
1

Self-Similarity Constrained Sparse Representation
for Hyperspectral Image Super-Resolution

Xian-Hua Han, Member, IEEE, Boxin Shi, Member, IEEE, and Yinqiang Zheng∗, Member, IEEE

Abstract—Fusing a low-resolution hyperspectral image with
the corresponding high-resolution multispectral image to obtain a
high-resolution hyperspectral image is an important technique for
capturing comprehensive scene information in both spatial and
spectral domains. Existing approaches adopt sparsity promoting
strategy, and encode the spectral information of each pixel
independently, which results in noisy sparse representation. We
propose a novel hyperspectral image super-resolution method via
a self-similarity constrained sparse representation. We explore
the similar patch structures across the whole image and the
pixels with close appearance in local regions to create global-
structure groups and local-spectral super-pixels. By forcing the
similarity of the sparse representations for pixels belonging to the
same group and super-pixel, we alleviate the effect of the outliers
in the learned sparse coding. Experiment results on benchmark
datasets validate that the proposed method outperforms the state-
of-the-art methods in both quantitative metrics and visual effect.

Index Terms—Hyper-spectral image super-resolution, global-
structure self-similarity, local-spectral self-similarity, dictionary
learning, non-negative sparse coding.

I. INTRODUCTION

Hyperspectral (HS) imaging is an emerging technique for
simultaneously obtaining a set of images of the same scene at
many number of narrow band wavelengths. The rich spectra
significantly enrich the captured scene information and greatly
enhance performance in many tasks [1], such as object recog-
nition and classification [2]–[7], tracking [8], segmentation [9],
medical image analysis [10], and remote sensing [11]–[15].
HS imaging achieves abundant spectral information by simul-
taneously collecting a large number of spectral bands within
a target wavelength interval. To guarantee sufficiently high
signal-to-noise ratio, photon collection is usually performed
in a much larger spatial region on the sensor thus results in
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Figure 1. An example of HR images recovered from our method. The first
column shows one channel of the ground truth HR image and the input LR
image, respectively. The second and third columns show results from our
method with and without self-similarity. In each column, the upper row shows
the recovered image and the lower row shows the absolute difference map
w.r.t. the ground truth.

a much lower spatial resolution than RGB or Multi-Spectral
(MS) images. Such low resolution limits the applicability of
HS imaging. To enhance the resolution of HS images, high
resolution RGB or MS images of the same scene are usually
captured and then fused into the HS image, a critical task
referred to as HS image super-resolution (HSI SR) on the basis
of hybrid fusion.

Recent HSI SR methods are motivated by the sparse
representation [16]–[22], which transfers the coded sparse
representation of the high-resolution RGB (HR-RGB) images
to guide the recovery of the high-resolution hyperspectral
(HR-HS) image. Most existing methods encode the spectra
of the HR-RGB image pixel-wise, which introduces a noisy
sparse representation and degrades the final reconstruction.
In addition, the sparse representation is usually optimized
via orthogonal pursuit matching [2], [23], which has high
computational cost.

For a natural scene, there mainly exist two types of simi-
larities: One is the patches with close appearance across the
whole image — we call it global-structure similarity, and the
other one is the close color values for neighboring pixels —
we call it local-spectral similarity. We observe that pixels
sharing global and/or local similarities will have similar sparse
representations, and such similarity constraints are investigated
to build the inter-pixel relationship for more robust estimation.



2

We present a novel HSI SR method with self-similarity
constrained sparse representation. The sparse representation
is calculated via coupled minimizing the reconstruction er-
ror of the available low-resolution hyperspectral image (LR-
HS) and HR-RGB image. Furthermore, the self-similarity is
explored by clustering global-structure groups and creating
local-spectral super-pixels in the HR-RGB image, and then
applied to force the similarity of the estimated sparse repre-
sentation within the same group and super-pixel. The self-
similarity constraint significantly suppresses the noise in a
pixel-wise representation, thus achieves more reliable HSI SR
reconstruction, as shown in the example result of Fig. 1.
Our complete pipeline includes a dictionary learning (Step
1) and a global and local self-similarity constrained sparse
representation (Step 2) solved as convex optimization via the
alternating direction multiplier method (ADMM) (Step 3), as
shown in Fig. 2.

