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Although halftone image watermarking technologies have been rapidly developing in the
21st century, the existing techniques lack a theoretical basis. In this paper, we tackle
halftone image watermarking problems from a theoretical perspective. First, we propose a
general optimization framework for Halftone Visual Watermarking (HVW), which is a
certain category of halftone image watermarking techniques. Then two specific HVW
problems, Single-sided Embedding Error Diffusion (SEED) and Double-sided Embedding
Error Diffusion (DEED) are presented and solved by applying the proposed framework.
With SEED and DEED obtained, both the theoretical solutions and experimental results
indicate that our previous heuristic methods, Data Hiding by Conjugate Error Diffusion
(DHCED) and Data Hiding by Dual Conjugate Error Diffusion (DHDCED), are special cases
of SEED and DEED, respectively. We also demonstrate that DEED can achieve outstanding
performance compared to DHDCED and other previous methods by selecting different
parameters. With this paper, we essentially build a bridge between the theory and
practical implementations of HVW problems.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

In the past two decades, multimedia technologies have
been progressing rapidly and multimedia content is
everywhere in people's daily lives. Currently, the dis-
tribution of multimedia content through printed matter,
such as newspapers, magazines, books, etc., is still as
important as digital distribution. To protect this printed
multimedia content from malicious attacks, such as illegal
copying, halftone image watermarking technologies have
been invented.

Usually, a greyscale printed image, which is formally
referred to as a greyscale halftone image, contains only
two colors, black and white (1-bit per pixel). When a
uo).
halftone image is viewed from a certain distance, it still
resembles the original greyscale image. A color halftone
image works similarly to a greyscale halftone image. The
process to produce a halftone image is called the half-
toning process. Over the past several decades, many half-
toning methods have been developed. These halftoning
methods can be categorized into several types of tech-
nologies: ordered dithering [1], error diffusion [2–4], dot
diffusion [5–8] and direct binary search [9–12].

Due to the 1-bit nature of halftone images, most gen-
eral watermarking methods, such as Least Significant Bit
embedding [13], cannot be directly applied. Specific
research has been carried out in the past 20 years for
halftone image copyright protections, authentications and
steganography. In general, halftone image watermarking
methods can be classified into two classes.

The Class 1 methods usually embed a secret binary
bitstream into a single halftone image, despite whether
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the embedding is performed in spatial domain [14–20] via
manipulating the pixel values, or in wavelet-transformed
frequency domain via directly change the coefficient
values [21] or exploiting embedding by merging the sin-
gular values of the selected frequency band of the cover
image and the watermark [22]. Later, when the embedded
bitstream needs to be extracted, the computer will apply
certain algorithm to the stego halftone image (the scanned
version or the electrical copy) to extract the secret
bitstream.

On the other hand, the Class 2 methods, which employ
halftone visual watermarking (HVW) as the representation
throughout this paper, has different secret message (to be
embedded) and a much simpler decoding mechanism
compared to Class 1 methods. During the embedding
procedures, HVW usually embed a secret pattern into
multiple halftone images (with N stego halftone images
obtained from N cover images, N41). In decoding process,
HVW methods possess two common and simple decoding
methods. When extraction is needed later and no com-
puter is available, the secret pattern can be directly per-
ceived by the users when the stego halftone images are
overlaid (equivalent to binary AND operation). If the users
need a better visual quality of the decoded secret pattern,
they can apply a binary not-exclusive-or (XNOR) operation
to the scanned stego halftone images with a computer.

Since different halftoning techniques have different
mechanisms, different HVW methods will be specifically
designed accordingly. Among them, HVW methods for
error diffused halftone images have been studied by var-
ious researchers because error diffusion gives good visual
quality, while it remains very simple to implement among
all kinds of halftoning techniques. With such advantages,
error diffusion and its improved versions have been widely
adopted in the printing industry since the 1970s.

The first HVW method for error diffused halftone
images [23] was proposed in 2001 to embed a secret
pattern into two halftone images generated by using the
stochastic property. However, the contrast of the decoded
secret pattern was low and the secret pattern was hard to
perceive. Later, [24] imposed the conjugate properties of
two stego halftone images according to a watermark pat-
tern. The performance was shown to have improved sig-
nificantly compared to [23] from both theoretical analysis
and experimental results. Still, [24] possessed weaknesses,
which were the boundary artifacts and low contrast of the
decoded secret pattern when the two original images were
different. Meanwhile, by shifting the quantization thresh-
old when generating one of two halftone images, [25] gave
similar performance and problems compared to [24]. In
the following years, [26] adjusted the dynamic range of the
original greyscale image and then exploited a pattern look
up table and pixel swapping to achieve embedding.
Although the detail of the embedded halftone image was
preserved, the contrast of the revealed secret pattern was
low and the visual quality of the stego halftone images was
quite poor compared to other methods. When [27] applied
a gradient attack to the stego images generated by [24],
the boundaries of the secret pattern appeared in the edge
map. Based on this observation, [27] extended the tradi-
tional visual cryptography. But the visual quality of the
second generated stego image dropped significantly com-
pared to the first generated stego image and the contrast
of the revealed secret pattern in [27] was much lower than
in [24], which would make it inconvenient for users to
distinguish the secret pattern from the background. Ref.
[28] relied heavily on the look-up table training results,
though it proposed to adaptively shift the quantization
threshold, and improved the performance compared to
[25]. Concurrently, after analyzing [24,29] proposed to
make amendments on both stego halftone images rather
than only on the second halftone image. Despite the fact
that the performance was improved significantly, there are
still some refinements that can be applied to [29]. After
then, [30] proposed a simple extended HVW method of
[29] from greyscale domain to color domain.

