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ABSTRACT 

 
Motivated by theoretical analysis of the curve fitting 
problem based on equivalent kernel, in this paper we 
propose a local adaptive learning and fusion model for side 
information interpolation in distributed video coding. In the 
proposed model, each pixel in the interpolated frame is 
approximated as the linear combination of samples within a 
local spatio-temporal window using kernel parameters as 
weight. The size of training window can be adaptive to the 
motion characteristic of video, from samples in which the 
kernel parameters can be locally learned. In order to further 
improve the quality of interpolated frames, we introduce a 
belief-projection based fusion strategy with adaptive 
weights for multiple interpolated results which are with the 
same time index. Experimental results demonstrate that the 
proposed learning and fusion model is effective in 
performance for side information interpolation in 
distributed video coding. 

Index Terms— Side information interpolation, 
distributed video coding, equivalent kernel, spatio-temporal 
local adaptive learning, fusion 
 

1. INTRODUCTION 
 
Traditional video compression standards, such as H.264 
and MPEG-4, are based on inter-frame predictive coding in 
order to exploit temporal correlation between successive 
frames. Given that predictive coding uses motion 
estimation, which is typically a high complex process, the 
video encoder is typically more complex than the decoder. 
However, due to limited energy and computing ability, 
several emerging applications like wireless video 
surveillance and mobile camera phones can not afford such 
a high complex encoder. As a consequence, a low 
complexity encoder with high coding efficiency is much 
desirable. Distributed video coding (DVC) is a new video 
coding paradigm which can shift the complexity from 
encoder to decoder by intra-frame encoding and inter-frame 
decoding. It has been proved in theory [1],[2] that 
distributed source coding can achieve the same coding 
efficiency as jointly encoding. So the field of DVC research 
has been receiving more and more attention in recent years. 

Side information (SI) quality is an important factor 

determining the coding efficiency of the DVC system. One 
of the most popular methods for generating SI is motion 
compensated temporal interpolation (MCTI), in which 
motion information is explicitly estimated from adjacent 
frames at the decoder by block-matching-based motion 
searching. The apparent advantage of MCTI is its 
conceptual simplicity, and block-matching can reflect some 
relationship between motion and interpolated intensity 
values, especially when the motion accords with the 
translation model. However, due to the original frames are 
not available at the decoder, block matching may not be 
effective locally, which usually results in artifacts in SI. 
Although some complex post-process steps, e.g. overlapped 
block motion compensation (OBMC) or spatial motion 
vector smoothing [3], have been used to improve the 
quality of SI, it is still far from satisfactory. As a 
consequence, some locally accurate motion models are 
popular in the process of interpolation. An alternative 
perspective for motion estimation is that motion 
information can be wisely derived in a filter-based fashion 
[4],[5]. Such localized estimation can be viewed as an 
implicit approach of exploiting motion-related temporal 
dependency, in which motion information is embedded into 
predictive coefficients trained. 

In this paper, we propose an alternative approach for side 
information generation based on a local adaptive learning 
and fusion model. We formulate the frame interpolation as 
a curve fitting problem, namely, fitting the intensity curve 
of side information according to the coordinates and 
intensity values of adjacent reconstructed frames. The 
fitting kernel parameters are adaptively learned within a 
localized spatio-temporal window on a pixel-by-pixel basis. 
In order to further improve the quality of interpolated 
frames, we introduce an adaptive weight fusion method for 
multiple interpolated results with the same time index. 

The rest of this paper is organized as follow. In Section 2, 
we give a theoretical analysis of the curve fitting problem, 
which can bring us some motivation for frame interpolation. 
We describe our proposed model in detail in Section 3. In 
Section 4, the experimental results are presented to show 
the efficiency of our model and Section 5 concludes this 
paper. 

 



2. CURVE FITTING BASED ON EQUIVALENT 
KERNEL 

The frame interpolation can be formulated as a curve 
fitting problem. Les us now consider the curve fitting 
problem based on equivalent kernel, which can motivate a 
number of key concepts for the presented local adaptive 
learning and fusion based side information interpolation in 
this paper [6]. 