The three major advantages of the proposed method are
summarized as:

1) We propose a coupled sparse representation strategy via
simultaneously minimizing the reconstruction error of
the available LR-HS and HR-RGB images;

2) We explore the global-structure and local-spectral self-
similarity in the input HS-RGB image to constrain the
sparse representation to achieve more robust perfor-
mance;

3) We solve the constrained sparse representation prob-
lem with the ADMM optimization, which is much
more efficient than the conventional sparse coding al-
gorithms [23]–[26]. Experiment results on benchmark
datasets validate that the proposed method outperforms
the state-of-the-art methods [16], [17], [22], [27]–[30]
in both quantitative metrics and visual effect.

The rest of the paper is organized as follows. We firstly
review the related literature in Section II. We then formulate
the relationship between the target HR-HS image and the
input LR-HS, and HR-MS image pair, and model the HSI SR
problem with sparse representation in Section III. The details
of the proposed self-similarity constraint and optimization
method are presented in Section IV. Experimental results
compared with existing methods are evaluated in Section V.
Finally, Section VI concludes the paper.

II. RELATED WORK

Though the wide demand of high-resolution HS images in
different application fields ranging from remote sensing to
medical imaging, it is still difficult to simultaneously achieve
high-resolution in both spatial and spectral domains due to
technique and budget constraints [31]. Thus this has inspired
considerable attention in the research literature to generate
high resolution HS images via image processing and machine
learning techniques based on the available LR-HS and HR-
MS/HR-RGB images. In remote sensing, a high resolution
pan-chromatic image is usually available accompanying with
a low resolution MS or HS image, and the fusion of these
two images is generally known as pan-sharpening [32]–[38].
In this scenario, most popular approaches concentrated on the

reliable illumination restoration based on intensity substitution
and projection with the explored hue saturation and principle
component analysis [32], [33], which generally cause spectral
distortion in the resulting image [39]. On the contrary, it is
more common to use HR-RGB images in computer vision
literature, since more spectral information is recorded in a
RGB image than in a pan-chromatic image.

Recently, the HS image super resolution based on ma-
trix factorization and spectral unmixing [40]–[43], which are
mainly motivated by the fact the HS observations can be
represented by the basis of reflectance functions (the spectral
response of the pure material) and their corresponding sparse
coefficients denoting the fractions of each material at each
location, has been actively investigated [16], [17], [27], [28].
Yokoya et al. [28] proposed a coupled non-negative matrix
factorization (CNMF) to estimate the HR-HS image from a
pair of HR-MS and LR-HS images. Although the CNMF
approach achieved impressive spectral recovery performance,
its solution is generally not unique [44], and thus the spectral
recovery results are not always satisfactory. On the other
hand, Lanaras et al. [17] integrated coupled spectral unmixing
strategy into HS super-resolution, and applied the proximal
alternation linearized minimization scheme for optimization,
which requires the initial points of the two decomposed
reflectance functions and the endmember vectors. In addition,
according to the physical meaning of the reflectance functions
and the implementation consideration, the number of the pure
materials in the observed scene is often assumed smaller than
the spectral band number, which does not always meet the real
application.

Motivated by the success of the sparse representation in
natural image analysis [45], the sparsity promoting approaches
without explicit physically meaningful constraints on the basis,
which thus permit over-complete basis, have been applied
for HS super-resolution [18], [19]. Grohnfeldt et al. [18]
proposed a joint sparse representation by firstly learning the
corresponding HS and MS (RGB) patch dictionaries using the
prepared pairs, and estimated the same sparse coefficients of
the combined MS and previously reconstructed HS patches for
each individual band, which mainly focused on the approxima-
tion of the local structure (patch) and completely ignored the
correlation between channels. Then several researches [19],
[22] explored the sparse spectral representation instead of the
local structure. Akhtar et al. [22] proposed a sparse spatio-
spectral representation via assuming the same used atoms
for reconstructing the spectra of the pixels in a local grid
region, and developed generalized simultaneous orthogonal
matching pursuit (G-SOMP) for estimating the sparse coef-
ficients. Further, the same research group explored a Bayesian
dictionary learning and sparse coding algorithm for HS image
super-resolution and manifested improved performance. Most
recently, Dong et al. [30] investigated a non-negative struc-
tured sparse representation (NSSR) approach to recover a HR-
HS image from LR-HS and HR-RGB images and proposed
to use the alternating direction multiplier method (ADMM)
for solving, which gave impressive recovery performance
compared the other existing approaches.

