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Abstract: In this paper, we propose an efficient image super-resolution algorithm
based on hierarchical and collaborative sparse representation (HCSR). Motivated by
the observation that natural images typically exhibit multi-modal statistics, we propose
a hierarchical sparse coding model which includes two layers: the first layer encodes
individual patches, and the second layer jointly encodes the set of patches that belong to
the same homogeneous subset of image space. We further present a simple alternative to
achieve such target by identifying optimal sparse representation that is adaptive to specific
statistics of images. Specially, we cluster images from the offline training set into regions
of similar geometric structure, and model each region (cluster) by learning adaptive bases
describing the patches within that cluster using principal component analysis (PCA). This
cluster-specific dictionary is then exploited to optimally estimate the underlying HR pixel
values using the idea of collaborative sparse coding, in which the similarity between
patches in the same cluster is further considered. It conceptually and computationally
remedies the limitation of many existing algorithms based on standard sparse coding, in
which patches are independently encoded. Experimental results demonstrate the proposed
method appears to be competitive with state-of-the-art algorithms.

I. INTRODUCTION

Image super-resolution, which is the art of rescaling a low-resolution (LR) image to
a high-resolution (HR) version, has become a very active area of research in image
processing. The interest in image super-resolution is born not only in the great practical
importance of enhancing resolution of images, such as in the fields of digital photography,
computer vision, computer graphics, medical imaging, satellite remote sensing and con-
sumer electronics, but also the important theoretical value of using image super-resolution
to understand the validity of different image models in inverse problems. In the last several
years, there has been a great deal of work on image super-resolution. In general, image
super-resolution techniques can be categorized into three families: interpolation-based
methods [1-5], reconstruction-based methods [6][7], and learning-based methods [8][9].

In recent years, the sparse coding based modeling has been proven to be a promising
tool for signal representation. It assumes that a signal can be efficiently represented by
a sparse linear combination of atoms from a given or learned dictionary. Many sparse
based image super-resolution algorithms have been proposed in the literature. Yang et al.
[10] proposed a joint dictionary training method to learn the dictionaries for high- and
low-resolution image patch spaces, and enforce that sparse representations between the
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low resolution and high resolution image patch pair with respect to their own dictionaries
should be the same. Wang et al. [11] proposed to relax this strong regularization of “same
sparse representation” by using a mapping function for cross-style image synthesis, and
achieved better results than Yang’s work. These methods essentially concatenate the two
feature spaces and convert the problem to the standard sparse coding in a single feature
space.

One major problem of standard sparse coding is that patches are encoded independently.
Therefore, similar patches sometimes admit very different estimates due to the potential
instability of sparse decompositions, which can result in practice in noticeable reconstruc-
tion artifacts. Some researchers in image super-resolution and other image processing field
have found this problem, and proposed some solutions. Mairal et al. [12] proposed to
combine the non-local means and sparse coding approaches to image restoration into a
unified framework where similar patches are decomposed using similar sparsity patterns.
Dong et al. [13] proposed a centralized sparse representation framework, in which the
sparse coding coefficients are forced to be close to their mean values. These methods
achieve promising performance for their respective image processing tasks.

In this paper, we propose an alternative solution for addressing the limitation of
standard sparse coding in image super-resolution, and present an efficient framework
based on hierarchical and collaborative sparse representation (HCSR). Motivated by the
observation that natural images typically exhibit multi-modal statistics, we propose a
hierarchical sparse coding framework which includes two layers: the first layer encodes
individual patches, and the second layer then jointly encodes the set of patches that belong
to the same homogeneous subset of image space. We further present a simple solution
to achieve such target by identifying optimal sparse representation that is adaptive to the
specific statistics of images. Specially, we cluster images from the offline training set into
regions of similar geometric structure, and model each region (cluster) by learning an
adaptive dictionary describing the patches within that cluster using principal component
analysis (PCA). This cluster-specific dictionary is then exploited to optimally estimate the
underlying HR pixel values using the framework of collaborative sparse coding, in which
the similarity between patches in the same cluster is further considered. Experimental
results demonstrate the proposed method appears to be competitive with state-of-the-art
algorithms.

