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Abstract—It is in urgent need to develop fast and efficient
transcoding methods so as to remarkably save the storage of
surveillance videos and synchronously transmit conference videos
over different bandwidths. Towards this end, the special char-
acteristics of these videos, e.g., the relatively static background,
should be utilized for transcoding. Therefore, we propose a fast
and efficient transcoding method (FET) based on background
modeling and block classification in this paper. To improve the
transcoding efficiency, FET adds the background picture, which
is modeled from the originally decoded frames in low complexity,
into stream in the form of an intra-codedG-picture. And then, FET
utilizes the reconstructed G-picture as the long-term reference
frame to transcode the following frames. This is mainly because
our theoretical analyses show that G-picture can significantly
improve the transcoding performance. To reduce the complexity,
FET utilizes an adaptive threshold updating model for block
classification and then adopts different transcoding strategies for
different categories. This is due to the following statistics: after
dividing blocks into categories of foreground, background and
hybrid ones, different block categories have different distribu-
tions of prediction modes, motion vectors and reference frames.
Extensive experiments on transcoding high-bit-rate H.264/AVC
streams to low-bit-rate ones are carried out to evaluate our FET.
Over the traditional full-decoding-and-full-encoding methods,
FET can save more than 35% of the transcoding bit-rate with a
speed-up ratio of larger than 10 on the surveillance videos. On the
conference videos which should be transcoded more timely, FET
achieves more than 20 times speed-up ratio with 0.2 dB gain.

Index Terms—Background modeling, classification, surveillance
and conference videos, transcoding.

I. INTRODUCTION

V IDEO surveillance and video teleconferencing systems
are more and more widely used for safety and commu-

nication applications. These systems usually adopt common
video codecs such as H.264/AVC with general settings to
compress captured videos for weeks or months. Compared with
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general videos, surveillance and conference videos always own
much lower coding bit-rate at the same quality. As a result,
the deployed common video codecs always compress them at
much higher bit-rates. For video surveillance applications, the
high-bit-rate video streams greatly enlarge the video storage
and retrieval cost. According to the statistics, if the more than 5
million cameras in UK are all High-Definition (HD) ones with
general H.264/AVC video codecs, at least 8,000,000 Terabytes
data will be produced in one-month storage time. Thereby
for surveillance videos, high-efficiency and low-complexity
bit-rate scaling techniques are in urgent need to transcode
high bit-rate videos to low-bit-rate ones. Moreover, there
should be remarkable bit saving compared with the traditional
full-decoding-and-full-encoding (FDFE) transcoder. As for
video teleconferencing applications, with the exponentially in-
creasing usage of different teleconferencing clients (e.g., mobile
devices), the high-bit-rate streams are required to be real-timely
and simultaneously transcoded into multiple quality-maintained
low-bit-rate conference videos for the various bandwidths of
client devices. Thereby it is increasingly becoming an important
issue to develop faster-than-real-time transcoders to broadcast
multiple quality-maintained conference videos to various de-
vices. Summarized from the requirements of surveillance and
conference video transcoding, it is important to develop spe-
cially-designed methods to transcode surveillance videos with
large bit saving and low complexity and transcode conference
videos to quality-maintained streams as fast as possible.
One intuitive transcoder satisfying the basic requirement is to

directly connect common video decoder and encoder. However,
it is not very practical due to the transcoding complexity and
sometime large degree of transcoding quality loss. To decrease
the complexity, many motion estimation (ME) and mode deci-
sion (MD) simplification methods (e.g., [1]–[7]) have been pro-
posed. But seldom were proposed specially for surveillance and
conference videos. Whereas to improve the transcoding quality
or efficiency, three methods can be utilized: the object-oriented
transcoding methods based on object segmentation [8], [9], the
region based methods which employed more bits on regions of
interest [10], and the block-based background-prediction opti-
mization methods [11]–[13]. Although some problems still exist
in these methods, they enlightened us to utilize better and low-
complexity modeled static background to optimize surveillance
video transcoding.
In this paper, to analyze what kind of background can mostly

improve the transcoding efficiency, a theoretical comparison
using some conclusions in [14] is firstly carried out among three
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typical background frames, including the key frame in [11],
background modeled from reconstructed frames in [12], [13]
and the proposed G-picture modeled from the originally de-
coded frames. The comparison result shows G-picture is the
optimal long-term reference frame. Furthermore, a theoretical
analysis for how to quantize G-picture in transcoding shows
that, G-picture can most significantly improve the rate-distor-
tion (RD) performance when intra-encoded with the minimum
quantization parameter (QP) of the input stream. To evaluate the
complexity reduction, another experimental analysis is carried
out to utilize G-picture to figure out blocks’ motion characteris-
tics. After blocks are divided into foreground units, background
units and hybrid units by calculating their difference with the
static background, the statistics based on such block classifica-
tion show: different reference frame candidates should be used
for different transcoding units; motion search range should be
calculated differently from the difference between the decoded
and predicted motion vectors; different set of prediction modes
should be used for different categories.
Based on these analysis results, we propose a fast and ef-

ficient transcoding (FET) method based on low-complexity
background modeling and adaptive block classification. In
order to improve the transcoding efficiency, FET utilizes the
G-picture, which is online trained by a low-complexity and
high-quality background modeling using the originally de-
coded frames as input, as the long-term reference frames to
transcode each decoded frame. Because the G-picture is very
clean, encoded only using intra prediction and quantized with a
smaller QP, such a better modeled and encoded G-picture will
provide better long-term reference for the following frames.
Even for conference videos, in which the background is usu-
ally covered by tightly-moved foreground in large areas, the
unclean modeled G-picture can also enlarge the transcoding
efficiency in some degree. Meantime, to reduce the complexity,
FET employs G-picture to realize an adaptive threshold-up-
dating model to achieve adaptive block classification and
adopt different transcoding strategies for different block cat-
egories. These strategies are in forms of removing redundant
prediction modes, simplifying motion estimation and reducing
reference frames. Such adaptive block classification reduces
the complexity dramatically by employing different ME&MD
strategies on different block categories. In summary, as an ex-
tension of our work in [15], [16], besides the background model
based high-efficiency transcoding in [15] and the block-clas-
sification based speed-up strategies in [16], this paper makes
improvements on: the theoretical proof for the efficiency of
transcoding with properly-quantized G-picture as reference, the
low-complexity and high-efficiency background modeling al-
gorithm to generate G-picture, the adaptive-threshold updating
based block classification and extensive experiments for both
surveillance and conference videos.
To assess the significant bit saving of our FET on surveillance