Our proposed HSI SR method is related to the sparsity



3

LR-HS Image: X HS dictionary: B HR-RGB Image: Y 

Affinity Matrix:   ,  

Dict. learning 

HR-HS image: Z 

Input 

Output 

1 

3 

2 

Sparse 

constraint: 

Global structure groups 

  

Reconstruction Error: 

     =||Y-RBA||  + ||X-BAD||  

 

2 

2 
2 

2 

Self-similarity constraint: 

Convex optimization 

Local spectral super-pixels 

Figure 2. Schematics of the proposed approach: (1) Learn the HS dictionary B from the input LR-HS image X; (2) Explore the global-structure and
local-spectral self-similarity; (3) Convex optimization of the objective function with sparse and self-similarity constraints on the sparse matrix A to estimate
the required HR-HS image Z.

promoting strategy and the coupled unmixing strategy [17],
but has major differences with all of the existing approaches.
We optimize the HR-HS output via minimizing the coupled
reconstruction error of the available LR-HR and HR-RGB im-
ages with the following characteristics: 1) the sparse represen-
tation with over-complete spectral dictionary (larger dictionary
numbber than spectral dimension) instead of the sub-complete
dictionary (endmember) in the coupled unmixing strategy [17];
2) the self-similarity of the global structures and the local
spectra present in the available HR-RGB image for sparse
representation, which can achieve more robust performance.

III. PROBLEM FORMULATION

Our goal is to estimate a HR-HS image Z′ ∈ RW×H×L,
where W and H denote the spatial dimensions and L is the
spectral band number, from a LR-HS image X′ ∈ Rw×h×L

(w �W , h� H) and a HR-MS image Y′ ∈ RW×H×l (l�
L). In our experiments, the available HR-MS image is a RGB
image with spectral band number l = 3. The matrix forms of
Z′, X′, and Y′ are denoted as Z ∈ RL×N (N = W × H),
X ∈ RL×M (M = w×h), and Y ∈ R3×N , respectively. Both
X (LR-HS) and Y (HR-RGB) can be expressed as a linear
transformation from Z (the desired HS image ) as

X = ZD and Y = RZ, (1)

where D ∈ RN×M is the decimation matrix blurring and
down-sampling the HR-HS image to form the LR-HS image,
and R ∈ R3×L represents the camera spectral response matrix
that maps the HR-HS image to the HR-RGB image. Given

X and Y, Z can be estimated by minimizing the following
reconstruction error:

Z∗ = argmin
Z
‖X− ZD‖2F + ‖Y −RZ‖2F . (2)

Since the number of the unknowns (NL) is much larger
than the number of available measurements (ML+ 3N ), the
above optimization problem is highly ill-posed, and proper
regularization terms are required to narrow the solution space
and ensure stable estimation. A widely adopted constraint
is that each pixel spectrum zn ∈ RL of Z lies in a low-
dimensional space, and it can be decomposed as [46]

zn =

K∑
k=1

bkak,n = Ban,

s.t., bi,k ≥ 0, ak,n ≥ 0,

K∑
k=1

ak,n = 1,

(3)

where B ∈ RL×K is the stack of the spectral signature
(bk, also called endmember) of K distinct materials, and an
denotes the fractional abundance of the K materials for the
n-th pixel. Considering the physical property of the spectral
reflectance, the elements in the endmember spectra and the
fraction magnitude of the abundance are non-negative as
shown in the first and second constraint terms, and the sum
of abundance vector for each pixel is one, which means the
fractional vector is sparse.

According to Y = RZ, each pixel yn ∈ R3 in the HR-RGB
image can be decomposed as

yn = Rzn = RBan = B̂an, (4)
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where B̂ is the RGB spectral dictionary obtained via trans-
forming the HS dictionary B with camera spectral response
matrix R. With a corresponding set of fixed spectral dictionar-
ies B̂ and B, the sparse fractional vector an can be predicted
from the HR-RGB pixel yn.

The matrix representation of Eqs. 3 and 4 is denoted as

Z = BA and Y = B̂A, (5)

where A = [a1,a2, · · · ,aN ] ∈ RK×N
+ is a non-negative

sparse coefficient matrix. Substituting Eq. 5 into Eq. 2, we
obtain1

{B∗,A∗} = argmin
B,A

‖X−BAD‖2F + ‖Y − B̂A‖2F . (6)

Our goal is to solve both spectral dictionary B and coefficient
matrix A with proper the regularization terms to achieve stable
and accurate solution.