The rest of the paper is organized as follows: Section II gives some prior knowl-
edge and introduces the proposed framework. Section III details dictionary learning and
optimization for learning sparse representation coefficients. Section IV presents some
experimental results and comparative studies. Section V concludes the paper.

II. HIERARCHICAL AND COLLABORATIVE SPARSE CODING

In this section, we will first review the standard sparse coding, which is used for most
of existing sparse representation based image super-resolution algorithms. Then, we will
introduce the proposed hierarchical and collaborative sparse coding framework.

A. Standard Sparse Coding

Denote x ∈ �
√
N×√N as the image at hand. We divide the image into a set of

overlapping blocks with size
√
d×√d. Such a procedure can be represented as xi = Rix,

where Ri is the matrix extracting patch xi from x at location i. Each block is then
stacked into a vector. In this way, the image x can be viewed as a collection of vectors

94



{xi ∈ �d}ni=1 in a high-dimensional space. Let X = [x1,x2, · · · ,xn] ∈ �d×n be the
matrix form of the patches set. Let D = [d1,d2, · · · ,dp] ∈ �d×p be the dictionary
matrix, where each di represents a basis vector in the dictionary. Each sample in X
can be represented as a linear combination of atoms in the dictionary D plus some
perturbation ε, that is, xi = Dai + εi, ai ∈ �p×1. We say that the model is sparse if we
can achieve ‖εi‖2 � ‖xi‖2 and ‖ai‖0 � d simultaneously for all or most i = 1, · · · , n.

Seeking the sparsest representation is known to be a NP-hard problem. In order to
obtain efficient algorithms, people usually relax the nonconvex �0 norm to the convex �1
norm, leading to the following form:

min
D,{a1,··· ,an}

n∑
i=1

‖xi −Dai‖2 + λ
n∑

i=1

‖ai‖1 (1)

where λ is a regularization parameter that controls the tradeoff between the quality of
the reconstruction and the sparsity. The above approximation is known as the Lasso [20].

The entire image x can be sparsely represented by the concatenation of all of sparse
codes {ai}ni=1. We can obtain a very redundant patch-based image representation. Recon-
structing the original image from the sparse codes becomes an over-determined system,
and a straightforward least-square solution is shown as follows [13][19]:

x ≈ D ◦ a Δ
=

(
n∑

i=1

RT
i Ri

)−1 ( n∑
i=1

RT
i Dai

)
. (2)

where a is the concatenation of all of sparse codes.

B. Hierarchical Sparse Coding
The basic model of standard sparse coding described above has two major limitations.

First, the model can only capture statistical relationships among pixels in each patch,
but does not provide any way to capture higher-order relationship that cannot be simply
described at the pixel level. Second, the model encodes local patches independently and
fails to consider the geometrical structure of the image data space. In this paper, we extend
the basic model to a two-layer scheme to model higher-order statistical relationship among
patches. The first layer called the patch level encodes individual patches, which is carried
out in the same way as standard sparse coding; the second layer called the cluster level
encodes jointly the set of patches that belong to the same cluster. For the second layer,
we introduce another non-negative dictionary U = [u1,u2, · · · ,uq] ∈ �p×q to model the
statistical correlation among the sparse representation coefficients of local patches in the
first layer, that is, ai = Ubi + ςi,bi ∈ �q×1.

The first layer represents the local correlation among pixels within each patch. The
second layer packs together similar patches, which may disjoint with each other, to en-
courage that similar patches share similar sparse decompositions. Therefore, the proposed
hierarchical sparse coding framework can be viewed as pooling both local and nonlocal
information for robust and accurate signal reconstruction.