videos and the remarkable complexity saving for both confer-
ence videos and surveillance videos, extensive experiments
are conducted on eight surveillance videos from AVS (Audio
and Video coding Standard) workgroup and eight conference
videos from JCT-VC (Joint Collaborative Team on Video
Coding). These experiments include the background modeling
efficiency, block classification result and the final results for

transcoding efficiency improvement and complexity reduction.
These results are calculated during transcoding high-bit-rate
H.264/AVC streams to low-bit-rate ones. To demonstrate
the efficiency, the traditional FDFE method directly using
H.264/AVC for re-encoding is chosen as the basic anchor.
The experimental results show that, for surveillance/con-

ference videos, FET averagely saves more than 35%/5%
bit saving, equivalent to more than 1.1/0.2 dB PSNR (peak
signal-to-noise ratio) gains. Meanwhile, larger than 10/20
and 2/3 times speed-ups are obtained using full search ME
and fast ME methods respectively. While compared with the
more efficient transcoding with long-term key frame as back-
ground reference, the result is also very significant. Moreover,
the block-classification based fast method in FET averagely
achieves 0.5 times speed-up than the method not relying on
block-classification, with the similar transcoding quality. To
practically test our method, two real-time transcoding systems
based on FET are designed to respectively transcode HD
surveillance videos to much lower bit-rates and HD conference
videos to different bit-rates for different bandwidths. In this
way, FET is practically proved very efficient.
The rest of this paper is organized as follows. The related

works for surveillance and conference video transcoding are
discussed in Section II, and the theoretical analysis for the effi-
ciency improvement with G-picture is presented in Section III.
Section IV presents the framework and the methods, where the
analyses for each block category’s distributions of prediction
modes, motion vectors and reference frames are included in
the sub-sections to derive the speed-up methods. Experimental
setup is given in Section V, and the extensive experimental re-
sults are shown in Sections VI and VII concludes this paper.

II. RELATED WORKS

Generally, FDFE is the simplest video transcoding approach
without any change on the encoding process of decoded videos.
However, due to the complexity and efficiency, FDFE is not ap-
plicable in practical transcoding systems. For complexity, sev-
eral fast transcoding methods using motion vector refinement
were proposed by [1]–[4] to decreaseME complexity, with com-
parable performance to FDFE. Meanwhile, methods for saving
MD complexity [5]–[7] were also widely investigated in the
past years. For example, a zero-block decision based scheme
was introduced by Wu et al. [5], where the zero-block decision
scheme was used to skip impossible inter and intra prediction
modes, consequently leading to 93% saving of MD time, on av-
erage. Nevertheless, seldom methods specially focused on com-
plexity reduction of surveillance and conference videos. In these
videos, blocks with different proportion of foreground pixels
have different motion characteristics, so simplifying the MD
andME processes for relative static regions will intuitively save
the time cost with little quality loss.
For efficiency, because most of surveillance cameras are

mounted to a fixed scene for a long-time and each frame can be
subjectively divided into foreground and background objects,
some pioneer works started to employ the static background
to improve the efficiency. Intuitively, a reasonable solution
following such idea is to transcode foreground objects and back-
ground separately. We denote it as object-oriented transcoding
throughout this paper. Object-oriented methods were firstly
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proposed in [8] and [9] to divide an input frame into foreground
and background regions, and then transcode background with
low bit-rate. However, object-oriented methods usually fo-
cused on subjectively measured “foreground objects.” For
surveillance and conference video transcoding, the subjective
measurement is a debatable problem, especially considering
various security requirements. Besides, the accurate automatic
foreground segmentation is still an open problem, and it is also
a great challenge to use few bits to compress the object repre-
sentation information and the foreground prediction residual.
To avoid the challenging object segmentation and improve

the transcoding efficiency, some efficient block-based coding
methods can also be applied to the encoding procedure in
transcoding. The methods include the region-based, long-term
key frame and background prediction based coding. Among
them, the region-based coding [10] mainly focused on achieving
high compression efficiency and better subjective quality of
foreground regions with low encoding complexity, but the total
bit-rate was not decreased very much. The long-term key frame
based coding utilized the high-quality encoded key frame as
long-term [11] for follow-up frames, but there were still some
so-called “exposed background” regions that appeared in the
current frame and disappeared in the recent reference frames
and the key frame. An example for the distributions of the
exposed background can be seen in Fig. 1. As seen, there are
some circled regions which can find better reference in the
G-picture (although the background in conference video is
usually not very clean). As a result, the transcoding efficiency
for these regions could not be improved by using key frame and
recently decoded frame as reference. To address this problem,
background prediction based coding methods were proposed
in [12] and [13]. Both H.120 in [12] and M. Paul et al. [13]
featured at exploiting the reconstructed frames to model the
background and employed the background as an additional
reference for coding the following frames. However, quality of
the generated background could not be guaranteed because sig-
nificant quantization loss existed in the utilized reconstructed
frames. Moreover, high-complexity background generation
would be embedded in decoder to guarantee decoding match.
Although there were some problems in the optimized methods
above, they still enlightened us to improve the efficiency of the
“exposed background regions” with better and low-complexity
background frame as reference.
Following the above ideas for complexity and efficiency, it is

very practical to improve transcoding efficiency using the better
modeled G-picture and decrease the complexity according to
the motion characteristics of the input blocks. Therefore, we
propose to employ the long-term G-picture to facilitate more
efficient background prediction and utilize block-classification
based speed-up strategies for three categories of blocks.

III. EFFICIENCY ANALYSIS

To begin with our analysis and discussion, the symbols used
in this paper are defined in Table I.
As discussed, the key to improve transcoding performance is

to explore high-quality background data from decoded frames.
Following this, the efficiency of exposed background regions
will be improved with the help of better long-term background.
Although the idea is very straightforward, there is no theoret-
ical analysis so far on what is the optimal background. In this

Fig. 1. The examples of the “exposed background regions” are shown in the
current frame for surveillance and conference videos respectively. The circled
regions in the “current frame” can only find good reference in the “G-picture”
rather than the “key frames” and the “recent reference frames.” Usually, there
are more such regions in surveillance videos because objects in surveillance
videos move more intensely.