IV. PROPOSED METHOD

The complete pipeline of our approach is illustrated in
Fig. 2. Our main contribution is to propose a non-negative
sparse representation coupled with self-similarity constraint
to regularize the solution of Eq. 6. Denoting Λ(B,A) =
‖X−BAD‖2F + ‖Y − B̂A‖2F , we add two additional terms
to Eq. 6 as

{B∗,A∗} = argmin
B,A

Λ(B,A) + λ‖A‖1 + ηΩ(A), (7)

where ‖A‖1 is the sparse constraint on the coefficient matrix,
Ω(A) is the self-similarity regularization for the coefficient
vector, and λ, η are weighting factors. Equation 7 will be op-
timized in three steps: 1) Online HS dictionary learning from
the input LR-HS image; 2) Extracting the global-structure and
local-spectral self-similarity from the input HR-RGB image;
3) The global convex optimization for estimating the HR-
HS image given the learned HS dictionary and self-similarity
constrained sparse representation. We will introduce the details
of these operations in following three subsections.

A. Online HS dictionary learning

Due to the large variety of the HS reflectance from different
materials, learning a common HS dictionary for various scenes
with different materials tends to give considerable spectral
distortion. We instead learn the HS dictionary directly from
the observed LR-HS image X in an online manner to build
the HS dictionary that better represents the scene spectra as

{B∗, Â∗} = argmin
B,Â

‖X−BÂ‖2F + λ‖Â‖1, (8)

where Â is the sparse matrix for the pixels in the LR-
HS image. Since the non-negative constraints are applied to
both sparse code Â and the dictionary B, existing dictionary
learning method such as K-SVD method cannot be applied
here. We follow the optimization algorithm in [29] and apply

1The non-negative constraints on both B and A are applied in the same
manner as in Eq. 3. Unless otherwise noted, the non-negative constraint are
imposed on both dictionary and sparse matrix in the following deductions.

ADMM technique to convert the constrained dictionary learn-
ing problem into an unconstrained version. The unconstrained
dictionary learning is then solved with alternating optimiza-
tion. After the HS dictionary B∗ is learned from the observed
LR-HS image via Eq. 8, we will fix it and only optimize A
for solving Eq. 7.

B. Self-similarity constraint

We formulate the regularization term Ω(A) in Eq. 7 with
two types of the self-similarities (see Fig. 2 for illustration):
• Global-structure self-similarity: Pixels whose concate-

nated RGB values within a local square windows are
similar share similar hyperspectral information. This ap-
plies to both nearby patches and non-local patches in the
whole image plane.

• Local-spectral self-similarity: The sparse vectors for dif-
ferent HR pixels are similar in a local region (super-
pixel) [47] by assuming that in HR-RGB images, pixels
in a local region have the same material and RGB values.
Note the superpixel is usually not a square region.

The global-structure self-similarity is represented by global-
structure groups G = {g1,g2, · · · ,gP } (in total P groups),
which are formed by clustering all similar patches (both local
and non-local) in the HR-RGB image with K-means [48]; gp

is a vector (each gp may have different length) composed by
the pixel indices of the p-th group. The local-spectral self-
similarity is represented by super-pixels L = {l1, l2, · · · , lQ}
(in total Q super-pixels), which are obtained via SLIC super-
pixel segmentation method [49]; lq is also a vector including
the pixel indices of the q-th superpixel. Since the pixels in the
same global-structure group have similar spectral structure, we
approximate the sparse code of a pixel by a weighted average
of the sparse matrix for all pixels in this group. Similarly,
the sparse vector of a pixel can also be approximated by a
weighted average of the sparse matrix for all pixels in the same
local-spectral superpixel. With both self-similarity constraints,
the sparse vector for the n-th pixel is represented as

an =γ
∑
i∈gp

wGn,iai + (1− γ)
∑
j∈lq

wLn,jaj ,

with n ∈ gp ∧ n ∈ lq.

(9)

Here, wGn,i is the global-structure weight for the n-th sparse
vector an; it adjusts and merges the contribution of the i-th
sparse vector ai belonging to the same global-structure group.
Analoguely, wLj,n weights the j-th sparse vector aj belonging
to the same local-spectral superpixel. And γ is a parameter
for balancing the contribution between the global-structure and
local-spectral self-similarity.

To be more specific, wGn,i (0 < wGn,i < 1 and
∑

i w
G
i,n = 1)

measures the similarity between the RGB intensities of patches
pn and pi centered around the n-th and i-th pixels. Each patch
is a set of pixels in a R × R window, so each p is a 3R2-
dimensional (R×R× RGB) vector. It is a decreasing function
of the Euclidean distance between the spatial RGB values as

wGi,n =
1

zGn
exp−

||pi−pn||2

hG , (10)
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where zGn is a normalization term defined as zGn =∑
i∈gp

exp− ||pi−pn||2
hG

to ensure that
∑

i w
G
i,n = 1 and hG

is a smoothing kernel for 3R2-dimensional vectors. The local-
spectral weight wLn,j is defined in the exactly same format,
but with pn and pi being the RGB values of the n-th and
i-th pixels (so each p is a 3-dimensional vector here) and a
smoothing kernel hL for 3-dimensional vectors.

