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Abstract—The linear regression model is a very attractive tool
to design effective image interpolation schemes. Some regres-
sion-based image interpolation algorithms have been proposed
in the literature, in which the objective functions are optimized
by ordinary least squares (OLS). However, it is shown that inter-
polation with OLS may have some undesirable properties from
a robustness point of view: even small amounts of outliers can
dramatically affect the estimates. To address these issues, in this
paper we propose a novel image interpolation algorithm based
on regularized local linear regression (RLLR). Starting with the
linear regression model where we replace the OLS error norm
with the moving least squares (MLS) error norm leads to a robust
estimator of local image structure. To keep the solution stable and
avoid overfitting, we incorporate the �-norm as the estimator
complexity penalty. Moreover, motivated by recent progress on
manifold-based semi-supervised learning, we explicitly consider
the intrinsic manifold structure by making use of both measured
and unmeasured data points. Specifically, our framework in-
corporates the geometric structure of the marginal probability
distribution induced by unmeasured samples as an additional local
smoothness preserving constraint. The optimal model parameters
can be obtained with a closed-form solution by solving a convex
optimization problem. Experimental results on benchmark test
images demonstrate that the proposed method achieves very
competitive performance with the state-of-the-art interpolation
algorithms, especially in image edge structure preservation.

Index Terms—Edge preservation, image interpolation, moving
least squares, ordinary least squares, robust estimation.

I. INTRODUCTION

I MAGE interpolation, which addresses the problem of
rescaling a low-resolution (LR) image to a high-resolution

(HR) version, is one of the most elementary imaging research
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topics. It has a wide range of applications from digital photog-
raphy to video communication, satellite remote sensing, object
recognition, consumer electronics, and many other important
fields. The main purpose of image interpolation is to recover
sharp edges and textures, while suppressing pixel blocking,
blurring, and other visual artifacts.

Image interpolation is still a widely studied and unsolved
problem in image processing field. A number of methods have
been suggested in the literature [1]–[16]. Among these existing
methods, the simplest techniques for image interpolation are
based on classical data-invariant linear filters, such as the bi-
linear, bicubic [2], and cubic spline algorithms [3]. These linear
methods have a relatively low complexity, but suffer from the
inability to adapt to varying pixel structures which results in
blurred edges and annoying artifacts.

As well known, the human visual system (HVS), which is
the ultimate receiver of the rescaled images, is highly sensitive
to distortions of spatial coherence of edges. It is agreed that for
many applications, the main emphasis of image interpolation
should be on the perceptual quality of images. That is, the in-
terpolated images should be artifact-free and visually pleasing.
Many algorithms have been proposed to improve the subjective
quality of the interpolated images by imposing more accurate
models [4]–[13].

Spatial adaptive interpolation algorithms, which adjust the in-
terpolation coefficients to better match the local structure, have
received more and more attention. Among various spatial adap-
tive algorithms, interpolation along local edge directions is a
good idea. This is because, based on geometric constraint of
edges, estimation along the edge orientation is optimal in the
sense of best inferring unknown pixels. In one of the earliest
papers proposed to reduce edge artifacts, Jensen et al. [4] pro-
pose to estimate the orientation of each edge in the image by
using projections onto an orthonormal basis, and modify the
interpolation process to avoid interpolating across the edges.
The algorithm in [5] is applied to a linearly expanded image
as a post-process to enhance edges using a weighted average
of neighboring pixels chosen explicitly by the Canny edge de-
tector. In LAZA [6], Battiato et al. use simple rules and config-
urable thresholds to explicitly detect edges and update the in-
terpolation process accordingly. They further extend this work
by using local gradient information based on a neural network
to achieve better edge sharpness and computation efficiency [7],
[8].

The methods mentioned above are all based on explicit detec-
tion of edges. The problem with such methods is that the penalty
to image quality is high if the estimated edge direction is not ac-
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curate, which maybe happen due to the difficulty in determining
the edge direction. In [9], Zhang and Wu propose to interpolate
a missing pixel in preset multiple directions, and then fuse the
directional interpolation results by minimum mean square-error
estimation. Directional filtering and estimation have proved to
be effective to preserve the edges in image interpolation. In [10],
a method named ICBI is proposed to use local second order in-
formation to adapt the interpolation and an iterative refinement
is further exploited to remove artifacts while preserving image
features and texture.