With many error diffusion based HVW methods
developed, recently, researchers started to explore more
HVW methods for other halftoning mechanisms. Ref. [18]
explored to apply the concept of [25] in direct binary
search generated halftone images in 2007. In 2011, inspired
by the conjugate property in [24], two HVW methods for
dot diffused halftone images are proposed in [31]. Later,
[31] is extended to embed one binary secret pattern into
two color dot diffused halftone images [32]. In the same
year, [33] adopts conjugate property and mathematical
morphology to create a new HVW method for ordered
dithering. However, [33] shows similar problem to [27]
with low quality stego halftone images. According to their
paper, the revealed secret pattern of [27] is even less dis-
tinguishable compared to [27]. This year, [34] designed the
first HVW method for a special kind of error diffusion
techniques called multiscale error diffusion (MED) by
adopting the concept of visual cryptography. Although
MED is originated from error diffusion, researchers only
maintained the concept of diffusing current error to future
pixels and developed a new framework. Thus, previous
error diffusion based HVW methods cannot be directly
applied to.

Although plenty of HVW methods have been proposed
over the years in studies, most of them have been devel-
oped from the implementation perspective. Despite the
individual deficiencies above, these heuristic HVW meth-
ods cannot prove any optimality for their current solutions
because of the lack of a theoretical basis. To resolve this,
the proposed work tackles the HVW problems from a
theoretical perspective. By considering optimization, we
propose a general formulation to describe the HVW pro-
blems. Then we can essentially employ this formulation as
a general optimization framework to describe any HVW
problem and proceed to solve it accordingly.

To elaborate how to apply the proposed framework to
specific HVW problems, two practical HVW problems are
exploited. Then a viable method is designed to solve the
two optimization problems, and thus we propose two
general HVW methods called Single-sided Embedding
Error Diffusion (SEED) and Double-sided Embedding Error
Diffusion (DEED). With different setups, SEED and DEED
can accommodate different applications. In this paper, we
not only show that DHCED and DHDCED are special cases
of SEED and DEED respectively in theoretical comparisons,
but also provide experimental results to support our
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conclusions. In the experiments, we also demonstrate that
by tuning the parameters of DEED, it shows superior per-
formances compared to DHDCED and other latest/classical
methods.

The rest of the paper is organized as follows. Section 2
reviews the previous methods, DHCED and DHDCED.
Section 3 gives the proposed general formulation for HVW
problems and proposes SEED and DEED. Section 4 presents
the experimental results and discussion, and Section 5
concludes the paper.
2. Reviews of DHCED and DHDCED

In this section, Data Hiding by Conjugate Error Diffu-
sion (DHCED) [24] and Data Hiding by Dual Conjugate
Error Diffusion (DHDCED) [29] are reviewed.

First, we define some common notations which will be
used throughout this paper. Let X1 and X2 be two original
grey-scale images, which can be identical or not. Let Y1 and
Y2 be the generated stego halftone images. Let W be the
secret binary pattern to be embedded. Let Ww be the col-
lection of the locations of the white pixels in W and Wb be
the collection of the locations of the black pixels in W. Let
� represent the binary AND decoding operation. Let � be
the binary not-exclusive-or (XNOR) decoding operation.

2.1. Data hiding by conjugate error diffusion

DHCED generates two stego halftone images, Y1 and Y2,
referenced to X1, X2 and W such that when Y1 and Y2 are
overlaid or an XNOR operation is carried out between
them, the secret pattern W is revealed. The core idea of
DHCED is to let y2ði; jÞ be identical or different(conjugate)
compared with y1ði; jÞ according to the current secret
pattern pixel value to be embedded.

In DHCED, the first stego halftone image Y1 is generated
using standard error diffusion, as shown in Fig. 1. The core
idea of error diffusion is to use the feedback loop to diffuse
the current quantization error to future pixels, such that
when the future pixels are processed, they will compen-
sate for the previous quantization errors. The mathema-
tical description of error diffusion is described in (1)–(4).

a1ði; jÞ ¼
X

hðk; lÞ � e1ði�k; j� lÞ ð1Þ

u1ði; jÞ ¼ x1ði; jÞþa1ði; jÞ ð2Þ

y1ði; jÞ ¼
0; u1ði; jÞo128
255; u1ði; jÞZ128

(
ð3Þ
Fig. 1. Error diffusion system.
e1ði; jÞ ¼ u1ði; jÞ�y1ði; jÞ ð4Þ

where x1ði; jÞ is the ijth pixel of X1, a1ði; jÞ is the past error
(diffused from past pixels ) to be carried by the ijth pixel,
hðk; lÞ is the error diffusion kernel, e1ði; jÞ is the quantiza-
tion error at the ijth pixel, and y1ði; jÞ is the ijth pixel of Y1.
Note that error e1 is defined as the difference between u1
and y1, instead of between x1 and y1. Two common error
diffusion kernels are the Steinberg kernel [2] and Jarvis
kernel [3].

After the generation of Y1, the second halftone image Y2
is generated by employing the DHCED system with X2, Y1
and W as the inputs. The DHCED system is shown in Fig. 2.

In DHCED, for ði; jÞAWb, y2ði; jÞ is ‘favored’ to be con-
jugate to y1ði; jÞ. Meanwhile, for ði; jÞAWw, if X1aX2, then
y2ði; jÞ is ‘favored’ to be identical to y1ði; jÞ. Note that for
ði; jÞAWw, if X1 ¼ X2, then y2ði; jÞ is forced to be identical to
y1ði; jÞ. The ‘favor’ mechanism works as follows. First, the
DHCED system performs a trial quantization on the cur-
rent u2ði; jÞ. Then if y2ði; jÞay1ði; jÞ � wði; jÞ, DHCED will
calculate the minimum distortion Δuði; jÞ to toggle the
current pixel. If the minimum distortion is not excessive,
i.e. Δuði; jÞrT , then the toggling will be performed. In the
‘favor’ mechanism, T controls the tradeoff between the
visual quality of the stego halftone image and the contrast
of the revealed secret pattern. When T increases, the visual
quality of Y2 decreases, while the contrast of the revealed
secret pattern increases.