We then build affinity matrices WG ∈ RN×N and WL ∈
RN×N , whose element encodes the pairwise similarity calcu-
lated using Eq. 10. Finally, the regularization term constrained
by two types of self-similarities is represented as

Ω(A) = ‖A− γWGA− (1− γ)WLA‖2F . (11)

To determine the smoothing kernel width hG and hL, we
firstly calculate the average squared distance of all color
channels (RGB) between the pixel pairs in the same superpixel
of the available HR-RGB image, and then obtain the mean
value on all images of a given dataset.

h =
1

|Img|
∑
Img

1

Q

∑
q

2

|lq| × |lq|
∑

i,n∈lq

||pi − pn||2

3
, (12)

where |lq| and Q denote the pixel number in the q-th superpixel
and the superpixel number in a HR-RGB image, respectively.
|Img| represents the number of images in a given dataset.
Finally, we set hL = 2h×3 (each p is a 3-dimensional vector
here) and hG = 2h×3R2 (each p is a 3R2-dimensional vector
here). For all our experiments in the following section, R is
set to 5 and the calculated h is about 45.

C. Convex optimization

Given the HS dictionary B∗ pre-learned using Eq. 8 and
the regularization term with self-similarity in Eq. 11, Eq. 7
is convex and can be efficiently solved by optimization al-
gorithm. We apply the ADMM technique to solve Eq. 7
via transformation with the following augmented Lagrangian
function

L(A,Z,V,T1,T2) =

‖Y − B̃V‖2F + ‖X− ZD‖2F
+ λ‖A‖1 + η‖A− γWGV − (1− γ)WLV‖2F
+ 〈T1,BV − Z〉+ ρ‖BV − Z‖2F
+ 〈T2,V −A〉+ ρ‖V −A‖2F ,

(13)

where T1 and T2 are the matrices of the Lagrangian multi-
pliers, and 〈·, ·〉 denotes the inner product and ρ > 0 is the
penalty parameter. For convenience, we set E = γWGV −
(1− γ)WLV and iteratively solve Eq. 13 with each variable
initialized to a matrix with all elements as 0.

To solve the optimization subproblem of V, we set the
derivative of Eq. 13 w.r.t. V as 0 while fixing the other
variables, and yield

V =[B̃T B̃ + (η + ρ)BTB + ρI]−1

[B̃TY + ηEρBT (Z(t) +
T1

2ρ
) + ρ(A(t) +

T2

2ρ
)],

(14)

Table I
PARAMETER SETTINGS IN OUR EXPERIMENTS.

Parameters CAVE dataset Harvard dataset
P 4096 8192
Q 4096 16284
R 5
hG 90× 75

hL 90× 3
γ 0.5
η 0.025
λ 0.0001
ρ 0.001

where I is the identity matrix and E can be calculated
according to the previous V, which would be updated at the
end of each iteration. Similarly, by setting the derivative of
Eq. 13 w.r.t. Z as 0, and A as 0, respectively, we obtain

Z = [XDT + ρ(BV(t) + T1)](DDT + ρI)−1 (15)

and

A = max(V(t) +
T2

2ρ
− λ

2ρ
, 0). (16)

Finally, E can be updated as the following

E = γWGV − (1− γ)WLV. (17)

The last step includes the update of the Lagrangian multi-
pliers T1 and T2 using the following two terms

T
(t+1)
1 = T

(t)
1 + ρ(BV(t+1) − Z(t+1)),

T
(t+1)
2 = T

(t)
2 + ρ(V(t+1) −A(t+1)).

(18)

The complete procedure for estimating the HR-HS image is
summarized in Algorithm 1.