Edge detection and image interpolation are two problems
with a chicken-and-egg flavor because solving one makes the
other almost trivial. However, the accuracy of existing edge
detection algorithms remains insufficient, especially in the
scenario of image interpolation where the HR image informa-
tion is incomplete. In view of the difficulty with explicit edge
detection, alternatively, auto-regression (AR)-based methods
have been extensively studied, which integrate edge direction
information into AR model parameters. Li and Orchard propose
a new edge-directed interpolation (NEDI) method [11], which
exploits the geometric duality between the LR covariance
and the HR one to first estimate local covariance coefficients
from the LR image and then use these coefficients to adapt
the interpolation at the HR image. Furthermore, the improved
new edge-directed interpolation (INEDI) method [12] modifies
NEDI by varying the size of the training window according to
the edge size and achieves better performance. Recently, Zhang
and Wu propose the named SAI algorithm [13], which learns
and adapts varying scene structures using a 2-D piecewise
AR model, and interpolates the missing pixels in a group by a
soft-decision manner. SAI achieves promising results in both
objective and subjective performance, and is one of the best
performed image interpolation algorithms. Besides, the AR
model has been successfully applied to other applications, such
as frame-rate up-conversion [28], [29].

Central to most AR-based image interpolation algorithms
is the definition of an effective and efficient approximation
function. NEDI and SAI are both based on ordinary least
squares (OLS) approximations, they naturally handle uniform
noise and generate smooth HR images. However, it is well
known from statistics that OLS-based approaches are highly
sensitive to outliers. The small amount of outliers will severely
affect the accuracy of interpolation model, and further make
the estimated intensity values depart far from the true ones. As
such, the OLS-based loss function is not a good choice from
a robustness point of view, contrary to other loss functions
such as loss or Vapnik’s -insensitive loss [25]. From a
computational point of view on the other hand, loss involves
solving a quadratic programming problem, there is no simple
analytical formula for the solution.

In statistics, moving least squares (MLS) [15], [16] is a ro-
bust technique for data fitting, which provides a high level of
control over the function reconstruction, and allows for a tun-
able amount of data smoothing during interpolation. This flexi-
bility provides the capacity for handling outliers. MLS achieves
a good tradeoff between effectiveness and efficiency as it can
give more reliable results while still minimizing a least-squares
criterion.

To achieve robustness and computation efficiency simulta-
neously, in this paper, we propose a novel image interpolation
algorithm based on a graph-Laplacian regularized local linear
regression (RLLR) model. Starting with the linear regression
model where we replace the OLS error norm with the MLS
error norm leads to a robust estimator of local image structure.
Moving weights are incorporated into the objective function
in order to express the relative importance of the image sam-
ples in estimating the parameters of model. This idea is sim-
ilar to kernel regression [14], to which the difference is that our
method imposes the -norm as a complexity penalty term to
keep the solutions stable and avoid overfitting, and we design
an efficient patch-based bilateral moving weight to better keep
local texture structure and reduce the influence of outliers in re-
gression. Moreover, motivated by recent progress on manifold
based semi-supervised learning [17], we explicitly consider the
intrinsic manifold structure by making use of both measured and
unmeasured data points in HR image reconstruction. Specifi-
cally, our framework incorporates the geometric structure of the
marginal probability distribution induced by unmeasured sam-
ples as an additional local smoothness preserving constraint.
Considering the underlying geometry of the image, the proposed
algorithm allows us to remove the artifacts that may arise when
performing interpolation, such as blocking and blurring. Com-
puted examples demonstrate its effectiveness by visual compar-
isons and quantitative measures.

The rest of this paper is organized as follows. In Section II,
we give a brief description of ordinary least squares and moving
least squares. Section III presents the proposed interpolation
framework. Section IV details the implementation of the pro-
posed framework, including the design of moving weights,
optimization solution, complexity analysis, and regulariza-
tion parameters setting. Experimental results are presented in
Section V. Section VI concludes the paper.

II. ORDINARY LEAST SQUARES AND MOVING LEAST SQUARES

In this section, we will first give a brief discussion about or-
dinary least squares (OLS) and moving least squares (MLS) on
fitting one dimensional data, and then revisit them on two-di-
mensional image signals. In this way, we have a intuitive under-
standing of the robustness property of MLS, and it provides us a
strong motivation for using MLS in the local adaptive image in-
terpolation method which will be introduced in the next section.

A. One-Dimensional Signals

Given a training set of points
with corresponding output , we want to compute an approx-

imation to the data points. Let us consider the following linear
regression model:

(1)

where is the d-dimensional weight vector and
is the basic function vector. We want to

best interpolate with minimum approximation error.
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Fig. 1. MLS reconstruction of a given set of scattered data points �� � � � in
1-D. The local MLS approximation � for the point � is shown in blue. Its
computation and evaluation at every point of the domain yields the complete
MLS reconstruction shown in red.

