643175 33.677 4.025 14.669 

lighter 2.10 2792140 20.383 4.458 12.644 

football 7.21 9745102 18.816 5.935 14.485 

jump 3.28 2375023 8.967 3.383 7.351 

game 9.57 5918278 4.496 2.857 5.223 

pendulum 5.37 113683 4.438 2.497 4.078 

Average for Class A 5.25 6307235 21.482 5.217 15.915 

C
la

ss
 B

: o
ut

do
or

 intersection 10.35 30483325 62.198 4.282 18.555 

pedestrians 355.21 25455049 14.247 4.323 10.430 

daytime-traffic1 109.84 14246080 11.132 3.765 8.630 

daytime-traffic2 301.60 5525454 6.487 2.542 4.573 

night-roadside 63.37 17018998 5.441 3.178 5.959 

night-traffic 15.47 5423636 3.874 2.687 4.798 

Average for Class B 142.64 16358757 17.230 3.463 8.824 
Total average 68.66 10946399 19.519 4.407 12.642 

6. Conclusion 

In this paper, to compress the spike data generated from the dynamic vision sensors, we 

deeply investigated the spatial and temporal correlations of the spikes, and a lossless cube-

based spike coding framework was proposed. The spike data including the spike location 

and the polarity are efficiently encoded with several strategies: the adaptive macro-cube 

partitioning structure, the address-prior and the time-prior modes. The experimental results 

over the PKU-DVS dataset show that our approach has achieved an impressive coding 

performance with the average compression ratio of 19.519 against the original data. In the 

future work, we will investigate more coding strategies to enhance current framework. 

Meanwhile, the lossy coding methods for the DVS spikes are also worth studying. 
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