We can obtain sparse representations at patch-level and cluster-level simultaneously by
using the following unified optimization framework:

{a∗,b∗} = argmin
a,b

n∑
i=1

{
‖xi −Dai‖2 + λ1‖ai‖1 + λ2ai

Tf(b)ai

}
+ γ‖b‖1,

s.t. b ≥ 0,
(3)
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where a and b are the sparse representation coefficient matrixes for patch-level and
cluster-level, respectively. The �1 norm on each ai and on b encourages sparsity on
the representation at both levels. And f(b) is defined as the following inverse diagonal
covariance:

f(b) =

⎛⎝ q∑
j=1

bjdiag(aj)

⎞⎠−1, (4)

which is affine in a.
The above minimization problem can be solved by iteratively alternating optimization:

1) When two dictionaries D and U are given, we compute the optimal sparse represen-
tation coefficients a and b for two levels. This optimization problem is jointly convex
in both a and b. Therefore, it is convenient to use an alternating optimization procedure
to accurately compute the solution by iteratively optimizing a when b is fixed, and then
optimizing b when a is fixed. 2) When a and b are derived, we compute the optimal
dictionaries D and U. In this procedure, D and U can be optimized independently.

The hierarchical sparse coding scheme presented above is conceptually appealing.
However, its optimization is too complex. Naturally, we have a question: can we find an
alternative to achieve the same target but in a simple manner? Let us concatenate the
sparse models of patch-level and cluster-level, and we can get the following result:⎧⎨⎩ xi = Dai + εi

ai = Ubi + ςi
⇒ xi = DUbi + ηi ⇒ xi = Φbi + ηi (5)

where Φ = DU ∈ �d×q and ηi = Dςi + εi. The above result is interesting. It tells
us in fact two layer sparse coding scheme can be implemented by defining only one
dictionary that reflects the geometrical structure of natural images. In this way, we can
greatly reduce the complexity of optimization. In the following, we will show how to
achieve the target of hierarchical sparse coding by combining the idea of clustering and
collaborative sparse coding.

C. Collaborative Sparse Coding
A common observation is that natural images typically exhibit multi-modal statistics as

they usually contain many heterogeneous regions with significantly different geometric
structures or statistical characteristics [14]. Heterogeneous data can be better represented
using a mixture of sparse models, one for each homogeneous subset. Bases for each model
are adaptive to the particular homogeneous subset. In this paper, we propose to represent
an image by a collection of subspaces, one subspace for each different segment (cluster) of
the image. The dimension and basis of each subspace will be chosen adaptively according
to the variability and correlation of the data in the corresponding image segment.

In practical design, we borrow the idea of clustering to segment the image into
different subspace. Specially, we cluster patches collected from the offline training set into
regions with similar geometric structure, and model each region (cluster) by learning a
compact sub-dictionary describing the patches within that cluster. These sub-dictionaries
are combined together to form an over-complete dictionary. In the test procedure, for
each patch to be coded, we adaptively select one sub-dictionary from the trained sub-
dictionaries to code it. In practical implementation, we use high-pass results of each patch
as features and exploit the simple K-means for clustering.
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Formally, for the dictionary Φ which has q atoms, we define groups of atoms through
their indices, G ⊆ {1, · · · , q}. Denote G = {G1, · · · , Gm} as a partition of {1, · · · , q},
where m is the number of clusters. For a certain cluster c which includes nc image patches
to be coded, the best sub-dictionary ΦGc that is most relevant to the given patches is
selected. The optimal sparse representation for the cluster c can be obtained through
addressing the following optimization problem:

min
{s1,··· ,sk}

k∑
i=1

‖xi −ΦGcsi‖2 + λ
k∑

i=1

‖si‖1. (6)

where k is the sample number in the current cluster c.
Although the procedure of clustering collects patches with similar structure, it cannot

ensure patches in the same cluster are with the same geometrical structure. Therefore,
the difference of within-class still exists. Moreover, in standard sparse coding, we found
similar patches can be encoded as totally different sparse codes, which may bring about
the loss of the locality information of the patches to be encoded. To address these problem,
we explicitly introduce a regularization term into the optimization problem to preserve
the consistency of sparse codes for the similar local patches:

min
S

k∑
i=1

‖xi −ΦGcsi‖2 + λ
k∑

i=1

‖si‖1 + γ
k∑

i=1

k∑
j=1

‖si − sj‖2Wij, (7)

where S = {s1, · · · , sk}, Wij measures the similarity between a patches pair (xi,xj),
which is defined as:

Wij = exp

{
−||xi − xj||2

σ2
s

}
, σs > 0. (8)

We further define the degree of xi as vi =
∑k

j=1 Wij , and define the degree matrix
V = diag(v1, · · · , vl). Define L = V −W as the Laplacian matrix. The regularization
term can be written as:

k∑
i=1

k∑
j=1

‖si − sj‖2Wij = Tr(SLST ) (9)

which can be further written as:

Tr(SLST ) = Tr

⎛⎝ k∑
i=1

k∑
j=1

Lijsis
T
j

⎞⎠ =
k∑

i=1

k∑
j=1

Lijs
T
i sj (10)

where S is the matrix using {si}ki=1 as columns.
With all above definition, the optimization problem can be reformulated as follows:

min
S={s1,··· ,sk}

k∑
i=1

‖xi −ΦGcsi‖2 + λ
k∑

i=1

‖si‖1 + γ
k∑

i=1

k∑
j=1

Lijs
T
i sj. (11)

By incorporating the Laplacian regularizer into the standard sparse coding, the sparse
codes for local patches are no longer independent. After obtaining the sparse codes, we
can use Eq.(2) to reconstruct the original image patches. In the next section, we will show
how to obtain an adaptive sub-dictionary and optimal sparse representation coefficients.
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III. DICTIONARY LEARNING AND OPTIMIZATION SOLUTION

A. Adaptive Dictionary Learning
Dictionary learning is one of the most important issues in sparsity-based image super-

resolution. In the proposed method, we cluster patches collected from the offline training
set into regions with similar geometric structure, and model each region (cluster) by
learning a compact sub-dictionary. Since the patches in a cluster are similar to each
other, the sub-dictionary is no need to be over-complete, but all sub-dictionaries are
combined to construct a large over-complete dictionary to characterize all the possible
local structures of natural images.

More specially, for a certain cluster c which includes nc image patches to be coded,
we stack the vectors of patches into a matrix denoted by Xc. Then, we learn a adaptive
sub-dictionary ΦGc that is most relevant to Xc ∈ Rd×k by applying principal component
analysis (PCA) on Xc. This is in the same way as [13].

B. Optimization for Sparse Representation Coefficients
In the subsection, we will introduce an optimization method based upon coordinate de-

scent to solve the above optimization problem formulated in Eq.(11). Several approaches
have been proposed to solve the problem of this form [16-18].

Since the dictionary ΦGc is determined previously, it is easy to see the objective
function is convex, therefore, we can achieve a global minimum. Instead of optimizing
the whole sparse codes matrix S, we optimize each code si individually while holding
all the remaining sparse representation codes sj(j = i) fixed. When optimizing si, we
can get the following optimization problem [16]:

min
si

f(si) = min
si

J(si) + λ‖si‖1
= min

si
‖xi −ΦGcsi‖2 + γLijs

T
i sj + sTi hi + λ

q∑
j=1

∣∣∣s(j)i

∣∣∣ (12)

where hi = 2γ(
∑

j �=i Lijsj), s
(j)
i is the j-th coefficients of si.

In the practical implementation, we use the feature-sign search algorithm to solve si.
And we initialize the sparse codes with the results of standard sparse coding in order
to speed up the convergence of sparse codes. The detailed algorithm flow for learning
optimal sparse codes are shown in Algorithm 1.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, experimental results are presented to demonstrate the performance
of the proposed algorithm. For thoroughness and fairness of our comparison study, we
exploit some widely used images as test ones. Fig. 1 lists the used six sample images
in our experiments. Our algorithm is compared with some representative work in the
literature. More specifically, five methods are included in our comparative study: (1)
Bicubic interpolation [1]; (2) the sparse representation based method of [10], denoted as
CDL; (3) the semi-coupled dictionary learning based method of [11], denoted as SCDL;
(4) the centralized sparse representation based method of [13], denoted as CSR; (5) the
proposed HCSR method.