A common criterion for approximation error is OLS, which
can be expressed as

(2)

Setting the derivative to 0, the optimal can be represented by

(3)

where , and
.

OLS obtains a globally defined function that approxi-
mates the given scalar value at point in the least squares
sense. It considers all samples in the training set with equal im-
portance in the process of minimization. As a consequence, OLS
is sensitive to outliers, a small amount of outliers within the data
can severely bias the least squares estimation.

Opposite to the global-linear property of OLS, MLS is with a
local-linear but global-nonlinear manner. The basic idea of MLS
approximation is to start with an arbitrary fixed point and then
move it over the entire domain where the variable is defined. As
illustrated in Fig. 1, a continuous approximation (shown in
red) is reconstructed from a set of data points by computing
and evaluating a local approximation at (shown in blue)

(4)

At each point, the approximation function is locally minimized
and evaluated using weighted least squares by fitting the neigh-
boring data points [15], which is formulated as

(5)

where is the similarity weight of the sample for the
current interpolation point . Setting the derivative to 0, the op-
timal can be represented by

(6)

where is a matrix
with similarity weights on the diagonal line.

MLS is a appealing technique for data fitting, which provides
a high level of control over the function reconstruction, and al-
lows a tunable amount of data smoothing during interpolation.
This flexibility provides the capacity for handling outliers and
avoiding the artifacts incurred by OLS based reconstruction

Fig. 2. Toy data example. Three outliers are marked with black dashed circle.
Red dashed curve: OLS. Blue solid curve: MLS.

schemes. Furthermore, the MLS approximation is a continuous
reconstruction with well-defined, smooth derivatives which
allows for high-quality shape preserving [16]. In MLS, overlap-
ping local neighborhoods and collectively analysis can provide
information about the global geometry. Its computation and
evaluation at every point of the domain yields the complete
MLS reconstruction shown in red.

To illustrate the advantage of MLS over OLS, in Fig. 2, some
toy data points are simulated including three outliers (points
with dashed circle). OLS (red dashed curve) is clearly affected
by the outlying observations. MLS (blue solid curve), which
uses bilateral weights [18] as moving weights, improves the fits
remarkably well. This is because that the bilateral weights not
only consider the geometric closeness but also the label sim-
ilarity. The three samples with dashed circle receive smaller
weights exactly equal to zero since their values are far from the
neighboring points. Therefore, they are locally recognized as
outliers in regression and the MLS performs much better in this
example.

B. Two-Dimensional Signals

In the above, we show the approximation power of MLS on
simple one dimensional signals. Now let us turn to two dimen-
sional image signals, and discuss why MLS can bring benefits
on the task of image interpolation compared with OLS.

In order to generate high-quality HR images, in image
interpolation, homogeneous regions should be represented as
smoothly as possible, while heterogeneous regions should be
as separably as possible. The previous OLS-based methods,
such as NEDI and SAI, consider all samples in the local neigh-
borhood with equal importance. They are not well suited for
situations where there are some outliers in the measurements.
For example, in the situation where the local neighborhood is
on the boundary of two regions, the regions on either side of
the boundary may be well approximated with a second-order
polynomial model but not near edges where the model switches
from one to another [19]. For such case, the model estimated
by OLS will diffuse the information from both sides of discon-
tinuity. Therefore, edges will be smoothed and do not appear as
sharp as they should. This multi-model situation often occurs
in the image interpolation application due to the fact that in
natural images there are a lot of abrupt changes going from one
to another object.

One way to deal with the multi-model situation is to first es-
timate edge that separates the different regions, and then esti-
mate model parameters on each side of the edge. However, this
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way will introduce another difficult problem: edge detection. In
this paper, we turn to a less principled approach. Instead of a
multi-model approach we stick to a simpler one-model approach
where we use a statistical robust estimator. A robust estimator
will only consider the data points from the homogeneous region
and disregard the samples from heterogeneous regions as being
statistical outliers, which is achieved by incorporating moving
weights into the objective function to express the relative im-
portance of samples in estimation.

Another important effect making OLS-based estimates
questionable is that when collecting measurements from a
local neighborhood some samples may have quite different
geometric structure from that of the current sample to interpo-
late. Taking into account that in NEDI and SAI the geometric
duality is the basic principle to guide model estimation, the
mismatch of geometric duality is also a kind of outlier, which
is called structure outliers. Since in OLS all samples contribute
equally to the final decision, the structure outliers will disturb
the estimation and bias from the ground true model parameters
will be induced.