2.2. Data hiding by dual conjugate error diffusion

Although DHCED performs well in many cases, it still
has its limitations. In DHCED, we observe that boundary
artifacts mainly appear in the flat regions of Y2 at the
bottom and right boundaries of the locations where (i,j)
are co-located in Wb when X1 ¼ X2. If we obtain the edge
map of Y2 by applying the Sobel filter to Y2, the boundary
artifacts will be even more obvious. Also, DHCED does not
perform well when X1 and X2 are not identical, especially
when T is low.

To solve the problems above, DHDCED has been pro-
posed. Still, DHDCED generates two stego halftone images,
Y1 and Y2, such that when the stego images are overlaid or
an XNOR operation is carried out between them, the secret
pattern will be revealed. The DHDCED system diagram is
shown in Fig. 3.

Unlike DHCED, DHDCED generates Y1 and Y2 simulta-
neously. For ði; jÞAWb, DHDCED will firstly trial quantize
Fig. 2. DHCED system.
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u1ði; jÞ and u2ði; jÞ. Then two strategies are computed
accordingly.

Strategy 1: Obtain the minimum distortion Δu2ði; jÞ when
y2ði; jÞ is favored to be conjugate to y1ði; jÞ.

Strategy 2: Obtain the minimum distortion Δu1ði; jÞ when
y1ði; jÞ is favored to be conjugate to y2ði; jÞ.

After the two minimum distortions have been calcu-
lated, the strategy which causes smaller distortion will be
selected if either of the two distortions is less than or equal
to T. If both distortions calculated are larger than T, the
toggling will not be performed.

As for ði; jÞAWw, DHDCED performs similar steps to
those above except that DHDCED favors y1ði; jÞ and y2ði; jÞ
to be identical. Note that DHDCED forces y1ði; jÞ and y2ði; jÞ
to be identical when X1 ¼ X2.
3. Proposed work

Halftone visual watermarking tends to hide a secret
pattern in halftone images such that when AND or XNOR
operation is performed on the stego halftone images, the
secret pattern is revealed. During the embedding process,
there are distortions caused by modifying the content of
the cover images, where the total distortion is repre-
sented as Dh. When decoding the secret pattern later, a
total distortion Dw can also be measured between the
decoded secret pattern and the original secret pattern. Dh

and Dw cannot both be small concurrently. Actually, there
exists a tradeoff between them. When lower Dh is
allowed, Dw tends to be higher; i.e., the decoded pattern
tends to be less similar to the original secret pattern. In
our formulation, λ will be employed to control the tra-
deoff. As λ increases, the main focus of our formulation
will be shifted from minimizing the embedding distor-
tions while achieving certain decoded visual quality to
achieving a high quality decoded secret pattern while
considers less about the embedding distortions. There-
fore, to find the optimal total distortions under different
situations (different λ), a general HVW problem can be
formulated as in (5).

min Dhþλ � Dw ð5Þ

where λZ0 is a constant which controls the tradeoff
between Dh and Dw and is user determined.

Eq. (5) can also be employed as a general optimization
framework for HVW problems. With this framework, the
existing HVW problems can be reformulated and thus can
be solved accordingly. To illustrate how this framework
can be applied to specific HVW problems, Eq. (5) will be
employed to formulate two HVW problems and then solve
them accordingly. The two HVW problems will both gen-
erate two error diffused halftone images, Y1 and Y2, from
two greyscale images, X1 and X2. During the generation, a
secret pattern W will be embedded into Y1 and Y2 such
that when the stego images are overlaid or an XNOR
operation is carried out between them, the secret pattern
is revealed. In these two HVW problems, one only embeds
the secret pattern into one out of two cover images, while
the other embeds the secret pattern into both cover ima-
ges. By solving them, we propose two general HVW
methods, Single-sided Embedding Error Diffusion (SEED)
and Double-sided Embedding Error Diffusion (DEED).

For SEED, Y1 is obtained by carrying out standard error
diffusion on X1, which means SEED allows no modifica-
tions, i.e., zero distortion DY1 ¼ 0 when generating Y1.
Distortion DY2 is generated while obtaining Y2 from X2. To
obtain y2ði; jÞ while embedding the secret pattern wði; jÞ,
the temporary output value will be compared to y1ði; jÞ. If
the temporary output value is not satisfactory, toggling the
final halftone output value is necessary, which can be
achieved by adding a distortion Δuði; jÞ to the intermediate
value u2ði; jÞ before quantization. Let ΔU be the distortions
to be added to each pixel during the embedding process
and have the same size as Y2. Then, adding ΔU during the
embedding process is equivalent to adding ΔU onto the
original image X2 first and then performing standard error
diffusion on X2. Thus the total embedding distortion Dh is
defined as in (6).

Dh ¼DY1 þDY2 ¼DY2 ¼ ‖X2�ðX2þΔUÞ‖pp ¼ ‖ΔU‖pp ð6Þ

where X2 and ΔU stand for the vector form of X2 and ΔU
and each of them contains N elements.

Then let EDð�Þ stand for standard error diffusion, which
is described by (1)–(4). Y1 and Y2 can be calculated by
(7) and (8).

Y1 ¼ EDðX1Þ ð7Þ

Y2 ¼ EDðX2þΔUÞ ð8Þ

where X1, Y1 and Y2 stand for the vector form of X1, Y1 and
Y2 and each of them contains N elements.

After Y1 and Y2 are generated, the total decoding dis-
tortion Dw can be described as in (9).