The goal of curve fitting is to exploit the training set to 
predict the value t of the target variable for a new value x  
of the input variable. Consider a model defined in terms of 
a linear combination of M basis functions given by 
elements of the vector ( )xφ so that 

                   ,                               (1) ( , ) ( )Ty x w w xφ=
where x  is the input vector and w  is M-dimensional 
weight vector. We assume that the target variable t  is 
given by a deterministic function with additive 
Gaussian noise so that 
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where ε is a zero mean Gaussian random variable with 
precision (inverse variance) β . Consider N 

inputs with corresponding target 
values .For (2), the likelihood function is: 

1( ,..., )T
nX x x=

1( ,..., )T
nT t t=

1

1
(T | , , ) ( | ( ), )

N
T

n n
n

p X w t w xβ φ β −

=
= Ν∏ ,          (3) 

and the Gaussian prior is : 
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with covariance , where1Iα − α is the precision and is the 
identity matrix. According to (3) and (4), the Bayesian 
treatment of linear regression model is formulated as: 
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We solve this function with respect to w  using maximum 
likelihood. However, in practice, we are not usually 
interested in the value of w itself but rather in making 
predictions of t  for new values of x . The posterior mean 
solution (7) has an interesting interpretation that will set the 
stage for kernel methods. We substitute (7) into the 
expression (1) and get: 
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Thus the mean of the predictive distribution at a point x  
is given by a linear combination of the training set target 
variables , so nt
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where is known as the equivalent kernel defined 
by: 
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     Generalizing the analysis result to side information 
interpolation, we propose a local adaptive learning and 
fusion model, which will be described in detail in next 
section.  
 
3. THE PROPOSED LOCAL ADAPTIVE LEARNING 

AND FUSION MODEL 
 
3.1. Local Adaptive Learning Model 

As well known, there is high similarity between 
successive frames in video sequences, namely that pixels 
neighboring in a local spatio-temporal space possess an 
underlying regularity, which we want to learn. In the 
problem of frame interpolation, the motion regularity is 
implicitly embedded into kernel parameters.  

Suppose { ( , , )}X x y t is the given video sequence, where 
( , ) [1, ] [1, ]x y H W∈ × are spatial coordinates and 

[1, ]t T∈ is the frame index. We denote the position of a 

pixel in side information by a vector , which 
represents the input variable. The intensity value 

0 ( , , )n x y t=
JJG

� ( )0X n
G

denotes the target variable. The training set of 0n
JJG

in 
the proposed model not only includes the pixels within its 
two temporal neighborhoods taken in the previous and the 
following frames but also the available interpolated pixels 
within its spatial neighborhood taken in the current frame, 
which is different from the setting in [5]. Each temporal 
neighborhood is specified as a ( ) ( )2 1 2 1L L+ × +  region 

bounded by ( ),x L y L± ± , where L is the spatio-temporal 
order. Consequently, the spatial neighborhood is specified 
as a region with the size of . Thus the 
model order N is: 

(2 1) (2 1) / 2L L+ × +⎢ ⎥⎣ ⎦
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Fig.1illustrates the case wh .  en 1L =

The intensity value of 0n
JJG

is approximated as the linear 
combination of samples using kernel parameters as weights 



within a localized spatio-temporal window. Therefore, (11) 
becomes  
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where are kernel parameters, which should be 
adaptively updated within the spatio-temporal window.  
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Fig.1 Local-adaptive-learning model for side information 

interpolation with  1L =
The efficiency of the model described in (14) heavily 

relies on the choice of the size of the training window and 
the spatio-temporal order. Intuitively, the training window 
should cover the support of the probability density function 
(pdf) of motion vectors. In our experiment, the window size 
is empirically set to 16 . The spatio-temporal order is 
closely related to the motion in the training window, 
because smaller spatio-temporal order will achieve good 
performance for stationary regions; however, for moving 
regions, larger spatio-temporal order is necessary. In our 
experiment, the motion vector in MCTI can be utilized to 
measure the motion in the training window. The spatio-
temporal order of the model is computed by 

16×
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where S represents the training window,  and 

 represent the horizontal and vertical motion 

vectors of the ith 8 block after performing MCTI. 
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3.2. Adaptive Weight Fusion of Interpolated Results 
An adaptive weight fusion strategy is also proposed to 

further improve the quality of interpolated frames. In order 
to avoid choosing basic functions and to derive more 
accurate kernel parameters, we utilize a so-called self-
feedback method to do training [5]. We group five 
successive frames as an interpolation unit (IU) to jointly 
train kernel parameters, which slides along the time axis at 
a step of GOP size as depicted in Fig.2. As a consequence, 
there are multiple interpolated results with the same time 
index but belonging to different IU. For instance, there are 
two interpolated results n

t 1

IUFX
+

and n
t 1

IUBX
+

at time t+1, one is 

from IUF and another is from IUB. Note that n
t 1

IUFX
+

 
contains more forward motion information as its kernel 
parameters are trained from frames t 2X − , tX and 2tX + , 