To alleviate the influence of duality mismatch, we embed
structure information into the moving weights to choose sam-
ples with the same or similar geometric structure as that of the
current sample. It allows us to consider part of the measurements
from the local neighborhood to belong to the model we are inter-
ested in, and disregard all other measurements as being outliers
which therefore are not relevant in estimating the model parame-
ters. Evidently measurements that are outliers to the ground true
model contribute slightly to the final decision. Reducing the in-
fluence of the large errors leads to robust error norms.

III. FRAMEWORK OF REGULARIZED LOCAL

LINEAR REGRESSION

In this section, we first describe the interpolation model used
in the proposed method. Then we detail the proposed image
interpolation framework including kernel ridge regression and
graph-based Laplacian regularization.

A. The Interpolation Model

Without loss of generality, the LR image is a down sampled
version of the associated HR image by a factor of two. As illus-
trated in Fig. 3, the black dots represent the measured samples
in the LR image and the rest blue and blank dots represent the
unmeasured samples in the HR image. The key issue of image
interpolation is how to infer the intensity of a missing sample
in the HR image according the information hidden in the neigh-
boring pixels.

The proposed approach is based on subdivision of the
global image domain into smaller overlapping domain

. The model parameters are estimated on the
fly for each pixel using sample statistics of a local covering.

Supposing centered on is the current pixel to
interpolate in the HR image. To estimate the intensity value of

we utilize the strategy of linear weighting of a set of candi-
dates , which is the intensity vector of the -nearest neigh-
bors of from all surrounding directions. Specially, we con-

Fig. 3. Formation of an LR image from an HR image by downsampling with
a factor of two. The black dots represent the LR image pixels and the rest blue
and blank dots represent the missing HR samples.

sider a linear affine transformation function defined
as follows:

(7)

where and are the weight vector and bias of the linear
estimator; is the estimated intensity value of and
is the inner product. One often deals with the bias term by
appending each instance with an additional dimension

(8)

then the linear transformation function becomes

(9)

Since the function is defined for each point but not shared
by all data points in the local neighborhood , the proposed
method performs nonlinear transformation globally but linear
transformation locally. Taking this property into account, we
refer to the interpolation model as local linear regression model.
Note that the local neighborhood can be defined in a number
of different ways. Although some methods may be better than
others, we keep it simple in this paper by using the same neigh-
borhood size for all missing points in the HR image.

B. Kernel Ridge Regression

We now proceed to devise the MLS-based image interpo-
lation algorithm more formally. Given a local covering

. The first points
are measured examples, since they are from the LR image and
their intensity values are . The rest points

are unmeasured samples to be estimated.
Image interpolation is an ill-posed problem. In order to infer

the missing samples, one needs to have some prior knowledge
on the HR image to be estimated. A reasonable assumption
made with the natural image source is that it can be modeled
as a locally stationary Gaussian process, i.e., the neighboring
samples maybe have the same or similar transformation func-
tion. Following this assumption, the optimal model parameter
vector is found by projecting the function onto the neigh-
boring measured examples. Given a set of measured examples

, we can estimate by minimizing

(10)



LIU et al.: IMAGE INTERPOLATION VIA RLLR 3459

where the second term is the -norm, which is imposed as an
additional estimator complexity penalty on MLS to design more
stable empirical minimization.

In our work, we focus on the convex class of regularization
functions in (10) which eliminates . We consider the prac-
tical range of interest of -value is . There are some
popular regularization techniques which can be added into the
objective function to define and , such as Tikhonov reg-
ularizer [20] and Total-Variation regularizer [21]. For Tikhonov
regularizer, and ; For Total-Variation regu-
larizer, and . In practical experiments,
we utilize the Tikhonov regularizer as the complexity penalty of
estimator, which can be formulated as

(11)

This is also known as kernel ridge regression (KRR). The
penalty term is stable because it does not depend on data.
When is large, this term dominates and we have very stable
solutions close to . By choosing properly, an appro-
priate amount of ridge’s stability translates into good statistical
properties of the KRR estimator.

It is easy to see that the solution of KRR estimator takes the
form

(12)

where is the identity matrix.

C. Graph-Based Laplacian Regularization

In the previous subsection, we incorporate a complexity
penalty term into the MLS framework to keep the solution
stable and avoid overfitting. From a algebraic point of view,
regularization of MLS is done by tuning the objective function
into a strictly convex one, therefore guaranteeing a unique
solution. However, regularization is not only a way of gaining
an algebraic stability in the reconstruction process. From a
Bayesian point of view, regularization should also be a way
of exploiting some prior information, such as the probability
density function (pdf) of images. In this way, a properly chosen
regularization can direct the solution toward a better quality
outcome by taking into account the proper characteristics of
the objective image.