Dw ¼ ‖W�ðY1○Y2Þ‖pp ð9Þ

where W stands for the vector form of W and contains N
elements. The symbol ‘○’ stands for the decoding opera-
tion, i.e. ○¼ � ; � .
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Then substitute (6), (7), (8) and (9) into (5), SEED can be
described as in (10).

min
ΔU

‖ΔU‖ppþλ � ‖W�ðEDðX1Þ○EDðX2þΔUÞÞ‖pp ð10Þ

Eq. (10) provides a global optimal solution to SEED. To
our best knowledge, there is no closed form solution to
(10) due to the feedback loop of the error diffusion and the
1-bit property of halftone images. Also, brute force meth-
ods cannot be utilized because the number of potential
solutions increases drastically as the image size increases.
However, we can obtain an optimal solution to a relaxed
problem of (10) as follows.

Since later pixels depend on all the former pixels in
standard error diffusion, the distortions to be added to the
later pixels will also depend on previous distortions. By
replacing the vectors with their elements and also con-
sidering the dependencies between each element within
every vector, (10) can be reformed into (11).

min
Δu1 ;Δu2 ;…;ΔuN

XN
i ¼ 1

ðjΔuijpþλ � jedðx2;iþΔuiÞ○edðx1;iÞ�wijpÞ
( )

ð11Þ
where 8 iAf2;3;…;Ng;Δui depends on fΔu1;…;Δui�1g,
and edð�Þ stands for carrying out the standard error diffu-
sion described in (1)–(4) on the current pixel and diffusing
its quantization error to later pixels according to the pro-
cessing order of the standard error diffusion.

In general, joint optimization can be reformed to
separate optimization if there are no dependencies
between them. Because of the processing order of stan-
dard error diffusion, previous output values do not depend
on later output values. Then if we assume the standard
error diffusion processing order is from the first pixel x2;1
to the last pixel x2;N , by optimizing from ΔuN to Δu1, we
can essentially reform the joint optimization problem (11)
into separate optimization problems (12).

min
Δu1

min
Δu2

…min
ΔuN

XN
i ¼ 1

ðjΔuijpþλ � jedðx2;iþΔuiÞ○edðx1;iÞ�wijpÞ
( )

…

( )( )

ð12Þ
Let Ci, which is shown in (13), be the cost calculated

when processing the pixel i.

Ci ¼ jΔuijpþλ � jedðx2;iþΔuiÞ○edðx1;iÞ�wijp; 8 iAf1;2;3;…;Ng
ð13Þ

where 8 iAf2;3;…;Ng;Ci depends on fC1;…;Ci�1g, since
8 iAf2;3;…;Ng;Δui depends on fΔu1;…;Δui�1g.

By substituting (13), (12) can be reformed into (14).

min
Δu1

C1þmin
Δu2

C2þ…þ min
ΔuN� 2

CN�2þ min
ΔuN� 1

CN�1þmin
ΔuN

fCNg
� �� �

…
� �� �

ð14Þ
Since the optimization order is from ΔuN to Δu1 and

the dependencies among the variables cannot be neglec-
ted, if the optimization order can be reversed by relaxa-
tions, the optimization problem can be solved accordingly.

Since the variable distortion ΔuN depends on every
other variable, while all other variables do not depend on
ΔuN , then we can relax the joint optimization of ΔuN�1
and ΔuN to an individual optimization as in (15).

min
Δu1

C1þmin
Δu2

C2þ⋯þ min
ΔuN� 2

CN�2þ min
ΔuN � 1

fCN�1gþmin
ΔuN

fCNg
� �

…
� �� �

ð15Þ
Then by carrying out similar relaxation from (14) to

(15), (15) can be relaxed to (16).

min
Δu1

C1þmin
Δu2

C2þ…þ min
ΔuN� 3

CN�3þ min
ΔuN� 2

fCN�2g
���

þ min
ΔuN� 1

fCN�1gþmin
ΔuN

fCNg
�
…
��

ð16Þ

If we keep carrying out the relaxation, (17) can be
obtained in the end.

min
Δu1

fC1gþmin
Δu2

fC2gþ⋯þ min
ΔuN� 1

fCN�1gþmin
ΔuN

fCNg ð17Þ

Since the processing order is from pixel x2;1 to pixel
x2;N , then (17) can be reformed into (18).

min
ΔuN

f…min
Δu2

fmin
Δu1

fC1gþC2gþ⋯þCNg ð18Þ

y substituting (13) into (18), (19) and (20) can be finally
obtained. Then the variables can be solved from Δu1 to
ΔuN without being affected by the dependencies among
them.

J1 ¼min
Δu1

fjΔu1jpþλ � jedðx2;1þΔu1Þ○edðx1;1Þ�w1jpg ð19Þ

Jn ¼min
Δun

fjΔunjpþλ � jedðx2;nþΔunÞ○edðx1;nÞ�wnjpþ Jn�1g

ð20Þ
where nAf2;3;…;Ng and J1 and Jn are the minimum cost
obtained by the optimization process.

After (19) and (20) are obtained, the optimum solution,
i.e. SEED, can be calculated easily by obtaining the bestΔui

for each current pixel x2;i with the optimization order from
Δu1 to ΔuN . With ΔU being solved, Y2 can be easily gen-
erated by (8). Before the generation of Y2, Y1 is already
generated by (7). Thus SEED finishes the generation pro-
cess of the stego halftone images Y1 and Y2.