while n
t 1

IUBX
+

contains more backward motion information as 
its kernel parameters are trained from frame 

tX , X 2t+ and 4tX + . We consider that better interpolation 
performance can be achieved by adaptively fusing these 
two interpolated results compared with choosing an optimal 
one. Such an idea is similar to B frame coding in H.264. 
The only difference is that B frame generates the prediction 
frame by averaging the forward and backward reference 
frames while our strategy is to weight n

t 1

IUFX
+

and n
t 1

IUBX
+

 
adaptively. The fused side information can be written as:  
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where α is the fusion weight. It is intuitive that the 
efficiency of fusion mainly depends on the choice ofα . We 
utilize a belief-projection strategy to determineα . Note that 
we re-interpolated frame t in IUF in the process of training 
kernel parameters [5]. That can be formulated as follow:  

n n n
1 1( , ,IUF IUF IUF IUF

t t tX Learning X X k− += ) .                (17) 
where the function denotes the learning process 
presented in subsection 3.1. The interpolated frame t-1 and 
trained kernel parameters in IUF along with interpolated 
frame t+1 in IUB are also used to re-interpolate frame t, as 
illustrated in Fig.2. 
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From (17) and (18), we can see  the interpolated quality of 
n

1
IUF
tX + and n1

IUB
tX + can be directly reflected by nIUF

tX and nIUB
tX , 

which is called belief-projection. First, we compute SAD 

value for each pixel in nIUF
tX and nIUB

tX using corresponding 
key frames as original ones. Then the SAD value of each 
pixel in n

t 1

IUFX
+

and n
t 1

IUBX
+

is determined as follow: 
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where ( )ineighbour n
JJG

denotes the training set of in
JJG

.So  
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which is based on the fact that smaller interpolated error 
leads to larger weight in fusion. 

t-2 t-1 t t+1 t+2

t t+1 t+2 t+3 t+4

IU F

IU B

t-1

 
Fig.2 Adaptive fusion strategy for multi interpolated results 



Table 1    Objective quality comparison for interpolated side information(in dB) 
Foreman Mobile  

QP=28 QP=24 QP=20 QP=28 QP=24 QP=20 
MCTI_OBMC 34.49 35.56 36.44 32.80 34.22 34.76 

LearningWithoutFusion 34.59 35.82 36.78 33.21 35.10 35.84 
ComparedBMA 34.90 36.21 36.92 33.40 35.22 35.98 

LearningWithFusion 35.31 36.65 37.66 33.49 35.40 36.19 
Gain(overMCTI_OBMC)    0.82 1.09 1.22 0.69 1.18 1.43 

 
4. EXPERIMENTAL RESULTS 

 
In this section, experimental results are provided to 

demonstrate the performance of the proposed model. 
Results of two test sequences including Foreman and 
Mobile (QCIF, 30Hz, 4:2:0) are presented. In each 
sequence, 100 frames are selected and the GOP structure is 
IWI, where key frames are encoded with H.264 intra 
coding method and WZ frames are encoded with the pixel-
domain turbo code based WZ codec [7]. 

Table 1 includes the objective performance comparison 
for interpolated side information with three QP values: 20, 
24, 28, where 

 MCTI_OBMC: the block-matching-based motion 
compensation temporal interpolation, OBMC is 
used as a post process to smooth motion field. 

 LearningWithOutFusion: local adaptive learning 
without fusion. 

 ComparedBMA: the result of MCTI_OBMC is 
utilized as a criterion to determine which is better 
for two regression results. 

 LearningWithFusion: the method we proposed in 
this paper. 

From Table 1 we can see that our approach significantly 
outperforms the MCTI_OBMC approach.  Our method can 
improve up to 1.43dB for Mobile sequence and 1.22dB for 
Foreman sequence, respectively. 

We further test the efficiency of our model in terms of 
overall performance in DVC scheme. Simulation results 
presented in Fig.3 show that our model can improve 0.6dB 
for Foreman sequence at most and 1dB for Mobile 
sequence, respectively. 
 

5. CONCLUSION 
 

In this paper, we have proposed a novel local adaptive 
learning and fusion model for side information 
interpolation. According to the duality of curve fitting and 
frame interpolation, we first analyze the cure fitting 
problem based on equivalent kernel in theory. The analysis 
result is then generalized to our proposed learning model. 
In order to further improve the quality of interpolated frame, 
we introduce a belief-projection based adaptive weight 
fusion strategy. Experimental results demonstrate that our 

learning and fusion model can significantly improve the 
coding efficiency of the DVC system.  
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          Fig. 3 Simulation results for Foreman and Mobile 

 