In our experiments, the observed low-resolution (LR) image is obtained by first blurring
with a blur kernel and then downsampling by a scaling factor, from which the original
HR images are reconstructed by the proposed and competing methods. A 6×6 Gaussian
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Algorithm 1 Feature-sign Search Algorithm for Learning Sparse coefficients

Input:
A cluster with nc image patches {x1, · · · ,xk};
The subdictionary ΦGc , the Laplacian matrix L;
The parameters λ and γ;

Output:
The optimal sparse code matrix S∗.

Procedure:
For all i do

Initialize Step:

1: si =
−→
0 , active set A = ∅, θ =

−→
0 , where θj ∈ {−1, 0, 1} denotes sign(s

(j)
i );

Activate Step:

2: From zero coefficient of si, select j = argmax
j

∣∣∣∇(j)
i J(si)

∣∣∣. Activate s
(j)
i only if it

locally improve the objective function Eq.(13), namely:

• If
∣∣∣∇(j)

i J(si)
∣∣∣ > λ, then set θj = −1, A = {j} ∪ A

• If
∣∣∣∇(j)

i J(si)
∣∣∣ < −λ, then set θj = 1, A = {j} ∪ A.

Feature-sign Step:
3: Let Φ̂Gc be a submatrix of ΦGc that only contains columns corresponding to the

active set. Let ŝi and ĥi be subvectors of si and hi. Let θ̂ be θ corresponding to the
active set

4: Compute the optimal si under the current active set:

ŝnewi =
(
Φ̂T

GC
Φ̂GC

+ γLiiI
)−1 (

Φ̂T
GC

xi −
(
λθ̂ + ĥi

)
/2
)

(13)

where I is the identity matrix.
5: Perform a discrete line search on the closed line segment from ŝi to ŝnewi : Check the

objective value at ŝnewi and all points where any coefficient changes sign, and update
ŝi to the point with lowest objective value.
Check the Optimality Conditions Step:

6: Condition (a): Check optimality condition for nonzero coefficients:
∣∣∣∇(j)

i J(si)
∣∣∣ +

λsign(s
(j)
i ) = 0, ∀s(j)i = 0. If condition (a) is satisfied, go to feature-sign step; else

check condition (b).

7: Condition (b): Check optimality condition for zero coefficients:
∣∣∣∇(j)

i J(si)
∣∣∣ ≤

λ, ∀s(j)i = 0. If condition (b) is satisfied, go to activate step; else return si as the
solution denoted as s∗i .

End for

filter with standard deviation of 1.5 is used for blurring, and then downsampling the
blurred image by a scaling factor of 3 in both horizontal and vertical directions. Since
the original HR images are known in the simulation, we can compare the interpolated
results with the true images, and measure the objective and subjective quality of those
interpolated images. In the practical experiments, we initialize the HR image x using the
result of Bicubic interpolation.

In our experiments, five training images are selected from the Kodak PhotoCD dataset,
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Figure 1. Six sample images in the test set

which are different from the testing images illustrated in Fig.1. All compared methods
share the same offline training set. We collect patches from the five training images. The
patch size in our implementation is set to 6 × 6. Pre-clustering is conducted and the
cluster number is set to be 64. The regularization parameters λ and γ are determined by
cross-validity. σs is set to be 0.5 for computing similarity between patches.

Table I tabulates the quantitative quality comparison with respect to PSNR and SSIM
of the five compared methods when applied to the six test images of Fig. 1. It can
be observed that for all instances the proposed algorithm consistently works better on
PSNR and SSIM than other methods. Compared with interpolation based methods, such as
Bicubic, the proposed method can significantly improve the objective quality of generated
HR images. The average PSNR gain is 2.66dB. Through the proposed hierarchical sparse
coding scheme, our method can efficiently explore the local and nonlocal correlation
among patches in images. By further combining the idea of collaborative sparse coding,
our method can efficiently reduce the potential instability of sparse decompositions,
which often happens in standard sparse coding based methods since patches are encoded
individually. Therefore, our method also outperforms the standard sparse coding based
methods, such as CDL and SCDL. Compared with these two methods, the average PSNR
gains are 2.85dB and 2.1dB, respectively. Compared with the CSR method, which is
another solution to address the problem of instability in standard sparse coding, the
proposed method works better and the average PSNR gain can be improved 0.19dB.