Algorithm 1. SEED.
Input: λ, error diffusion kernel, X1 , X2 , W.
Output: Y1 , Y2

1: Y1 ¼ EDðX1Þ
2: for i¼1 to N do
3: Obtain Δui ¼ argmin

Δui

Ci refer to (13)

4: y2;i ¼ edðx2;iþΔuiÞ
5: end for
6: return Y1 , Y2
As shown in Algorithm 1, in a real implementation of
SEED, Y1 can be directly generated by standard error dif-
fusion. When generating Y2, SEED will firstly solve the best
Δui for the current pixel x2;i, and then SEED will apply
standard error diffusion to x2;iþΔui. In step 3, to solve the
best Δui for the current pixel xð2;iÞ, searching in a large
range is unnecessary. It is easy to eliminate other possible
solutions and only maintain two candidate solutions,
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which are Δui ¼ 0 and Δui (the minimum distortion
required to toggle the potential output value y2;i), while
Fig. 4. Test Images: (a) Boat, (b) Lena, (c) Baboon, (d) Elaine, (e) Pepper, (f) Barb
(m) Crowd, (n) Dollar, (o) Girlface, (p) Houses, (q) Kiel, (r) Lighthouse, (s) Truck
costs calculated by other solutions will certainly be larger
than either of them.
ara, (g) Bridge, (h) Tank, (i) Cameraman, (j) Couple, (k) Airfield, (l) Clown,
, (t) Trucks, (u) Zelda, (v) Secret pattern to be embedded.
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SEED serves as a general method because SEED can
accommodate different situations with different p and ○
setups. For example, by comparing the implementation of
SEED with that of DHCED described in Section 2.1, with λ
performing as T to control the tradeoff between the visual
quality of stego images and the contrast of the revealed
secret pattern, we can observe that SEED is equivalent to
DHCED when p¼1 and ○¼ � . Thus DHCED is a special
case of SEED, and DHCED provides a relaxed optimal
solution when p¼1 and ○. When pa1 and ○ varies, SEED
becomes new methods.

Similar to SEED, DEED also generates two error diffused
halftone images, Y1 and Y2, from X1 and X2 respectively.
However, during the generation, W is embedded into both
Y1 and Y2 by toggling the output halftone value. The dis-
tortion caused during the generation of Y1 is denoted as
DY1 , and the distortion caused during the generation of Y2
is denoted as DY2 . To perform the necessary toggling, a
distortion Δu1ði; jÞ is added to x1ði; jÞ and a distortion
Δu2ði; jÞ is added to x2ði; jÞ to change the pixel values before
quantization. Let ΔU1 be the distortions to be added to
each pixel during the embedding process and have the
same size as Y1. Let ΔU2 be the distortions to be added to
each pixel during the embedding process and have the
same size as Y2. The total distortion Dh for DEED is defined
as in (21).

Dh ¼DY1 þDY2 ¼ ‖X1�ðX1þΔU1Þ‖ppþ‖X2

�ðX2þΔU2Þ‖pp ¼ ‖ΔU1‖ppþ‖ΔU2‖pp ð21Þ

where X1, X2, ΔU1 and ΔU2 stand for the vector form of
X1, X2, ΔU1 and ΔU2 and each of them contains N
elements.

Still, let EDð�Þ stand for the standard error diffusion,
which is described by (1)–(4). DEED will generate Y1 and
Y2 by (22) and (23).

Y1 ¼ EDðX1þΔU1Þ ð22Þ

Y2 ¼ EDðX2þΔU2Þ ð23Þ
where Y1 and Y2 stand for the vector form of Y1 and Y2 and
each of them contains N elements.

Since the total distortion Dw between the original
secret pattern and the decoded secret pattern possesses an
identical definition to SEED, (9) will be directly employed.

Then DEED can be formulated by substituting (21)–(23)
and (9) into (5).

min
ΔU1 ;ΔU2

‖ΔU1‖ppþ‖ΔU2‖ppþλ � ‖W�ðEDðX1þΔU1Þ○EDðX2þΔU2ÞÞ‖pp
ð24Þ

where EDð�Þ stands for the standard error diffusion. The
symbol ‘○’ stands for the decoding operation, i.e.,
○¼ � ; � .

For DEED, if we assume Y1 and Y2 are generated
simultaneously and the standard error diffusion processing
order is from the first pixel pair ðx1;1, x2;1Þ to the last pixel
pair ðx1;N , x2;NÞ, (25) and (26) can be obtained by reforming
and relaxing (24), with a similar approach to obtaining
(19) and (20).

J1 ¼ min
Δu1;1 ;Δu2;1

fjΔu1;1jpþjΔu2;1jpþλ
�jedðx2;1þΔu2;1Þ○edðx1;1þΔu1;1Þ�w1jpg ð25Þ

Jn ¼ min
Δu1;n ;Δu2;n

fjΔu1;njpþjΔu2;njpþλ

�jedðx2;nþΔu2;nÞ○edðx1;nþΔu1;nÞ�wnjpþ Jn�1g ð26Þ
where nAf2;3;…;Ng and J1 and Jn are the minimum cost
obtained by the optimization process.

Then DEED can be obtained by calculating the optimum
solution of (25) and (26). DEED also selects the best Δu1;i

and Δu2;i for the current pixels x1;i and x2;i, with the pro-
cessing order from ðΔu1;1, Δu2;1Þ to ðΔu1;N , Δu2;NÞ. With
ΔU1 and ΔU2 being solved, Y1 and Y2 can be generated by
(22) and (23), respectively.

Algorithm 2. DEED.
Input: λ, error diffusion kernel, X1 , X2 , W.
Output: Y1 , Y2

1: for i¼1 to N do
2: Obtain ½Δu1;i Δu2;i� ¼ argmin

Δu1;i ;Δu2;i

jΔu1;ijþjΔu2;ij

þλ	jedðx2;iþΔu2;iÞ � edðx1;iþΔu1;iÞ�wij
3: y1;i ¼ edðx1;iþΔu1;iÞ
4: y2;i ¼ edðx2;iþΔu2;iÞ
5: end for
6: return Y1 , Y2
As shown in Algorithm 2, in practical implementation,
DEED firstly solves the best Δu1;i and Δu2;i for the current
pixels, x1;i and x2;i. Then standard error diffusion will be
performed on x1;iþΔu1;i and x2;iþΔu2;i separately. For
step 2, we can eliminate other possible solutions and
maintain only four possible solutions: (a)Δu1;i ¼Δu2;i ¼ 0;
(b) Δu1;i ¼ 0, Δu2;i being the minimum distortion required
to toggle the potential output y2;i; (c) Δu2;i ¼ 0, Δu1;i being
the minimum distortion required to toggle the potential
output value y1;i; (d) Δu1;i being the minimum distortion
required to toggle the potential output value y1;i and Δu2;i

being the minimum distortion required to toggle the
potential output value y2;i. However, option (d) can be
easily proved to have a larger cost than the optimal cost
and thus (d) is eliminated. Therefore, there are three
possible solutions available.