TABLE I
SYMBOL DEFINITION

section, we firstly theoretically prove that the G-picture repre-
sented by OB is the optimal long-term reference frame for effi-
ciently transcoding decoded frames. Secondly, we analyze that
encoding G-picture into stream with the minimum decoded QP
can guarantee the optimal RD performance for transcoding.
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A. Why G-Picture is Optimal for Transcoding the Background

As stated, RB is trained from the reconstructed results of the
decoded frames, KB is one of the originally decoded frames
and OB is the background trained from the originally decoded
frames. Therefore,OB could combine the advantages of RB and
KB and it is probably a better long-term reference frame. In
terms of prediction distortion, using OB as the long-term refer-
ence frame will achieve less distortion than that using RB or KB
for any long surveillance or conference video. More formally,
this conjecture can be expressed as Lemma 1.
Lemma 1: Let respec-

tively denote the prediction distortion between a decoded long
surveillance or conference sequence and the long-term
OB/RB/KB. Using the same motion search method, the fol-
lowing equation is satisfied in transcoding:

(1)

Proof: For any transcoding unit at the position of in
an exposed background region (if any) of an input frame ,
we can find a matched block in OB but there is no such block
in KB. RB may contain similar block but its quality is probably
poorer than OB due to the quantization loss of the frames used
to reconstruct it. Thus on the probability, we have (2), shown
at the bottom of the page, where denotes the set of exposed
background regions and is the size of the set . For surveil-
lance and conference videos, as lots of such regions exist in each
decoded frame , we can get

(3)

Because

(4)

we can get

(5)

Thus for the decoded long sequence, we can obtain

(6)

As stated in [14], for any two reference frames, the one pro-
viding smaller prediction distortion and smaller will lead

to a better rate-distortion performance. The distortion relation-
ship has been discussed in lemma 1. To regard the s ofOB,
RB and KB, we have Lemma 2.
Lemma 2: Let , and denote the

PSDs of a decoded surveillance or conference sequence with
OB, RB and KB as the long-term reference frames respectively.
With the same ME efforts, the following equation is satisfied in
surveillance and conference video transcoding :

(7)

Proof of Lemma 2 is given in the Appendix. By combining
Lemma 1 and 2, we can get Theorem 1.
Theorem 1: Let

denote the rate-distortion performance between a decoded
surveillance or conference sequence and OB/RB/KB. Using
the same motion search on the long-term reference frames OB,
KB and RB, the following equation is satisfied in transcoding:

(8)

Proof: Again as stated in [14], between any two predic-
tion reference frames, if using one can obtain smaller predic-
tion distortion and smaller , the reference frame can help
to achieve a better RD result. Because is proved in
Lemma 1 to be the minimum among s and is
also derived in Lemma 2 to be the minimum among s,

is also minimum.
In summary, by utilizing OB as the long-term reference

frame, the transcoding efficiency of the decoded frames in
surveillance and conference videos will be significantly im-
proved. As stated in [14], the less prediction error variance
(PEV) leads to less , so using the long-term OB with
less might produce less PEV. To validate this, we
experimentally calculate the average PEV between each input
frame and the long-term OB/KB/RB. Fig. 2 shows the results
for two sequences, crossroad (352 288) and overbridge
(352 288). We can see that, after several initial frames, PEV
for OB becomes less than that of KB and RB. Moreover, the
gap between OB and KB/RB becomes larger and larger as
frame number increases. This is because OB contains more
higher-quality background pixels and less noise or foreground
pixels.

B. How to Quantize G-Picture for the Least RD Cost

For the decoding match of using G-picture as the long-term
reference frame in transcoding, we should encode G-picture into
stream. Thus another problem is how large should be the QP for
quantizing it? As stated in [23], the Lagrange RDO theory calcu-
lates the Lagrange cost for each sequence from the Lagrange
cost of each frame by

(9)

(2)
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Fig. 2. Each frame’s PEV curves for long-term RB, KB and OB.

where is the total number of frames in the sequence, is the
-th transcoding unit of the -th frame , is the prediction
motion vector, denotes the predicted data of the current
transcoding unit and is the Lagrange
cost for coding with as the QP. Particularly, while coding
with G-picture as the long-term reference frame, can be
described by

(10)

where is the QP for codingOB and is ’s set of refer-
ence frames excluding the long-term reference frame. Because
G-picture is not an original input frame, (9) turns to be

(11)

where function calculates the bit cost for coding the OB
with QP equal to , and is the Lagrange multiplier of
. As how Theorem 1 is derived, any prediction reference

which provides less sufficient reference (i.e., larger prediction
distortion) than will lead to

(12)

Because the larger QP produces larger distortion, for any pos-
itive integer , we further have

(13)

(14)

Note that, the in this equation is not less than zero
because bit cost the intra-coded OB will turn smaller with a

Fig. 3. The transcoding PSNR and bit-rates with different QPs for G-picture,
where the minimum decoded helps achieve the best bit-rate and
PSNR.

larger QP, and is also larger than zero because of (13).
Moreover, supposing is the minimum QP of the decoded
QPs from the input stream, we can derive

(15)

This is because OB is trained from the original decoded frames
which already had the -level quality loss, and quantizing
OB could not make the quality loss less than -level. There-
fore, we can get

otherwise. (16)

In (16), because surveillance and conference videos always
capture the same scene for long-time, one G-picture can
long-termly predict large number of following frames. That
means, is very large and

otherwise.
(17)

This means, is the best QP to quantize OB and achieve the
minimum total rate-distortion cost.

(18)

Thus in our FET, G-picture should be quantized with the
minimum decoded QP. To verify the theory, we have employed
different QPs for G-picture to obtain the total bits and the
transcoding PSNR for an input stream. With an input stream
of crossroad (CIF, 352 288) encoded it with , the
coding bit-rate and PSNR curves utilizing the long-term OB
quantized with can be seen from Fig. 3. As is
seen, using to quantize OB leads to the least bit cost
and best PSNR.

IV. THE PROPOSED METHOD

Besides the necessary of utilizing the long-term and prop-
erly-quantized G-picture improve the transcoding efficiency,



1774 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 15, NO. 8, DECEMBER 2013

Fig. 4. Framework of the Proposed FET.

a low-complexity and high-efficiency background mod-
eling algorithm should be embedded into FET to generate
a high-quality G-picture. As for reducing the transcoding
complexity, because the classified transcoding units, including
background unit (BU), foreground unit (FU) and hybrid unit
(FBU), always have different motion characteristics, FET
should employ different MD and ME strategies for each cat-
egory. Therefore, the generalized framework of the proposed
FET is constructed as shown in Fig. 4. It works as follows:
firstly, a background frame is generated from the originally
decoded frames by Low-complexity Background Modeling,
and then this background should be encoded into stream by
Background Encoding. The reconstructed result of Background
Encoding is used as a selective long-term reference frame
for following decoded frames. After that, the Adaptive Block
Classification utilizes an adaptively updated and automatically
learning threshold to divide the blocks in current frame into
FUs, FBUs and BUs. Thirdly, with the help of decoded data
(i.e., reference frames, motion vectors and prediction modes),
different ME and MD strategies (i.e., Reference Frame Se-
lection, Candidate Modes Calculation and Motion Estimation
Intensity Evaluation) will be respectively used for the three
block categories.
In the following parts of this section, Section IV-A introduces