With respect to SSIM, it can be seen the proposed HCSR method achieves the highest
SSIM scores among all of the competing methods for all test images. This demonstrates
our method can reconstruct the structures of images better. Given the fact that human
visual system (HVS) is the ultimate receiver of the restored images, we also show
the subjective comparison results. The generated HR images of compared methods for
Butterfly are illustrated in Fig. 2. Due to the space limitation, we omit the result of
Bicubic method here. It can be clearly observed that the image reconstructed by the
CDL method suffers from annoying ringing artifacts. The SCDL method produces clearer
edges, however, which suffers from irregular outliers along edges and textures. Our
method achieves competitive subjective quality with the CSR method, the produced
edges in our method are clean, sharp and consistent. Both the superior subjective and
objective qualities on test images convincingly demonstrate the potential of the proposed
hierarchical and collaborative sparse coding scheme on image super-resolution.

V. CONCLUSION

In this paper, we presented an efficient image super-resolution algorithm based on
hierarchical and collaborative sparse representation (HCSR). Through the proposed hier-
archical sparse coding scheme, our method can efficiently explore the local and nonlocal
correlation among patches in images. By further combining the idea of collaborative
sparse coding, our method can efficiently reduce the potential instability of sparse decom-
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Table I
QUANTITATIVE COMPARISON OF FIVE IMAGE SUPER-RESOLUTION ALGORITHMS ON PSNR (DB) AND SSIM

Method
Bicubic CDL SCDL CSR HCSR

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Butterfly 22.77 0.8241 23.08 0.8003 23.34 0.8628 26.87 0.9222 27.37 0.9286

Bike 21.58 0.6853 21.26 0.6998 22.25 0.7279 23.38 0.7868 23.55 0.7949

Flowers 26.18 0.7746 25.81 0.7859 26.69 0.7915 28.31 0.8494 28.42 0.8531

Hat 27.61 0.8061 27.50 0.8201 28.33 0.8168 29.77 0.8576 29.91 0.8596

Plants 27.36 0.8372 27.39 0.8447 28.04 0.8518 30.73 0.9057 30.92 0.9072

Parthenon 24.64 0.6945 23.92 0.6671 24.85 0.7083 25.87 0.7487 25.91 0.7502

Average 25.02 0.7703 24.83 0.7697 25.58 0.7932 27.49 0.8451 27.68 0.8489

Figure 2. Subjective quality comparison on Butterfly: (a) CDL, PSNR: 23.08dB, SSIM: 0.8018; (b) SCDL, PSNR:
23.49dB, SSIM: 0.8628, (c) CSR, PSNR: 26.92dB SSIM: 0.9219, (d) HCSR, PSNR: 27.42dB SSIM: 0.9283.

positions, which often happens in standard sparse coding based methods since patches are
encoded independently. Experimental results demonstrate the proposed method appears
to be competitive with state-of-the-art algorithms.

VI. ACKNOWLEDGEMENT

This work was supported in part by the Major State Basic Research Development
Program of China (973 Program) under Grant 2009CB320905 and by the National

101



Science Foundations of China under Grant 61272386.

REFERENCES

[1] R. G. Keys, “Cubic convolution interpolation for digital image processing,” IEEE Trans. Acoust., Speech, Signal
Process., vol. ASSP-29,no. 6, pp. 1153-1160, Dec. 1981.

[2] X. Liu, D. Zhao, R. Xiong, S. Ma, W. Gao and H. Sun, “Transductive Regression with Local and Global
Consistency for Image Super-Resolution,” in Proceedings of IEEE Data Compression Conference, DCC2011,
Snowbird, Utah, USA, Mar.29-31, 2011.