Similar to SEED, DEED also accommodates different
situations with different p and ○ setups. By comparing the
implementation of DEED and that of DHDCED described in
Section 2.2, with λ performing as T to control the tradeoff
between the visual quality of the stego images and the
contrast of the revealed secret pattern, we can observe
that DEED is equivalent to DHDCED when p¼1 and ○¼ � .
Thus DHDCED is a special case of DEED and DHDCED
provides a relaxed optimal solution when p¼1 and ○.
When pa1 and ○ varies, DEED becomes new methods.
4. Results and discussion

Firstly, the experimental setups are introduced. The
512� 512 test images are shown in Fig. 4. The 512� 512
watermark to be embedded is shown in Fig. 4(v). For
convenience, the Steinberg kernel [2] and ○¼ � are
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employed in the experiments. (Similar results can be
obtained if ○¼ � .) Note that in a real scenario, SEED and
DEED will force y1ði; jÞ ¼ y2ði; jÞ when X1 ¼ X2.

The correct decoding rate (CDR) is employed to mea-
sure the decoded secret pattern. The CDR is defined as in
(27), where we let D be the decoded image and q¼ r¼ 512
be the test images' size, throughout this paper.

CDR¼
P jwði; jÞ � dði; jÞj

q� r
ð27Þ

4.1. Validation tests

The validations of SEED and DEED are presented first.
For SEED, Figs. 5 and 6 show the validations of SEED (L-1
Norm). In Fig. 5, the original grey-scale image is ‘pepper’,
as shown in Fig. 4(e), and X1 ¼ X2. Y1 is shown in Fig. 5
Fig. 5. (a) SEED (L-1 Norm) Y1, X1 ¼ X2, Steinberg kernel;

Fig. 6. (a) SEED (L-1 Norm) AND operation decoded image, X1 ¼ X2, Steinberg
Steinberg kernel.
(a) and Y2 is shown in Fig. 5(b). The AND decoded image
generated from Y1 and Y2 is in Fig. 6(a). The XNOR decoded
image is in Fig. 6(b).

Figs. 7 and 8 show the validations of SEED (L-2 Norm).
In Fig. 7, the original grey-scale image is ‘pepper’, as shown
in Fig. 4(e), and X1 ¼ X2. Y1 is shown in Fig. 7(a) and Y2 is
shown in Fig. 7(b). The AND decoded image generated
from Y1 and Y2 is shown in Fig. 8(a). The XNOR decoded
image is shown in Fig. 8(b).

Similarly, for DEED, Figs. 9 and 10 show the validations
of DEED (L-1 Norm). In Fig. 9, the original grey-scale image
is ‘pepper’, as shown in Fig. 4(e), and X1 ¼ X2. Y1 is shown
in Fig. 9(a) and Y2 is shown in Fig. 9(b). The AND decoded
image generated from Y1 and Y2 is shown in Fig. 10(a). The
XNOR decoded image is shown in Fig. 10(b).

Figs. 11 and 12 show the validations of DEED (L-2
Norm). In Fig. 11, the original grey-scale image is ‘pepper’,
(b) SEED (L-1 Norm) Y2, X1 ¼ X2, Steinberg kernel.

kernel; (b) SEED (L-1 Norm) XNOR operation decoded image, X1 ¼ X2,



Fig. 8. (a) SEED (L-2 Norm) AND operation decoded image, X1 ¼ X2, Steinberg kernel; (b) SEED (L-2 Norm) XNOR operation decoded image, X1 ¼ X2,
Steinberg kernel.

Fig. 7. (a) SEED (L-2 Norm) Y1, X1 ¼ X2, Steinberg kernel; (b) SEED (L-2 Norm) Y2, X1 ¼ X2, Steinberg kernel.

Fig. 9. (a) DEED (L-1 Norm) Y1, X1 ¼ X2, Steinberg kernel; (b) DEED (L-1 Norm) Y2, X1 ¼ X2, Steinberg kernel.
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Fig. 10. (a) DEED (L-1 Norm) AND operation decoded image, X1 ¼ X2, Steinberg kernel; (b) DEED (L-1 Norm) XNOR operation decoded image, X1 ¼ X2,
Steinberg kernel.

Fig. 11. (a) DEED (L-2 Norm) Y1, X1 ¼ X2, Steinberg kernel; (b) DEED (L-2 Norm) Y2, X1 ¼ X2, Steinberg kernel.
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as shown in Fig. 4(e), and X1 ¼ X2. Y1 is shown in Fig. 11
(a) and Y2 is shown in Fig. 11(b). The AND decoded image
generated from Y1 and Y2 is shown in Fig. 12(a). The XNOR
decoded image is shown in Fig. 12(b).

4.2. Performance tests

In Figs. 5–12, since the validation results are all gener-
ated at the same distortion level, we can also observe that
DEED outperforms SEED and the L-2 Norm methods out-
perform the L-1 Norm methods when comparing the
contrast of the revealed secret pattern. After this sub-
jective comparison, objective tests are performed.