the low-complexity and high-efficiency background modeling
algorithm used in the Low-complexity Background Modeling;
Section IV-B presents the algorithm of block classification
based on threshold updating for the Adaptive Block Classi-
fication; The complexity analyses and summarized methods
respectively for Reference Frame Selection, Candidate Mode
Calculation andMotion Estimation Intensity Evaluation are in-
troduced in Sections IV-C, IV-D and IV-E. In these complexity
analyses, an H.264/AVC-transcoding is used to derive the
distributions of the optimal reference frames, best prediction
modes and motion search ranges for BUs, FUs and FBUs, and
speed-up strategies are respectively summarized for them. The
experiments are conducted on four representative surveillance
and conference videos (surveillance ones of crossroad/over-
bridge and conference ones of mthr_dotr/paris, all of which
can be seen from Section V), whose input H.264/AVC stream
for transcoding is at about 1000 kbps. These videos are more
representative because they contain different characteristics of
bright/dark scenes, large/small moving objects and fast/slow
motions.

TABLE II
MEMORY COST FOR EACH PIXEL (BYTE)

TABLE III
THE PSNR GAIN (dB) FROM BACKGROUND
MODELING AND THE MODELING TIME (SECOND)

A. Background Modeling

Recently, background modeling has been utilized for efficient
surveillance video coding and transcoding. In this section, we
will firstly analyze and compare among existing oft-used back-
ground modeling methods, and then a background modeling
method with low memory cost and computational complexity is
proposed to generate G-picture for video transcoding. To eval-
uate the efficiency of different common modeling methods for
video transcoding, four typical background modeling methods
are implemented and embedded into the FDFE method with
H.264/AVC baseline profile.We transcode the input H.264/AVC
streams at 1000 kbps for four sequences (crossroad, overbridge,
snowroad and snowgate) to the output streams at bit-rates of
64, 128, 256 and 512 kbps. The four methods are the Gaussian
Mixed Models [17] using 1 or 5 models for each pixel (GMM-1
or GMM-5), the Mean-Shift (namely MS) proposed in [18],
and the popularly used Gaussian running average (RA). For
background modeling in surveillance and conference video
transcoding, as is referred in Piccardi’s [19], performance,
memory cost and running time are the same important factors.
The calculations for their memory cost in each pixel position
are listed as follows. (1) RA: one current pixel with type of
char and one float-precision mean value for each pixel should
be buffered. (2) GMM-X: besides the buffered input pixel, a
GMM model is required to be buffered. The model is com-
posed of double-precision mean value, variance and weight.
Moreover, an 8-bit value should be stored to count the number
of matched points for each GMM model. (3) MS: Mean-shift
based algorithms usually buffer all the training frames and very
few additional temporal variables are used for the clustering
and sorting operations.
Supposing the number of training frames is ,

the memory cost for each algorithm derived from the above
analysis is listed in Table II. Then we implement transcoding
methods respectively utilizing RA, MS, GMM-1 and GMM-5
to train G-picture as long-term reference on H.264/AVC
baseline profile. The methods are correspondingly named
T-BP-MS, T-BP-RA, T-BP-GMM-1 and T-BP-GMM-5, and
the transcoding time and efficiency on different CIF sequences
can be seen from Table III. In a brief summary, GMM-5 con-
tributes largest to video coding performance gain but spares a
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Fig. 5. Calculate the mean value and weight for each segment.

relative large memory and time cost. In practical system, espe-
cially in parallelism or hardware environment, such GMM-5
cannot meet the requirement for fast modeling and low memory
cost. This inspires us to propose a method which can achieve
higher performance with less memory and time cost.
To maintain or improve background quality, an ideal solution

for background modeling is to calculate the mean value of all
the pure background pixels in the training frames. However, it
is very difficult in recent years to exactly justify which pixels
belong to the background. Physically, “background” equals
to the most frequently-appearing content. This inspires FET
to utilize a novel segment-and-weight based running average
(SWRA) to approximately calculate background by paying
larger weight on the frequently-appearing values in the aver-
aging process. Because SWRA is based on a running average
procedure, there will not be large memory cost and computa-
tional complexity. Generally, SWRA divides the pixels at each
position in the training frames into temporal segments with
their own mean values and weights, and then calculates the
running and weighted average result on the mean values of the
segments. In the process, pixels in the same segment have the
same background/foreground property and the longer segments
have larger weights. This method ignores the foreground/back-
ground property of each segment, so foreground recognition is
avoided. Meanwhile, low memory cost and no-delay modeling
are guaranteed.
In detail, SWRA models a background value of pixels at po-

sition by following five steps:
1) Initialize: Initialize background model value and

its weight for the following weighted average procedure to
0, and then create first segment. Length of the first segment
equals to 0 and its mean value . The model value before
the current segment is also set 0.
2) Calculate the Threshold for Segmenting: Supposing is

the mean value and is the mean square error, the probability
of in normal distribution is less than
4%. So we use as the threshold to temporally segment
a pixel in training frames. The threshold is initialized to 14
and updated by 2 times the root square value of the mean of
gap values not larger than the before. The gap value is the
difference between a pixel and its .
3) Create a New Segment or Widen the Current Segment:

At arbitrary position, a new temporal segment will be created
if is larger than . Otherwise, length
of the current segment is widened. Through this procedure,
temporally successive pixels can be divided into segments as
shown in Fig. 5. Borders between segments stand for a texture
switch on adjacent frames. Note that, if length of a segment is
too short, the weight of for the segment is 0, and 1/20 of the
length of training frames is used to judge whether a segment is
too short.

Fig. 6. The calculation of buffered and .

4) Calculate Mean Value and Weight for Each Segment: The
weight of each segment is set square of its length, as shown in
Fig. 5. Afterwards, denoting length and mean value of segment
as and , a running average procedure will be em-

ployed to realize low computational complexity.
5) Generate and Output the Background Value: In a practical

system, to satisfy low memory cost, we do not buffer the length
and mean values of each segment. Instead, we just interactively
buffer and calculate the total mean value and its weight
from the first to the -th segment by

(19)

(20)

Such calculation procedure is shown in Fig. 6. It indicates
we only need to buffer and derive the and of the
first segments from the first segments. Following this,
when the current segment reaches the end of training frames,
we will calculate the final and . At last, we will ob-
tain the required background by jointing the of each pixel
together.
From the above statement, we can see that the proposed

SWRA works based on weights and running average. The
additionally buffered data for each pixel position include:
the for the current segment , the to
summarize the previous segments and the updating threshold.
Compared with the parametric methods like GMM, SWRA
does not import multiple models for each pixel and never
relies on the float precision calculation of proportion and
variance, so both memory and time are saved; Compared with
Mean-Shift, SWRA does not need to allocate large memory to
buffer multiple training frames, so memory will be significantly
reduced; This method is also different from non-parametric
methods like codebook [20], although the codebook does not
need to buffer multiple training frames, the management of
the multiple codewords is very time consuming and memory
sparing. In Section V, we will practically count the efficiency
improvement and memory-and-time cost of SWRA.