[3] X. Liu, D. Zhao, R. Xiong, S. Ma, W. Gao and H. Sun, “Image Interpolation via Regularized Local Linear
Regression,” IEEE Transaction on Image Processing, Vol. 20, No. 12, pp. 3455-3469, Dec. 2011.

[4] X. Zhang, X. Wu, “Image Interpolation by Adaptive 2-D Autoregressive Modeling and Soft-Decision Estimation,”
IEEE Transactions on Image Processing, vol.17, No. 6, pp.887-896, 2008.

[5] H. Takeda,, S. Farsiu, and P. Milanfar, “Kernel Regression for Image Processing and Reconstruction,” IEEE
Transactions on Image Processing, vol. 16, No. 2, pp. 349-366, February 2007.

[6] S. Dai, M. Han, W. Xu, Y. Wu, Y. Gong, and A. K. Katsaggelos, “SoftCuts: A Soft Edge Smoothness Prior for
Color Image Super-Resolution,” IEEE Transactions on Image Processing, vol. 18, no. 4, pp. 969-981, May 2009.

[7] W. Dong, L. Zhang, G. Shi, and X. Wu, “Nonlocal back-projection for adaptive image enlargement,” in Proc.
IEEE International Conference on Image Processing, Oct. 2009.

[8] W. Freeman, E. Pasztor, and O. Carmichael, “Learning Low-level Vision,” International Journal of Computer
Vision, vol. 40, no. 1, pp. 25-47, 2000.

[9] K. Kim and Y. Kwon, Single-image super-resolution using sparse regression and natural image prior,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 32, no. 6, pp. 1127-1133, Jun. 2010.

[10] J. Yang, J. Wright, T. Huang, and Y. Ma, “Image super-resolution via sparse representation,” IEEE. Trans. Image
Process., vol. 19, no. 11, pp. 2861-2873, Nov. 2010.

[11] S. Wang, L. Zhang, Y. Liang and Q. Pan, “Semi-Coupled Dictionary Learning with Applications to Image
Super-Resolution and Photo-Sketch Image Synthesis,” in CVPR 2012.

[12] J. Mairal, F. Bach, J. Ponce, G. Sapiro and A. Zisserman, “Non-Local Sparse Models for Image Restoration,”
in ICCV 2009.

[13] W. Dong, L. Zhang and G. Shi, “Centralized Sparse Representation for Image Restoration,” in ICCV 2011.
[14] W. Hong, J. Wright, K. Huang, and Y. Ma, “Multi-Scale Hybrid Linear Models for Lossy Image Representation,”

IEEE. Trans. Image Process., vol. 15, no. 12, pages 3655-3671, Dec 2006.
[15] P. Chatterjee and P. Milanfar, “Clustering-based Denoising with Locally Learned Dictionaries,” IEEE Trans.

Image Processing vol. 18, no. 7, pp. 1438-1451 , July 2009.
[16] H. Lee, A. Battle, R. Raina, and A. Y. Ng, “Efficient sparse coding algorithms,” In NIPS, Vancouver, British

Columbia, Canada, December 4-7, 2006, pages 801-808.
[17] S. Gao, I. Tsang, L. Chia and P. Zhao, “Laplacian sparse coding, Hypergraph Laplacian sparse Coding, and

applications,” To appear in IEEE Trans. Pattern Anal. Mach. Intell., 2012.
[18] M. Zheng, J. Bu, C. Chen, C. Wang, L. Zhang, G. Qiu and D. Cai, “Graph Regularized Sparse Coding for Image

Representation,” IEEE. Trans. Image Process., vol. 20, no.5, 1327-1336, 2011.
[19] M. Elad and M. Aharon, “ Image denoising via sparse and redundant representations over learned dictionaries,”

IEEE Trans. Image Process., 15(12):3736-3745, Dec. 2006.
[20] R. Tibshirani, “ Regression Shrinkage and Selection via the Lasso,” Journal of the Royal Statistical Society.

Series B (Methodological), Blackwell Publishing for the Royal Statistical Society, 1996, 58, pp. 267-288.

102