Motivated by recent progress on manifold based semi-super-
vised learning [17], we refine the KRR interpolation framework
by exploring additional discrimination information hidden in
unmeasured samples. From a geometric perspective, there is a
probability distribution on in HR image. The available
LR samples are pairs generated according to , the
rest missing samples are simply drawn according to the
marginal distribution of . In the previous subsection, the
induced loss function only expresses relationships between the
current unmeasured sample and its neighboring measured sam-
ples. By assuming that the support of is a compact man-
ifold, it is more reasonable to incorporate the geometric struc-
ture of the marginal distribution induced by unmeasured
samples into the image interpolation framework. It is usually
assumed that there is a specific relationship between and

. In another word, we assume that if two points and
are close in the intrinsic geometry of , then the conditional
distribution and should be similar, i.e.,
should vary smoothly along the geodesics in the intrinsic geom-
etry of .

In this following, we proceed to incorporate such knowledge
into the loss function through an additional local smoothness
preserving penalty. Given measured samples and unmeasured
ones in the local neighborhood, we consider the following loss
function:

(13)

where are the edge weights in the data adjacency
graph. The additional regularization term is the graph-Laplacian
penalty, which restricts the intrinsic geometric information of
the marginal distribution therefore preserves the smooth-
ness of transformation functions. It imposes a smaller number of
equivalence classes on the transformation function space, there-
fore can guarantee a better generalization error. The final objec-
tive function can be viewed as a generalization of KRR to the
transductive setting. The parameters and control
the relative contribution of two regularization terms in the ob-
jective function. As a result, the task of transformation function
learning is to minimize the above cost function:

(14)

IV. IMPLEMENTATION DETAILS

The proposed algorithm interpolates the unmeasured pixels
in the HR image in two pass in a coarse to fine progression. The
procedure of the two passes is illustrated in Fig. 3, in which the
black dots are the LR image pixels (measured data) and the rest
are the HR image pixels to interpolate (unmeasured data). The
first pass is to interpolate the pixels located on the cross, which
are regarded as measured points in the second pass. The re-
maining unmeasured points are to be interpolated in the second
pass. In the following, let us consider some key issues in our
approach: moving weights design, optimization solution, com-
plexity analysis, and regularization parameters setting.

A. Patch-Based Bilateral Moving Weights

In the proposed RLLR framework, moving weights provide
the prior with the flexibility to model explicitly the local salient
features of an image. When local characteristics of the image
differ significantly across spatial domain, setting these control
weights in regression can efficiently handle the statistical and
structure outliers. Some efforts in other image processing tasks
have been initiated in this direction to determine the similarity of
local pattern for better spatial adaptation. In particular, the Ra-
dial Basis Function (RBF) kernel computes weights decreasing
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with distance from the neighborhood center, as formulated as
follows:

(15)

The intuition of RBF is that an image typically varies slowly
over space, so neighboring pixels are likely to have similar
values. However, the assumption of slow spatial variations
fails at edges, which are consequently blurred by RBF. To
reduce this unpleasant effect, bilateral filter [18] is proposed to
combine gray levels based on both their geometric closeness
and their photometric similarity. The bilateral weights can be
represented by the following equation:

(16)

where is the normalization factor.
RBF and bilateral filter can be regarded as the neighborhood

filter since they are both local. Neighborhood filters perform
well in presence of moderate noise, but the comparison of the
grey level or color values at a single pixel is no more robust when
these values get noisier. This drawback is overcome by the non-
local-means weights [22], in which each weight is proportional
to the similarity between the local neighborhood of the pixel
being processed and the neighborhood corresponding to other
image pixels. The non-local-means weight is defined as follows:

(17)

where is a Gaussian kernel used to take into account the dis-
tance between the central pixel and other pixels in the patch,
and represents the pixel patch whose components are
intensity values of pixels in the similarity window centered on

. This patch comparison permits a reliable similarity measure
involving pixels which can fall far away from each other.

Image priors in a product form are very attractive since they
have the ability to enforce simultaneously many properties on
an image. In this paper, we combine the edge-preserving prop-
erty of bilateral filter and the robust property of non-local-means
weights to design efficient moving weights, which are called
patch-based bilateral moving weights as define as

(18)

B. Optimization Solution and Complexity Analysis

In practical experiments, for simplicity we do not exploit
all unmeasured samples for the additional local smoothness
preserving penalty, but only a subset which have

been already interpolated before with the estimated intensity
values . It means that our algorithm consists of
selecting a transformation function that fits best the values
of measured samples and the estimated intensity values of
unmeasured samples provided previous.