B. Adaptive Block Classification

As discussed above, FET employs different transcoding
strategies for different categories of transcoding units. There-
fore, a low-complexity and scene-adaptive classification
algorithm should be designed to classify units into BUs, FBUs
and FUs. In our practice, an adaptive threshold is learned
for each transcoding unit to judge the category . Following
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the idea that different units have different proportions of fore-
ground, given the , is calculated by

,
(21)

where is the pixel position in the current transcoding unit
, is the reconstructed result of transcoding OB, is the

number of elements in set and is the width of . In prac-
tice, we usually set and . The remaining
problem is how to adaptively calculate the threshold . To
identify the foreground pixels in a new frame, a reasonable idea
is to calculate a separate for each unit with help of the
root-mean-square deviation . Following this, we propose an
adaptively learning and updating algorithm as shown in Algo-
rithm 1. The threshold calculating process for each unit can be
divided into four steps: (1) Calculate the difference between the
current unit and its background; (2) Utilize the threshold for the
unit in the last frame to identify background pixels in the cur-
rent unit; (3) Count the number of identified background pixels
in the current unit; (4) Calculate the root-mean-square deviation
value to update .

Algorithm 1. The Threshold Updating Model.

Input:

: the pixel value at position of the current
coding unit in the current frame.

: the background pixel corresponding to the
.

Initialization:

is initialized as the for co-located coding unit in
the previous frame, or 14 for the first frame

Calculation:

1. For each , , calculate
,

2. For each position, calculate

.

3. Count the potential background pixel number by

4. Calculate the root-mean-square deviation as the
updated for the current coding unit

where denotes the round value of .

Output:

Fig. 7. The distributions of reference frames for crossroad, overbridge,
mthr_dotr and pari, where ref1, ref2, ref3,ref4, OB respectively indicate the
1st, 2nd, 3rd, 4th and the long-term G-picture.

TABLE IV
THE SELECTED REFERENCE FRAME FOR EACH BLOCK CATEGORY

C. Reference Frame Selection

To clearly and objectively analyze the distribution of the se-
lected reference frames for different categories, the number of
reference frames is set to 5 in experiments and G-picture is
treated as the long-term reference frame. Respectively for BUs,
FUs and FBUs, the percentage of one frame being selected as
reference is calculated from the selected times of each refer-
ence frame for each category of units. Firstly as Fig. 7 shows,
the first reference frame takes up more than 30%/50% for all
the categories in surveillance/conference videos; the long-term
G-picture takes up more than 40%/18% to predict the BUs, and
more than 5% to predict FBUs. Secondly, the first two refer-
ence frames take up more than 90% to predict FUs; the first and
G-picture can take 90% for BUs; the first two and G-picture to-
gether take up about 90% in BUs or FBUs.
From the statistics, we can conclude such rule for speeding up

reference frame selection: only the first two reference frames
are indispensable to FUs; whereas the first reference and the
long-term G-picture can together provide sufficient reference
for transcoding BUs; while adding the second reference, FBUs
have sufficient reference. Moreover, to avoid exceptional cases,
the decoded reference frame of current unit should also be uti-
lized for FBUs and FUs. From this rule, the simplified candidate
reference frame pool is shown as Table IV.
This means following selection mechanism: For BUs, only

G-picture and the nearest reference frame should be added into
the candidate reference frame set; For FBUs, the nearest, second
nearest and G-picture should be used; For FUs, we should uti-
lize the two nearest reference frames and the decoded reference
frame. Due to the decrease of candidate reference frames in
BUs/FUs/FBUs, the redundant computation in ME can be ob-
viously reduced.
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Fig. 8. The distributions of the Real MVDs for crossroad, overbridge,
mthr_dotr and paris.

D. Motion Estimation Intensity Evaluation

To avoid performance loss in video transcoding, motion
search range for each unit should be larger than “Real MVD”.
Here the so-called Real MVD means the difference between the
predicted motion vector (PMV) from the neighboring units and
the best matched motion vector. Fig. 8 shows the distribution
of the Real MVDs for BUs, FUs and FBUs. As Fig. 8 shows,
more than 99% of the Real MVDs are less than 1 integer pixel
in BUs, so the transcoding integer motion search range can be
set to 1. For FUs and FBUs, although the ratio of larger Real
MVDs does not turn much larger (e.g., more than 10% Real
MVDs is larger than 1 pixel), the increased proportion cannot
be neglected because the transcoding bit-rate is more easily
influenced by these larger Real MVDs.
From the statistics, we can conclude the rule for motion es-

timation intensity evaluation: in BUs, motion vector is close to
the predicted motion vector; the motion search range should be
a non-square window based on the difference between the pre-
dicted motion vector and the decoded MV; the search window
should be narrowed in different degrees for FUs and FBUs. In
this paper, for the -th transcoding unit, denoting
as the difference between predicted motion vector
of the -th prediction unit in the encoder and their corresponding
decoded motion vector from the decoder. However
in the decoding process of the -th unit, the decoded number of

s for the prediction units is not the total prediction
unit number . Supposing there are decoded motion vectors,
we utilize to represent the largest value between

and . That means, to
maximum the motion estimation accuracy, we figure out the

by

(22)

(23)

where and are the motion vector
value of and in coordinate.

According to the summarized rule, it will be enough
to just employ sub-pixel motion estimation for BUs, and
we should investigate on the search range calculation of
FBUs and FUs, to reduce the accuracy of motion estima-
tion in the least degree, it is intuitive that the search range
in and direction must be larger than the minimum
value of all the and

. Therefore, we calculate
the search range for the total prediction units
in coordinate by following algorithm in Algorithm 2. This
algorithm can be summarized by 4 steps: (1) Calculate each
prediction unit’s category in {FU, FBU, BU}; (2) Fix every
BU’s search range to 1; (3) Set the search range of FBU to
be larger than the prediction unit ’s ;
(4) Set the search range of FU to be larger than ’s

. Take a prediction unit as example,
the search range is shown in Fig. 9.

Algorithm 2. Search Range Calculating Algorithm.