In objective tests, image quality measurement is very
important. Although many researchers prefer to employ
modified PSNR as a quality measuring tool, which carries
out a low-pass filter on the halftone images first and then
calculates the PSNR between the low-passed images and
the original images, different low-pass filters will have
different effects on different halftone images. Also, due to
the imperfection of the halftoning process, distortions
during the embedding may not be measured accurately
with the modified PSNR because some distortions may
actually improve the measured quality of the stego half-
tone images. In SEED and DEED, since the generation
process of Y1 and Y2 is equivalent to adding specific
bounded noise to the original images and then carries out
the standard error diffusion process on the noisy images,
we can calculate the PSNR between the noisy images and
the original cover images directly. By performing this, the
distortions caused during the embedding process can be
directly measured without being affected by the imper-
fection of the error diffusion process and the selections of
different low-pass filters.

Figs. 13–16 show partial results of SEED, DEED, DHCED
and DHDCED, with X1 ¼ X2¼ ‘lena’ for Fig. 13, X1 ¼ X2¼



Fig. 12. (a) DEED (L-2 Norm) AND operation decoded image, X1 ¼ X2, Steinberg kernel; (b) DEED (L-2 Norm) XNOR operation decoded image, X1 ¼ X2,
Steinberg kernel.

Fig. 13. (a) AND operation decoded PSNR results, X1 ¼ X2 ¼ ‘lena’, Steinberg kernel; (b) XNOR operation decoded PSNR results, X1 ¼ X2 ¼ ‘lena’, Steinberg
kernel.

Fig. 14. (a) AND operation decoded PSNR results, X1 ¼ X2 ¼ ‘pepper’, Steinberg kernel; (b) XNOR operation decoded PSNR results, X1 ¼ X2 ¼ ‘pepper’,
Steinberg kernel.
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‘pepper’ for Fig. 14, X1 ¼ X2¼ ‘cameraman’ for Fig. 15 and
X1 ¼ X2¼ ‘houses’ for Fig. 16, by varing λ and T. Note that to
make the objective test fair, the PSNRs of DHDCED and
DEED shown are average PSNRs between noisy X1 and
noisy X2. As we can observe from this, SEED (L-1 Norm)
presents identical results to DHCED, while DEED (L-1
Norm) presents identical results to DHDCED. SEED (L-2
Norm) has similar performance compared to SEED (L-1
Norm), and DEED (L-2 Norm) demonstrates better per-
formance compared to DEED (L-1 Norm).

Previous experiments indicate that DEED outperforms
SEED significantly. Therefore, later results will focus on
comparing the L-1 Norm methods with L-2 Norm methods
under different circumstances. Here, Table 1 shows the
PSNR results of SEED and DEED with X1 ¼ X2. For con-
venience, in each pair of comparison, we select the CDR
with the corresponding PSNR is about 45 dB for each
SEED/DEED with L-1 Norm result as the basis, and then
select the SEED/DEED with L-2 Norm result accordingly for
fair comparison. Based on the observations, we can con-
Fig. 15. (a) AND operation decoded PSNR results, X1 ¼ X2 ¼ ‘camerama
X1 ¼ X2 ¼ ‘cameraman’, Steinberg kernel.

Fig. 16. (a) AND operation decoded PSNR results, X1 ¼ X2 ¼ ‘houses’, Steinber
Steinberg kernel.
clude that DEED (L-2 Norm) performs significantly better
(1.83 dB on average) than DEED (L-1 Norm), while SEED (L-
2 Norm) have similar performance compared to SEED (L-1
norm). Note that for convenience, only DEED with L-2
Norm will be employed in the latter experiments of
this paper.

4.3. Comparisons to existing work

In the comparison tests, several latest and classical
HVWmethods, NBED in [25], DHCDD and DHDCDD in [31],
DHDCCED in [30], DCCDD in [32] and CoPMED in [34] will
be compared to DEED with L-2 Norm. Note that since the
methods in [30] and [32] are designed only for color
images, they are tested on color versions of Fig. 4,
(unfortunately, some color versions of test images are not
found,) and the results are averaged over the three chan-
nels for comparison.

Since some existing work cannot utilize our previous
assessment method, Human-visual Peak Signal-to-Noise
n’, Steinberg kernel; (b) XNOR operation decoded PSNR results,

g kernel; (b) XNOR operation decoded PSNR results, X1 ¼ X2 ¼ ‘houses’,
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Ratio (HPSNR) [7] will be employed to measure the
qualities of stego halftone images. Assume the dynamic
range of the original grayscale and the to-be-measured
halftone images X and Y are ½0;1�, then HPSNR is defined as
follows:

HPSNR¼ 10 log10
q� rP

j

P
j
½P
m;n

gðm;nÞ � ðxðiþm; jþnÞ�yðiþm; jþnÞÞ�2

ð28Þ

where G is a normalized 7	7 circular symmetrical Gaus-
sian filter with a standard deviation of 1 for simulating the
human visual system.

Figs. 17–19 show partial results of the comparison
results. In the experiments, different halftoning mechan-
Table 1
PSNR comparisons of the decoded images.

Test image SEED

L-1 L-2

Lena 44.63 44.6
Pepper 44.68 44.7
Baboon 44.56 44.6
Boat 45.38 45.6
Elaine 44.95 44.9
Tank 44.84 44.8
Bridge 44.62 44.7
Couple 44.78 44.8
Cameraman 44.99 45.2
Barbara 44.61 45.0
Airfield 44.79 45.0
Clown 45.15 45.3
Crowd 45.41 45.4
Dollar 44.66 44.7
Girlface 45.44 45.4
Houses 44.95 44.9
Kiel 45.10 45.0
Lighthouse 44.59 45.2
Truck 45.30 45.4
Trucks 44.85 44.6
Zelda 44.78 44.9

Average 44.91 45.0

Fig. 17. (a) AND operation decoded HPSNR results, X1 ¼ X2 ¼ ‘lena’;
ism based HVW method gives different performance, and
DEED(L-2) clearly gives the best performance compared to
all these latest and classical methods.