Let be the dimension of the weighting candidates set
in the interpolation model and let denote the column
matrix whose components are the intensity values of the mea-
sured samples, the column matrix whose compo-
nents are the intensity values of previous estimated unmeasured
samples and . Let
denote the matrix whose columns are the components of the
values by of the measured samples, and similarly

the matrix corresponding to
the previous estimated unmeasured samples. The final loss func-
tion can then be formulated in a matrix form:

(19)

where is a ma-
trix whose entries in diagonal are moving weights of

with respect to the measured samples and similarly
is a matrix

where entries in diagonal are the weights of with respect to
the previous estimated unmeasured samples.

To derive the optimal transformation vector , we take the
derivative of the loss function in (19) with respect to and
set the derivative to 0, then the optimal can be represented
by

(20)

where is the matrix whose columns are all the
repetition of is
the column vector whose components are moving weights of
unmeasured samples, is the column vector whose components
are all 1.

This result gives a closed-form solution based on the inver-
sion of a matrix in . Let be the time complexity
of computing the inverse of a matrix in , and

using standard method or with the
method of Coppersmith and Winogard. The time complexity
of the computation of from and is thus in

. Note that in our method we set as the
four 8-connected neighboring samples of ; thus, (with
an additional dimension for appending).

As a consequence, the overall computation complexity of our
method is , where is the number
of unmeasured samples whose model parameters are needed
to estimate. For the offline image interpolation scenario, we
can fully exploit the advantage of our method to achieve the
best performance. For the online scenario, we can manage the
computational complexity by reducing the number of samples
to estimate. One way is to apply the RLLR method only on
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edge pixels (pixels near an edge); for nonedge pixels (pixels in
smooth regions), we still use simple bilinear or bicubic interpo-
lation. Another way is to generalize our method from point-wise
to piece-wise (block-based), i.e., a block of unmeasured samples
share the same model parameters.

C. Regularization Parameters Setting

One important issue of the proposed method is to determine
appropriate values for two regularization parameters and .

For the KRR parameter , we generalize the previous work
on spectral regression discriminant analysis [26] to the kernel
version, and can derive a data-adaptively optimal solution.

For (6) and (12), is a diagonal matrix, we obtain

(21)

where . We perform singular value decomposi-
tion (SVD) on , and have , where and are
unitary matrices, and is the singular value matrix.

In a local neighborhood, the linear regression model can be
represented as

(22)

where is an vector of random error with and
. For the MLS estimator , we can derive

(23)

According to (6) and (12), we can derive the relationship be-
tween MLS estimator and KRR estimator as follows:

(24)

A good parameter should reduce the mean square error
(MSE) of KRR estimator . Therefore, it is necessary to de-
rive , where denotes the distance from KRR es-
timator to the ground true model weights . We have

(25)

Substituting (23) and (24) into (25), we have

(26)

Let , and , we can obtain

(27)

where represents the th largest singular value of .

Note that in the above equation the first term is monotonically
decreasing while the second term is monotonically increasing.
Taking the derivative with respect to , we find the minimum of
MSE falls in the interval of :

(28)

The optimal should translate an appropriate amount of
ridges’s stability into the robust property on perturbation in
the parameter space. Therefore, we induce a noise error
on , and estimate the optimal by solving the following
minimization problem:

s.t. (29)

The problem can be further relaxed to the following simple
form:

(30)

Finally, we can obtain the optimal solution for each local
covering

(31)

where is a normalized parameter to keep in (0, 1), which
is set as in the practice implementation. Since
are the eigenvalues of symmetric matrix , the sum is the
trace of .

For Graph-Laplacian regularization parameter , there is no
reliable optimal method to estimate it, we just empirically set it
as a value from .

V. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, extensive experimental results are presented
to demonstrate the superiority of the proposed RLLR algorithm.
For thoroughness and fairness of our comparison study, we se-
lect a large test images set including ten widely used images
in the literature and a computer generated image: the letter A,
as illustrated in Fig. 4. We downsample these HR images by
a factor of two in both row and column dimensions to get the
corresponding LR images, from which the original HR images
are reconstructed by the proposed and competing methods. Both
direct and average downsampling images are considered. Note
that our method can be easily generalized to enlarge images with
a factor greater than two, in the same way as stated in [27]. For
color images in RGB representation, each channel can be treated
independently as a grayscale image. The interpolated images of
the three channels are then recombined to give the final image.

For comprehensive comparison, the RLLR algorithm is
compared with some representative work in the literature. More
specifically, eight approaches are included in our comparative
study: 1) LAZA [6]; 2) NEDI [11]; 3) DFDF [9]; 4) KR [14]; 5)
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Fig. 4. Eleven sample images in the test set.