Input value:

: search range (SR) for the original FDFE; :
the extra SR for FBU/FU

Init value:

, prediction unit is namely , and
are usually set to 2

Calculation procedure:

For

If , Then ;

Else Begin

If , then ; Else,
;

If ( ), then
;

Else if ( ), then
;

Else if (
),

Then
;

Else ;

End

Output value:

E. Candidate Mode Calculation

It is clearly that the used intra- and inter-prediction modes are
entirely different among BUs, FUs and FBUs. Thereby the used
prediction modes in transcoding units are counted to figure out
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Fig. 9. PMVD and modified motion search range.

Fig. 10. The distributions of intra and inter modes for crossroad, overbridge,
mthr_dotr and paris.

the proportion of each prediction mode. As Fig. 10 shows, SKIP
and inter 16 16 prediction modes are selected almost 100% in
BUs. Therefore, the intra, small and non-square modes are for-
bidden in BUs. For FUs and FBUs, however, although the small
modes {8 8, 8 4, 4 8 and 4 4} are not used very much,
there is still over 10% for them, on average. Another interesting
discovery is that the Intra 16 16 (I16M) prediction mode is
barely used in FBUs, because the flat I16M will produce large
distortion for the background-and-foreground hybrid blocks.
These distributions indicate the rule for candidate mode cal-

culation; the large and square inter-prediction modes are effi-
cient enough for transcoding the BUs; the small-size modes for
FBUs should be removed only when the decoded unit does not
use any of them; the small-size modes for FUs should never be
removed. According to this rule, for static regions, the large size
prediction modes will be mostly selected, and smaller and non-
square prediction modes like inter and intra 4 4(P4 4, I4M)
and 8 8(P8 8, I8M, inter 4 8 and 8 4(P4 8, P4 8),
inter 8 16 and 16 8(P8 16, P16 8) in H.264/AVC are
forbidden in BUs. But these smaller inter modes should be en-
abled for FUs. Large intra prediction mode such as I16M in
H.264/AVC should be always disabled and non-square small
modes like P4 8 and P8 4 in H.264/AVC should be always
enabled. The final mode decision refinement for H.264/AVC
transcoding is clearly listed in Table V, where denotes the
lowest size of decode mode is equal or greater than 8 8 block
size. As shown, the candidate prediction mode pool contains
three levels, and each level has various sizes of modes.

TABLE V
THE SELECTED REFERENCE FRAME FOR EACH BLOCK CATEGORY

Fig. 11. Example frames of tested surveillance sequences.

Fig. 12. Example frames of tested conference sequences.

V. EXPERIMENTAL SETUP

A. Methodology

To evaluate the effectiveness and efficiency of the proposed
FET, which transcodes high bit-rate input streams to low bit-rate
streams in high efficiency and low complexity, extensive ex-
periments are carried out on different kinds of surveillance and
conference videos. For surveillance video, eight long ones are
used, including four sequences (crossroad, overbridge, office
and bank) in SD definition and four ones (crossroad, overbridge,
snowroad and snowgate) in CIF. They cover different scenes
including bright and dusky lightness (BR/DU), large and small
foreground (LF/SF), fast and slowmotion (\FM /SM). As shown
in Fig. 11, crossroad (SD), overbridge (SD), office (SD) and
crossroad (CIF) are brighter than others. Whereas in crossroad
(SD), overbridge (SD), office (SD) and crossroad (CIF) and
overbridge (CIF), the foreground motion is very fast and the
proportion of foreground pixels is relatively large. For confer-
ence video, eight JCT-VC videos including two CIF sequences
(paris, mthr_dotr) and six 720p videos (vidyo1, vidyo3, vidyo4,
johnny, KristenAndSara, FourPeople) are utilized to evaluate
FET’s efficiency and complexity. These conference videos can
be seen from Fig. 12.
Note that, to calculate the efficiency of FET at different lower

bit-rates, the input steams for all the sixteen videos above should
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TABLE VI
CONFIGURATIONS OF THE USED JM17.2 HIGH PROFILE

Fig. 13. Sequence structure for background generation.

be at high bit-rate, so these streams to be transcoded are all
compressed by H.264/AVC High Profile using recommended
configurations [21] with . Besides, because low-delay
characteristic is required for surveillance and conference video
transcoding, an IPPP sequence structure without B frames is uti-
lized. Moreover, the lower bit-rates refer to the following QPs:
the eight surveillance videos are with , 27, 32 and 37;
the eight conference videos are with larger QP at 22, 24, 27 and
30 because the compression ratio of conference videos at similar
QPs will be too large. All the methods are designed to transcode
streams within H.264/AVC standard from higher bit-rates to
lower bit-rates, since inside-standard transcoding will be more
practical and import fewer problems for stream displaying and
communication.
For an undisputed comparison, such above input streams are

transcoded by following five high efficient or fast methods with
the comparison tool of BD-PSNR in [22]: 1) T-AVC: In the
encoding process of the transcoding procedure, it combines the
decoder and encoder in the original H.264/AVC high profile of
H.264/AVC test model JM17.2, which is configured as [21].
2) T-KB: It transcodes with the high-quality key frame as the
long-term reference frame. 3) FET-E: It is the FET with only
the efficiency-improving techniques, that is, using proposed
SWRA-based-modeling G-picture as the long-term reference
frame, where G-picture is encoded by the minimum decoded
QP. 4) FET-EF: It is the FET-E accelerated by the adaptive-
block-classification based reference frame selection, candidate
mode calculation and motion estimation intensity evaluation.
5) FET-ES: Based on FET-E, it only employs state-of-the-art
fast transcoding methods to save MD and ME complexity, in
forms of similar but block-classification independent speed-up
strategies in FET-EF.
Through the comparison between FET-E and T-AVC/T-KB,

we can figure out the transcoding performance gain or bit-rate-
saving over the traditional FDFE and optimized FDFE. In fur-
ther, by comparing between FET-EF and T-AVC/FET-ES, we
can calculate the complexity saving of our proposed speed-up
techniques with FET-E and the state-of-the-art methods. The
common H.264/AVC test model JM17.2 for the transcoders is
configured as Table VI.