Algorithm 1 HR-HS estimation with self similarity.
Input: LR-HS image X, HR-RGB image Y, the camera

spectral response R, and decimation matrix D.
1: Learn the HS dictionary B∗ from X via convex optimizing

Eq. 8 with ADMM method;
2: Build global-structure groups G = {g1,g2, · · · ,gP } and

local-spectral superpixels L = {l1, l2, · · · , lQ} and calcu-
late the affinity matrix WG and WL using Eq. 10;

3: Solving Eq. 7 with the fixed dictionary B∗ and the affinity
matrix WG , WL via ADMM:

Initialization: Set A, Z, V, T1, and T2 to 0;
for t = 0 to max. iter. do

(a) Compute V(t+1) via Eq. 14;
(b) Compute Z(t+1) via Eq. 15;
(c) Compute A(t+1) via Eq. 16;
(d) Update the Lagrangian multiplier

T
(t+1)
1 and T

(t+1)
2 via Eq. 18;

(e) Compute E(t+1) as
γWGV(t+1) − (1− γ)WLV(t+1);

Terminate: Converged or max. iter. reached;
Output: HR-HS image Z.
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Table II
QUANTITATIVE COMPARISON RESULTS USING THE CAVE DATASET. SMALLER RMSE, SAM AND ERGAS MEAN BETTER PERFORMANCE WHILE

LARGER PSNR DENOTES BETTER RESULTS.

RMSE PSNR SAM ERGAS
Matrix Factorization [27] 3.03±1.44 39.37±3.76 6.12±2.17 0.40±0.22
Coupled Non-negative Matrix Factorization [28] 2.93±1.30 39.53±3.55 5.48±1.62 0.39±0.21
Sparse Non-negative Matrix Factorization [29] 3.26±1.57 38.73±3.79 6.50±2.32 0.44±0.23
Generalization of Simultaneous Orthogonal Matching Pursuit [22] 6.47±2.53 32.48±3.08 14.19±5.42 0.77±0.32
Bayesian Sparse Representation [16] 3.13±1.57 39.16±3.91 6.75±2.37 0.37±0.22
Couple Spectral Unmixing [17] 3.0±1.40 39.50±3.63 5.8±2.21 0.41±0.27
Non-Negative Structured Sparse Representation [30] 2.21±1.19 42.26±4.11 4.33±1.37 0.30±0.18
Proposed 2.17±1.08 42.28±3.86 3.98±1.27 0.28±0.18

Table III
QUANTITATIVE COMPARISON RESULTS USING THE HARVARD DATASET. SMALLER RMSE, SAM AND ERGAS MEAN BETTER PERFORMANCE WHILE

LARGER PSNR DENOTES BETTER RESULTS.

RMSE PSNR SAM ERGAS
Matrix Factorization [27] 1.96±0.97 43.19±3.87 2.93±1.06 0.23±0.14
Coupled Non-negative Matrix Factorization [28] 2.08±1.34 43.00±4.44 2.91±1.18 0.23±0.11
Sparse Non-negative Matrix Factorization [29] 2.20±0.94 42.03±3.61 3.17±1.07 0.26±0.27
Generalization of Simultaneous Orthogonal Matching Pursuit [22] 4.08±3.55 38.02±5.71 4.79±2.99 0.41±0.24
Bayesian Sparse Representation [16] 2.10±1.60 43.11±4.59 2.93±1.33 0.24±0.15
Couple Spectral Unmixing [17] 1.7±1.24 43.40±4.10 2.9±1.05 0.24±0.20
Non-Negative Structured Sparse Representation [30] 1.76±0.79 44.00±3.63 2.64±0.86 0.21±0.12
Proposed 1.64±1.20 45.20±4.56 2.63±0.97 0.16±0.15

V. EXPERIMENT RESULTS

A. Experiment setup

We evaluate the proposed approach using two publicly avail-
able hyperspectral imaging database: the CAVE dataset [50]
with 32 indoor images including paintings, toys, food, and so
on, captured under controlled illumination, and the Harvard
dataset [51] with 50 indoor and outdoor images recorded under
daylight illumination. The dimensions of the images from the
CAVE dataset are 512× 512 pixels, with 31 spectral bands of
10 nm width, covering the visible spectrum from 400 to 700
nm; the images from the Harvard dataset have the dimensions
of 1392×1040 pixels with 31 spectral bands of width 10 nm,
ranging from 420 to 720 nm, from which we extract the top
left 1024× 1024 pixels in our experiments.

We treat the original images in the databases as ground truth
Z, and down-sample them by a factor of 32 to create 16× 16
images for CAVE dataset and 32 × 32 images for Harvard
dataset, which is implemented by averaging over 32×32 pixel
blocks as done in [22], [27]. The observed HR-RGB images Y
are simulated by integrating the ground truth over the spectral
channels using the spectral response R of a Nikon D700
camera. To evaluate the quantitative accuracy of the estimated
HS images, four objective error metrics including root-mean-
square error (RMSE), peak-signal-to-noise ratio (PSNR), rela-
tive dimensionless global error in synthesis (ERGAS) [52],
and spectral angle mapper (SAM) [16] are evaluated. The
ERGAS metric [52] calculates the average amount of specific
spectral distortion normalized by intensity mean in each band

as defined below

ERGAS = 100× N

M

√√√√ 1

L

L∑
l=1

(
RMSE(i)