TABLE I
OBJECTIVE QUALITY COMPARISON OF EIGHT INTERPOLATION ALGORITHMS (IN dB) FOR DIRECT DOWNSAMPLING

ICBI [10]; 6) INEDI [12]; 7) SAI [13]; 8) the proposed RLLR
approach.

There are a few parameters involved in the RLLR algorithm.
As for the sizes of similarity window and local training window,
we empirically set as 7 7 and 21 21, respectively. The vari-
ance parameters and in computing moving weights are
fixed to 0.05.

A. Noise-Free Images Interpolation

First, let us consider the objective and subjective quality of
eight algorithms on noise-free images. We quantify the objective
performance of all methods by PSNR and edge PSNR (EPSNR).
Tables I and II tabulate the objective performance of the eight
different methods for direct downsampling and average down-
sampling, respectively. It can be observed that the proposed
RLLR algorithm achieves the highest average PSNR value for
both cases. Since PSNR is an average quality measurement over
the whole image, we exploit EPSNR to focus on fidelity of
image edges. In our study, the Sobel edge filter is used to locate
the edge in the original image, and the PSNR of the pixels on
the edge are used to generate the EPSNR. Compared with SAI,
the average EPSNR gains of our method are 0.49 and 0.55 dB,

respectively. It demonstrates the proposed RLLR algorithm pro-
duces significantly smaller interpolation errors along edges than
the competing methods for both cases.

Although PSNR and EPSNR can measure the intensity dif-
ference between two images, it is well-known that they may
fail to describe the visual perception quality of the image. How
to evaluate the visual quality of an image is a very difficult
problem and an active research topic. In the literature, the SSIM
index proposed in [23] is one of the most commonly used metric
for image visual quality assessment. Recently, another pow-
erful image quality assessment metric, named FSIM, has been
proposed [24]. In our study, we use SSIM and FSIM to mea-
sure the visual quality of these interpolation algorithms. From
Table III, it can be seen for direct downsampling RLLR achieves
the highest average SSIM and FSIM scores among the com-
peting methods. For average downsampling, RLLR achieves the
competitive results with SAI, as depicted in Table IV.

Given the fact that human visual system (HVS) is the ulti-
mate receiver of the enlarged images, we also show the subjec-
tive comparison results. In the test image Airplane, a sharp di-
agonal line is visible on the side of airscrew. The test image But-
terfly exhibits strong and sharp edges in varying directions. Such
characteristics make them prime images to test edge blurring
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TABLE II
OBJECTIVE QUALITY COMPARISON OF EIGHT INTERPOLATION ALGORITHMS (IN dB) FOR AVERAGE DOWNSAMPLING

TABLE III
SUBJECTIVE QUALITY COMPARISON OF EIGHT INTERPOLATION ALGORITHMS FOR DIRECT DOWNSAMPLING

and edge blocking effects. Figs. 5 and 6 illustrate the subjective
quality comparison on these two test images. It can be clearly
observed that the images reconstructed by the LAZA interpo-
lator suffer from blurred edges, jaggies, and annoying ringing
artifacts. The NEDI method is competitive in terms of visual
quality, since it can reconstruct sharp large-scale edges well. But
it has difficulty with small edges and textures, producing ringing
artifacts and spurious small edges. The DFDF method is slightly
inferior to the NEDI method in strong edge regions, while it per-
forms better than NEDI in regions containing small-scale fea-
tures. The SAI method shows improvements over the NEDI and
DFDF methods in the regions of small-scale edges and textures,
eliminating the visual defects of the NEDI method. However,

since samples contribute uniformly in the process of image re-
construction, statistical outliers still confuse the edges and fine
textures. The proposed RLLR technique produces the most vi-
sually pleasant results among all competing methods. The pro-
duced edges in our method are clean and sharp. Thanks to the
more powerful kernel weights and the additional local smooth-
ness preserving penalty, our method achieves more wonderful
visual quality compared with KR and INEDI. Most visual arti-
facts appeared in the results of KR and INEDI, such as jaggies
and ringings, are eliminated in the proposed method. The out-
standing performance of the proposed method is more vivid by
observing the error images. As illustrated in Fig. 7, the proposed
RLLR algorithm produces smaller interpolation error than other
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TABLE IV
SUBJECTIVE QUALITY COMPARISON OF EIGHT INTERPOLATION ALGORITHMS FOR AVERAGE DOWNSAMPLING

Fig. 5. Subjective quality comparison for Airplane. (a) LAZA. (b) NEDI. (c) DFDF. (d) KR. (e) ICBI. (f) INEDI. (g) SAI. (h) RLLR.

methods on the test image Butterfly. Such results clearly demon-
strate the superiority of the proposed RLLR method in recon-
structing the high frequency, such as edges and textures.