B. Background or Key Frame Updating

Different kinds of background updating algorithms can be
applied to our FET. Nevertheless, to highlight the transcoding

TABLE VII
THE PROPORTION OF FUS, BUS AND FBUS IN TEST SEQUENCES

efficiency, some factors such as the bit-allocation between
background and input frames should not be taken into account
in experiments, thus the background updating mechanism
should be fixed and easy to implement. Therefore, the sequence
structure in Fig. 13 is employed for background updating or key
frame selection in all methods. In this structure, the background
or key frame is updated periodically, and each background
or key frame is transcoded by intra-prediction modes with
the same quantization parameter. Moreover, each sequence is
divided into super groups of pictures (S-GOPs). That is, an
initial group of frames are utilized as to update
the background frame or select a key frame for ,
whereas the last group of frames in are utilized as

for , and those in are utilized
as for Note that, the first frame is
treated as the background or key frame for . In this
way, each S-GOP owns the corresponding background frame
for transcoding. In our experiments, the number of frames in
each TrainSet is 120 and the length of an S-GOP is a function
of the QP as

(24)

VI. EXPERIMENTAL RESULTS

Several experiments are designed to validate the efficiency
of FET. Firstly, we present the distribution of FUs, FBUs
and BUs to show the effectiveness of transcoding with block
classification in Section VI-A. Then, the performance gain,
memory cost saving and time cost saving, brought by our
proposed background modeling algorithm SWRA, are given
in Section VI-B. Section VI-C introduces the total bit saving
and complexity saving results for FET-E/FET-EF over the
stat-of-the-art methods. At last, a practical transcoding system
is implemented based on open-source X264 video codec, the
appearance and efficiency of the system can be seen from
Section VI-D.

A. Block Classification Results

In the first experiment, we make a statistical analysis for the
distribution of FUs, BUs and FBUs. The result for each se-
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Fig. 14. Block category distribution for crossroad (CIF) and overbridge (CIF).

quence can be seen from Table VII and the block category distri-
butions for example frames of crossroad (CIF) and overbridge
(CIF) are shown in Fig. 14. From these results, we can observe
the BUs take the largest part, so utilizing G-picture as long-term
reference and designing specific speed-up techniques for BUs
in FET will contribute a lot to the transcoding efficiency and
complexity.Meanwhile, FBUs takemuch larger proportion than
FUs. Thus after our FET saves the bit cost and complexity cost
in BUs, transcoding the large amount of FBUs will consume
a large percentage of the total bit cost and time cost. In such
case, our employed speed-up techniques for FBUs will save
the complexity in further and G-picture will also reduce the
bit-rates of FBUs by providing more accurate background as
reference. Moreover, although G-picture cannot provide more
reference for FUs, we can design speed-up strategies to reduce
the candidate reference frames for FUs. In summary, the sta-
tistics for block-category distributions indicates that designing
category-adaptive speed-up strategies will be very effective for
transcoding.

B. Experiment 2: Background Modeling Complexity and
Efficiency of the Proposed SWRA

To evaluate the efficiency of the transcoding using SWRA,
the FET-E using four state-of-the-art background modeling
methods is employed as anchors for comparison, through
their PSNR gains over T-AVC in high profile and IPPP struc-
ture on the first 620 frames of eight surveillance videos.
The background modeling methods include the referred
GMM-1, GMM-5, MS and RA. Transcoders using the methods
are respectively namely FET-E-GMM-1, FET-E-GMM-5,
FET-E-MS and FET-E-RA.
The transcoding performances of these anchors and our

proposed FET-E-SWRA are firstly shown in Table VIII, to-
gether with their background modeling time. It indicates that
FET-E-GMM-X transcoders seriously rely on the number of
models utilized for each pixel. FET-E-GMM-1 achieves a
much worse performance than other background modeling
algorithms, and FET-E-GMM-5 achieves better performance
than FET-E-RA, FET-E-MS and FET-E-GMM-1. On average,
FET-E-SWRA achieves the best performance at 1.197/1.23
dB gains over T-AVC on CIF/SD sequences. FET-E-SWRA is
slightly better than FET-E-GMM-5, which achieves 1.197/1.22
dB gains. Besides, FET-E-MS is proved more efficient than
FET-E-RA in LF sequences, but less efficient in SF ones. As
for the modeling time, The RA spares the least modeling time

TABLE VIII
BACKGROUND MODELING BASED FET-E (FET-E-X) VS. T-AVC ON PSNR
GAIN (DB) AND MODELING TIME (SECOND) ON SURVEILLANCE VIDEOS

TABLE IX
MEMORY COST (BYTE) FOR EACH PIXEL IN BACKGROUND MODELING

and MS spares the largest. Moreover, it shows that SWRA
spares much less time than MS, GMM-1 and GMM-5 on all the
sequences, only about 25% of the computing time spared by
GMM-5. Moreover, SWRA is not sensitive to video content,
which is quite different from GMM-X and MS.
Afterwards, another comparison for the memory cost of

RA, MS, GMM-1 GMM-5 and proposed SWRA is shown in
Table IX. Memory cost calculations for RA, MS, GMM-1 and
GMM-5 have been referred in Section IV-A. In further for
SWRA, the required memorized data for each pixel include:
one current pixel with type of char and one float-precision
mean value; two float-precision mean values and
their corresponding char-type weights. In summary, the total
memory cost is no more than 14 bytes for each pixel. Results
show that SWRA helps to achieve better performance than
other modeling algorithm, on average. Moreover, compared to
the state-of-the-art GMM-5, SWRA only consumes 10% of the
memory cost and spares 25% of GMM-5’s modeling time.

C. Experiment 3: Total Transcoding Bit-Rate and Complexity

Table X lists the total PSNR gain and bit-rate saving of
FET-E over T-AVC and T-KB for each sequence. This result
can show the largest transcoding efficiency increase of the
proposed FET. On average for surveillance videos, FET-E
achieves bit-rate decreases of 39.84%/35.73% for SD/CIF
sequences compared with T-AVC at the same PSNR, and
35.52%/27.50% over the state-of-the-art T-KB. These re-
sults correspond to 1.25/1.14 dB gains over T-AVC, whereas
0.90/0.73 dB PSNR gains over T-KB at the same bit-rate.
For conference videos, FET-E achieves bit-rate decreases of
4.17%/5.85% for CIF/720p sequences compared with T-AVC
at the same PSNR, and 3.34%/4.13% over the state-of-the-art
T-KB. These results correspond to 0.20/0.20 dB gains over
T-AVC, whereas 0.16/0.14 dB PSNR gains over T-KB at the
same bit-rate. Firstly as we can see that, the less proportion of
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Fig. 15. The RD curves for four example surveillance videos.

FBUs and BUs a sequence has, the less total bit-rate saving will
be obtained (e.g., in surveillance videos, Crossroad (CIF) has
the least proportion 66.53% and least bit-rate saving 17.06%
over T-KB). This is because the performance gain of FET is
mostly achieved on FBUs and BUs. Moreover, the transcoding
efficiency increase of conference videos is much less than that
of surveillance videos. This is because persons in conference
videos move slightly, the exposed background regions will
be much fewer than the surveillance videos in which cars or
persons frequently cross the scene. Note that the transcoding
efficiency RD curves of example surveillance and conference
videos are shown in Figs. 15 and 16. In summary, for surveil-
lance and conference video transcoding, FET-E saves more
than 35%/5% of the bit-rate of T-AVC. Compared to the T-KB,
FET-E also saves about 30%/4% of the bit-rate, on average.
The comparison results of transcoding time for FET-EF vs.