4.4. Discussion of robustness

Previous experiments are conducted in ideal situations.
In practice, during the distribution and transmission pro-
cess, the stego halftone images may suffer various attacks
such as noise, print-and-scan distortions, human-marking
and cropping.

According to previous documents [24], when suffering
cropping or human-marking attacks, the decoded secret
pattern will lose the part of the secret pattern which has
been cropped or human-marked.
DEED

L-1 L-2

9 44.96 46.65
0 44.89 46.55
2 45.25 46.61
4 45.01 46.68
4 45.12 47.15
0 45.34 47.33
1 45.10 46.83
0 45.19 46.60
3 45.13 46.78
2 45.06 46.80
4 45.22 47.08
8 44.70 47.85
9 44.97 47.39
8 45.13 46.60
8 44.79 47.11
7 45.24 47.35
1 44.65 45.82
6 45.09 47.16
8 45.42 46.93
0 45.20 46.67
9 45.08 46.87

3 45.07 46.90

(b) XNOR operation decoded HPSNR results, X1 ¼ X2 ¼ ‘lena’.



Fig. 18. (a) AND operation decoded HPSNR results, X1 ¼ X2 ¼ ‘pepper’; (b) XNOR operation decoded HPSNR results, X1 ¼ X2 ¼ ‘pepper’.

Fig. 19. (a) AND operation decoded HPSNR results, X1 ¼ X2 ¼ ‘baboon’; (b) XNOR operation decoded HPSNR results, X1 ¼ X2 ¼ ‘baboon’.
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According to previous documents [18] and [28], usually,
HVW methods will suffer print distortions when per-
forming the overlaying operation for decoding. If the users
employ the XNOR decoding procedure, HVW methods will
suffer the print-and-scan distortions. Figs. 20 and 21 show
a real example, where DEED(L-2) is employed to embed
the secret pattern in Fig. 4(v) into two halftone images in
Fig. 20.

In the experiment, Fig. 20(a) is printed on a regular
paper while Fig. 20(b) is printed on a transparent plastic.
As Fig. 21(a) shows, when DEED(L-2) suffers the print
distortions, the overlaying revealed secret pattern main-
tains a good visual quality. When suffering print-and-scan
distortions or noise, the final decoded secret pattern can
still maintain a distinguishable visual quality if the scan-
ning resolution is high enough and certain preprocessing
steps, such as resizing, contrast adjustment and 1-bit
quantization, are carried out before the decoding process,
as Fig. 21(b) shows. Based on our observation in the
experiments, the scanning resolution should be over
600 dpi to obtain a distinguishable decoded result. Also,
people should try to avoid embedding information into
very dark and very bright areas since the information will
be largely damaged after print-and-scan attack.

4.5. Discussion of complexity

After evaluating the performances of proposed work,
here we will briefly discuss the complexities of SEED
and DEED.

Although optimization is exploited in SEED/DEED, sol-
ving SEED/DEED is actually simple as stated in 3. In real
implementations, solving SEED only requires ðp�1Þ extra
multiplications per pixel compared to DHCED while sol-
ving DEED only requires 2	ðp�1Þ extra multiplications per
pixel compared to DHDCED, where p is the L�p Norm
employed.

Table 2 summarizes operations expected for processing
one pixel in SEED, DHCED, NBED, DHCDD and CoPMED,
and operations expected for processing one pair of pixels
in DEED, DHDCED, DHDCDD, DHDCCED, DCCDD. Here we
assume that the probability of changing the current output



Fig. 20. (a) The to be printed DEED (L-2 Norm) Y1, X1 ¼ X2, Steinberg kernel; (b) The to be printed DEED (L-2 Norm) Y2, X1 ¼ X2, Steinberg kernel.

Fig. 21. (a) After print, DEED (L-2 Norm) overlaying decoded image, X1 ¼ X2, Steinberg kernel; (b) After print and scan, DEED (L-2 Norm) XNOR operation
decoded image, X1 ¼ X2, Steinberg kernel.

Table 2
Operations expected to process one pixel (one pair of pixels).

Method Addition Multiplication Comparison

SEED 2.5 hþ(p�1) 3
DHCED 2.5 h 3
NBED 3 h 2
DHCDD 2.5 dm 3
CoPMED P6

n ¼ 1f22nþ6gþ40 0 37.375

DEED 6 2hþ2n(p�1) 5
DHDCED 6 2h 5
DHDCDD 6 2dm 5
DHDCCED 18 6h 15
DCCDD 18 6dm 15

Y. Guo et al. / Signal Processing: Image Communication 41 (2016) 85–100 99
halftone value is 0.5 when assessing. The variable h and
dm stand for the error kernel and diffusion matrix,
respectively.
As we can observe, CoPMED is the most complicated
method. SEED possesses similar complexity to DHCED,
NBED and DHCDD while DEED possesses similar com-
plexity to DHDCED and DHDCDD.
5. Conclusion

In this paper, we propose a general formulation for
HVW problems with Optimization where the formulation
can also be viewed as a general optimization framework.
We also demonstrate how to apply the general framework
to practical problems by presenting two general methods
called Single-sided Embedding Error Diffusion (SEED) and
Double-sided Embedding Error Diffusion (DEED), which
can accommodate multiple situations with different set-
ups. Although the global optimal solutions cannot be
achieved, we manage to relax the problems and find two
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viable relaxed optimal solutions. With SEED and DEED
obtained, from both theoretical and experimental com-
parison, DHCED and DHDCED are found to be special cases
of SEED and DEED, respectively. The experimental results
also indicate that DEED performs significantly better than
DHDCED when certain parameters are selected, while
different settings of SEED give similar performance com-
pared to DHCED. When comparing to several latest and
classical methods, DEED(L-2) also gives the best
performance.
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