B. Noisy Images Interpolation

The experimental results shown above are all based on
noise-free image signals. Since we argue the proposed
method is more robust compared with other AR-based
algorithms, it is interesting to consider noisy image inter-
polation problems [27]. Specially, we consider compressed
image interpolation. That is, the LR images are no longer
noise free but compressed by JPEG. We think this case is
more general in practical applications. We set the quality
factor to 75 and compare the proposed method with the

other AR-based algorithms. The experimental results are de-
picted in Table V. For objective measurements, our method
achieves highest average PSNR and EPSNR values. Note
that the average gains compared with SAI are up to 0.28 and
0.38 dB with respect to PSNR and edge PSNR, respectively.
For subjective measurements, our method achieves highest
average SSIM value and the second highest average FSIM
score among all methods.

C. Running Time Versus Performance Comparison

In Section IV-B, we give a detailed analysis on the
complexity of RLLR. Now let us consider the practical
processing time and performance comparison. Table VI
gives the PSNR versus average processing times results



LIU et al.: IMAGE INTERPOLATION VIA RLLR 3465

Fig. 6. Subjective quality comparison for Butterfly. (a) LAZA. (b) NEDI. (c) DFDF. (d) KR. (e) ICBI. (f) INEDI. (g) SAI. (h) RLLR.

on a typical computer (2.5-GHz Intel Dual Core, 3-GB
Memory) of compared algorithms, and for the proposed
RLLR algorithm, both offline and online scenario are con-
sidered. All methods are run on Matlab. Since there is no
Matlab source code available, for fairness of comparison, we
omitted the result of SAI. As depicted in Table VI, although
the computational complexity is higher, the proposed RLLR
model with offline case, which means almost all pixels are
interpolated by RLLR, achieves much better quality than
other methods. To speed up the proposed algorithm, we can
turn to the online case where we control the number of

RLLR interpolated pixels by setting a larger threshold for
covariance of the four 8-connected samples of the current
pixel. In this way, we can fast our algorithm at the expense
of some performance loss. For offline case, the covariance
threshold is set to 8, and for online case, the threshold is
set to 400. From the results, we can find the online case
achieve 0.34 dB gain compared with the DFDF method
at the expense of about three times running time, and for
INEDI, our method achieves 0.12-dB gain using a little less
running time. Further study on reducing the computational
complexity of the proposed RLLR model is needed.
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Fig. 7. Reconstruction error comparison for Butterfly. (a) LAZA. (b) NEDI. (c) DFDF. (d) KR. (e) ICBI. (f) INEDI. (g) SAI. (h) RLLR.

D. Contribution Analysis

Compared with the NEDI method which is based on OLS,
the proposed RLLR method includes three further improve-
ments: moving least squares, kernel ridge regression and
graph-Laplacian regularization. We analysis the contribution
of each component to the final interpolation performance. As
illustrated in Fig. 8, MLS achieves significant PSNR gain over
OLS, which demonstrates the proposed patch-based bilateral
moving weights design method is efficient. For test images
Flowers, Girl, Door, and Butterfly, kernel ridge regression

further achieves some gains over MLS, while for the test image
Baboon, kernel ridge regression loses to some extent. This is
because in Baboon hairs are sharp and discontinuous, -norm
destroys the non-smooth property. For such case, -norm
may work better. Over kernel ridge regression, graph-Laplacian
regularization further improves the quality of generated images.

VI. CONCLUSION

In this paper, we present a novel image interpolation scheme
based on regularized local linear regression. On one hand, we
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TABLE V
OBJECTIVE AND SUBJECTIVE QUALITY COMPARISON OF AR BASED INTERPOLATION ALGORITHMS FOR COMPRESSED IMAGES

TABLE VI
OBJECTIVE QUALITY VERSUS AVERAGE PROCESSING TIMES (dB/s) RESULTS

Fig. 8. PSNR gain of three components over OLS.

introduce a robust estimator of local image structure based on
moving least squares, which can efficiently handle outliers com-
pared with ordinary least squares-based methods. On the other
hand, motivated by recent progress on graph based manifold
learning, the intrinsic manifold structure is explicitly considered

by making use of both measured and unmeasured data points.
In particular, the geometric structure of the marginal probability
distribution induced by unmeasured samples is incorporated as
an additional local smoothness preserving constraint. The op-
timal transformation functions can be obtained with a closed-
form solution by solving a convex optimization problem, which
are smooth and locally linear, and can keep the local image
structure wonderfully. Experimental results over a wide range
of test images demonstrate that our method achieves very com-
petitive interpolation performance compared the state-of-the-art
methods in both objective and subjective visual quality.
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