µi
), (19)

where N
M is the ratio between the pixel size of the available

HR-RGB and LR-HS images, µi is the intensity mean of the
i-th band of the LR-HS image, and L is the number of LR-HS
bands. A smaller ERGAS denotes smaller spectral distortion.
The SAM [16] measures the spectral distortion between the
ground-truth and estimated HR-HS images, and the distortion
of two spectral vectors zn and ẑn is defined as follows

SAM(zn, ẑn) = arccos(
< zn, ẑn >

‖ zn ‖2‖ ẑn ‖2
), (20)

where zn denotes the 31-band spectral vector of the n-th pixel
in a ground-truth HR-HS image, and ẑn is the corresponding
spectral vector in the estimated HR-HS image. The overall
SAM is finally obtained by averaging the SAMs computed
from all image pixels. Note that the value of SAM is ex-
pressed in degrees and thus belongs to (-90, 90]. The smaller
the absolute value of SAM, the less significant the spectral
distortion.

In Table I, we list the values of all adjustable parameters
used in our experiments, including the global-structure and
local-spectral group numbers P and Q, patch size R for
representing spatio-RGB structure, the smoothing kernel width
hG and hG for the self-similarity constraints as explained in
Section V: B, constraint balance ratio γ, the weighting factors
λ and η for sparse and self-similarity constraints, and the
penalty parameter ρ for convex optimization.
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Table IV
RESULTS WITHOUT LOCAL, GLOBAL, AND BOTH SIMILARITIES ON THE CAVE AND HARVARD DATASETS.

CAVE dataset Harvard dataset
Without both Local simil. only Global simil. only Without both Local simil. only Global simil. only

RMSE 2.81±1.42 2.25±1.15 2.32±1.20 1.83±1.30 1.66±1.20 1.78±1.32
PSNR 40.05±3.87 42.00±3.91 41.78±4.05 44.16±4.39 45.01±4.51 44.60±4.56
SAM 5.46± 1.89 4.24±1.36 4.59±1.46 2.86±1.06 2.69±1.00 2.79±1.09
ERGAS 0.37±0.20 0.30±0.18 0.31±0.19 0.23±0.16 0.19±0.15 0.18±0.16

B. Comparison with state-of-the-art methods

Firstly, we show the performance of our complete method
(including the on-line dictionary learning procedure and self-
similarity constraints), compared with state-of-the-art HSI
SR methods including: Matrix Factorization method (MF)
method [27], Coupled Non-negative Matrix Factorization
(CNMF) method [28], Sparse Non-negative Matrix Factor-
ization (SNNMF) method [29], Generalization of Simulta-
neous Orthogonal Matching Pursuit (GSOMP) method [22],
Bayesian Sparse Representation (BSR) method [16], Couple
Spectral Unmixing (CSU) method [17], and Non-Negative
Structured Sparse Representation (NSSR) method [30]. The
average RMSE, PSNR, SAM and ERGAS results of the 32
recovered HR-HS images from the CAVE dataset [50] are
shown in Table II, while the average results of the 50 images
from the Harvard dataset [51] are given in Table III.

From Tables II and III, we observe that for all error metrics
our approach achieves the best performance, and the improve-
ment on the CAVE dataset is in general more significant than
on the Harvard dataset. The NSSR method [30] has the closest
performance to ours, and both methods show relatively larger
advantage over the other methods. Our method shows the
most noticeable improvement on SAM values over NSSR [30].
This is because of the facts that, for SAM, a slight spectral
distortion of the pixels with small magnitudes affect its value
greatly, and that our proposed approach not only robustly
recovers the HS image, but also suppresses the artifacts and
noise in the original HS image, especially for those pixels with
small spectral magnitudes, due to the imposed constraints of
the global-structure and local-spectral self-similarities.

C. Results without self-similarity constraints

One of the key difference of our method from existing
ones (such as MF [27]) is the two types of self-similarities
encoded by Ω(A) in Eq. 7. We can still recover the HR-HS
image Z by optimizing Eq. 7 without the Ω(A) term with the
ADMM method. Furthermore, we can also apply either global
or local self-similarity separately, i.e., by considering only the
WG or WL terms in Eq. 11. We perform such experiments
using the same error metrics as in Tables II and III for both
datasets, and show the results in Table IV. Considering local
self-similarity only significantly improves the results on both
datasets for all error metrics, which verifies the effectiveness
of this self-similarity. However, to further integrate the global
self-similarity as in our complete approach could consistently
improve the results.