FET-E and FET-ES are shown in Table XI. These results show
the complexity decrease of our FET over the FET-E without
speed-up techniques and the FET-ES with state-of-the-art
transcoding techniques. Because we have designed specific
speed-up strategies for different block classifications in the mo-
tion compensation for FET-EF, the total time decrease is very
large over the anchors. Before the comparison of transcoding
time, we can discover from PSNR gains in Tables X and XI
that, both the PSNR decreases of the FET-EF and FET-ES
compared with FET-E are less than 0.1 dB. This means the
speed-up strategies still have similar PSNR gain with FET-E
over T-AVC. Following this, as shown in Table XI, if we use
Fast Full Search(FFS) for conference videos, FET-EF obtains
as large as 15.4/7.5(CIF) and 22.3/12.0(720p) times speed
up over FET-E/FET-ES, whereas the result is 16.1/7.9(CIF)
and 10.0/5.3(SD) for surveillance videos. Otherwise, while
Unsymmetrical-cross Multi-Hexagon grid Search(UMH) is
used, for conference videos, the speed up is 2.5/2.0(CIF)
and 5.3/2.1(720p) on FET-EF/FET-ES, whereas the result

Fig. 16. The RD curves for four example conference sequences.

is 2.9/1.5(CIF) and 3.3/1.5(SD) for surveillance videos. The
complexity saving in FFS is larger because motion search range
reduction method will reduce the search points in full search
in a large degree, but not for fast search algorithms. Table XII
gives the results for search-point reduction. In summary,
FET-EF saves more than 90% of the transcoding time at FS,
and more than 60% at UMH. Compared to FET-ES, FET-EF
saves about half the transcoding time.

D. Two Practical Systems Based on FET

To practically assess the efficiency of our method, we also
employ the proposed FET method to implement two practical
real-time transcoding systems for high-definition surveil-
lance and conference videos. The first is a surveillance video
transcoding system for saving the video bit-rate for storage.
The second is a conference video transmission system for
transcoding the source video to four different lower bit-rate
videos. The appearance of the systems can be seen from Figs. 17
and 18, where kinds of transcoding options, transcoding results
and information are shown. For kinds of input high-definition
surveillance and conference videos in Fig. 19, the summarized
performance of these systems can be shown in Table XIII.
Results show that, this system can also averagely save 36.6%
of the input four long-time H.264/AVC streams.

VII. CONCLUSION

In this paper, we propose a fast and efficient transcoding
method (FET) for surveillance and conference videos based
on low-complexity background modeling and adaptive block
classification. Results show that, FET averagely achieves more
than 35% bit saving and larger than 10 times speed-up over the
traditional FDFE on the surveillance videos. On the conference
videos which should be transcoded to various devices with
multiple bandwidths in real-time, FET can speed up more than
20 times and still achieve 0.2 dB transcoding performance gain
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TABLE X
FET-E VS. T-AVC/T-KB ON OVERALL BIT-RATE AND PSNR (DB) ON X86 PLATFORM (%)

TABLE XI
FET-EF VS. FET-E/FET-ES ON OVERALL TRANSCODING SPEED UP (TIMES) AND PSNR CHANGE (dB)

TABLE XII
SEARCH POINT REDUCTION PROPORTION USING FULL SEARCH AND UMHEXAGON

Fig. 17. Example frames of videos for testing the transcoding system.

over FDFE. The main contributions of the proposed FET are
summarized as:
1) By theoretically analyzing what kind of background
should be used and how the background should be quan-
tized to improve the efficiency, FET transcoded the
modeled G-pictures into stream using specially designed
QP and intra prediction. And then, FET adopted the re-

constructed G-pictures as long-term reference frames to
significantly improve the transcoding efficiency of the
following frames in surveillance and conference video. In
our FET, G-picture was modeled from a low-complexity
and high-efficiency background modeling algorithm.

2) Through analyzing the distributions of reference frames,
motion vector and candidate prediction modes, FET
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TABLE XIII
TRANSCODING PERFORMANCE OF OUR SYSTEMS ON ONE-THREAD OF GENUINE INTEL(R) CPU @ 2.66 GHZ

Fig. 18. Surveillance video transcoding system for saving storage.

Fig. 19. Conferencing video transcoding system for video transmission.

proposed to classify blocks into three categories by an
adaptive block classification based on adaptively updating
thresholds. And then, FET employed different speed-up
strategies for different categories to dramatically save the
transcoding complexity. These strategies were in forms of
reference frame selection, ME search range reduction and
candidate mode calculation.

3) Extensive experiments on surveillance and conference
videos were utilized to evaluate the performance of
background modeling, block classification and the final
transcoding efficiency and complexity. Moreover, FET
was also implemented in two practical systems respec-
tively to transcode HD surveillance videos in lower
bit-rates for dramatic storage saving and real-timely
transcode HD conference videos to various bit-rates for
multiple-bandwidth transmission.

For future work, we will concentrate on accurate classifica-
tion strategy and effective surveillance and conference video
analysis technology.

APPENDIX
PROOF FOR LEMMA 2

From the rate-distortion analysis for motion compensation in
[24], the with two hypotheses (i.e., two reference frames)
is related to the accuracy of motion compensation by

(25)

In this equation, and are the s for
the two prediction hypotheses, whereas and are
their corresponding s. Let represent the using
any long-term reference frame , we can derive:

(26)

where and denote the for the combina-
tion of short-term hypotheses and the long-term hypothesis, and

and are corresponding s. Be-
cause and use the same motion search,

, and .
Therefore, the difference between and
is:

(27)

According to Girod et al. [25], is determined by
the displacement error variance of the long-term reference
frame and reflects the inaccuracy of the displacement vector
used for the motion compensation. Therefore, when employing
the same ME method,

(28)

From (27) and (28), we have

(29)
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As pointed out by [14], is determined by the pre-
diction error variance (PEV) of the residual noise in a mono-
tone-increasing manner. For each block at position in -th
frame among the total frames, let denote its
PEV with as long-term reference and utilize a monotone in-
creasing function to represent the
with as input. Then we re-write (29) as

(30)

In OB, noise and foreground pixels are much fewer than the
KB because of background generation. Besides, OB also has
much less quality loss than the RB modeled from reconstructed
frames. From the definition of PEV, we have

is background

otherwise.
(31)

From the monotone increasing property of ),
we can further derive

is background

otherwise.

(32)

For a decoded surveillance or conference sequence, there are
lots of background pixels in each . Combining the cases in
(32), we have

(33)

From (30) and (33), we can get

(34)

(35)

Therefore, we have .
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