D. Evaluation on Hyperparameters
In addition, we evaluate the HR-HS image recovery perfor-

mance by changing the parameter γ, which actually adjusts
the contribution of global-structure and local-spectral self-
similarity while fixing the other parameters as in I. The param-
eter γ is changed from 0 (local-spectral self-similarity only)
to 1 (global-structure self-similarity only) with an interval of
0.1, and apply the same measure metrics for manifesting the
contribution of the global and local self-similarity. Figures 3
(a)-(d) give the curves of the quantitative measures: RMSE,
PSNR, SAM and ERGAS, respectively, on both CAVE and
Harvard datasets, which manifests that γ = 0.3 gives the best
performance and our parameter setting γ = 0.5 in Table I is
very close to the optimal setting.

Furthermore, we also evaluate the reconstruction per-
formance of the HR-HS images by changing one pa-
rameter but fixing the contribution balance ratio γ =
0.3 (the best performance according to Figure 3). All
the other parameters are the same as in Table I.
We set λ = [0.00001, 0.00005, 0.0001, 0.0005, 0.001],
ρ = [0.00001, 0.00005, 0.0001, 0.0005, 0.001] and η =
[0.015, 0.02, 0.025, 0.03, 0.035], respectively, and the average
quantitative measures RMSE and ERGAS are shown in Fig-
ure 4 for both CAVE and Harvard datasets, which manifests
the performance of our algorithm is insensitive to the param-
eter setting of λ, ρ and η in a wide range.

E. Visual quality comparison
Figures 5, 6, 7 and 8 show the examples of the recovered HS

images and the difference images with respect to the ground
truth, with two examples from the CAVE and Harvard dataset,
respectively. Since in addition to our method, the CSU [17]
and NSSR [30] methods show the promising performance
compared with all evaluated methods as shown in Tables II
and III, we only compare our method with the CSU [17]
and NSSR [30] methods for checking the differences in visual
quality. It can be seen that the recovered HS images by our
approach have smaller absolute difference magnitude for most
pixels than the result by the NSSR method. It is also worth
noting when self-similarity is not applied, our results show
quite similar appearance to those from the NSSR method [30],
which in turn reflects the effectiveness of the self-similarity
constraint.

VI. CONCLUSIONS

We proposed a global-structure and local-spectral con-
strained sparse representation for hybrid fusion based HS
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Figure 3. The evaluated performances with different values of the parameter γ on both CAVE and Harvard datasets. (a) RMSE, (b) PNSR, (c) SAM, and (d)
ERGAS.

image super-resolution. The proposed approach first learned
the HS dictionary online from the input LR-HS image, and
then transformed it into RGB dictionary for calculating the
sparse representation of all HR pixels in the input HR-RGB
image. In order to obtain robust sparse vectors for the HR
pixels, we explored the global-structure and local-spectral
self-similarity in the HR-RGB image and then constrained
similarity of the sparse representation, which is solved by the
ADMM method. Experiments on two public HS datasets com-
pared with state-of-the-art methods showed that our proposed
approach achieved best performances, and validated that our
self-similarity constrained sparse representation can alleviate
the effect of outliers in the learned sparse coding.

Although the proposed self-similarity constrained sparse
representation outperforms state-of-the-art methods for HSI
SR, there are still several prospective research lines for further
improvement. The HS dictionary was learned online from the
available LR-HS image and fixed in the following convex
optimization, so it is guaranteed to be consistent with the
representation for the HR-HS image. As future work, we are
planning to optimize sparse representation and HS dictionary
in an integrated procedure. Currently, we explored the self-
similarity without considering spectral constraint, and it is
promising to explore the relationship among spectral bands
for more robust estimation.
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Figure 7. The recovered HR image of ’imgf1’ image in the Harvard dataset. The first column shows the ground truth HR image and the input LR image,
respectively. The second to fifth columns show results from CSU [17], NSSR [30], our method with and without self-similarity, with the upper part showing
the recovered images and the lower part showing the absolute difference maps w.r.t. the ground truth. Close-up views are provided below each full resolution
image.
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Figure 8. The recovered HR image of ’imgb3’ image in the Harvard dataset. The first column shows the ground truth HR image and the input LR image,
respectively. The second to fifth columns show results from CSU [17], NSSR [30], our method with and without self-similarity, with the upper part showing
the recovered images and the lower part showing the absolute difference maps w.r.t. the ground truth. Close-up views are provided below each full resolution
image.
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