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Abstract—This paper proposes a novel framework called
DCast for distributed video coding and transmission over wireless
networks, which is different from existing distributed schemes
in three aspects. First, coset quantized DCT coefficients and
motion data are directly delivered to the channel coding layer
without syndrome or entropy coding. Second, transmission power
is directly allocated to coset data and motion data according
to their distributions and magnitudes without forward error
correction. Third, these data are transformed by Hadamard and
then directly mapped using a dense constellation (64K-QAM) for
transmission without Gray coding. One of the most important
properties in this framework is that the coding and transmission
rate is fixed and distortion is minimized by allocating the
transmission power. Thus, we further propose a power distortion
optimization algorithm to replace the traditional rate distortion
optimization. This framework avoids the annoying cliff effect
caused by the mismatch between transmission rate and channel
condition. In multicast, each user can get approximately the best
quality matching its channel condition. Our experiment results
show that the proposed DCast outperforms the typical solution
using H.264 over 802.11 up to 8 dB in video PSNR in video
broadcast. Even in video unicast, the proposed DCast is still
comparable to the typical solution.

Index Terms—Distributed video coding (DVC), softcast,
wireless visual communication.

I. Introduction

D ISTRIBUTED video coding (DVC) [1]–[4] is an attrac-
tive scheme for video compression that has emerged in

the past decade. Different from conventional video coding
schemes, it utilizes cross-frame correlation only at the decoder.
This has several unique advantages. First, DVC can shift
intensive computation from encoder to decoder, which is
appealing for low complexity video encoding applications.
Second, DVC framework is robust to transmission errors,
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which is desirable for wireless applications. Although it has
been proven that the theoretical coding performance should
be equivalent, no matter what source correlation is utilized at
encoder or decoder for some typical sources [5], [6], the actual
coding performance of DVC is still far inferior to that of the
conventional H.264 standard [7].

In DVC, quantized transform coefficients are converted to
bit planes and compressed to bits by syndrome or entropy
coding [2], [4], [8]. The syndrome coding is implemented via
channel codes (e.g., low-density parity-check codes). These
channel codes are also typically applied for error protection
in the physical (PHY) layer. Therefore, Xiong et al. [9], [10]
propose a 46 joint source-channel coding (JSCC) framework
for distributed 47 video transmission based on their previous
work on JSCC 48 of binary source. Except for these JSCC
works, the transmission of distributed coded video is still
similar to that of conventional coded video.

Recently, a joint video coding and transmission scheme,
named Softcast [11], [12], has been proposed for wireless
video multicasting. The key idea in Softcast is that transform
coefficients are not compressed by entropy coding. Instead,
they are directly transmitted through a dense constellation after
allocating a certain power, such that the received data can be
decoded at any channel conditions. The decoded data is not
error free and its signal-to-noise ratio (SNR) is dependent on
channel condition for a given transmission power. Although
the video coding layer of Softcast is simply done through
2-D or 3-D transformation, the overall performance of Softcast
still outperforms the typical solution using H.264 over 802.11
in video multicast.

The current Softcast only adopts 3-D DCT to exploit the
cross-frame correlation. Researches in scalable video coding
has fully demonstrated that this is inefficient due to the lack of
motion alignment among frames [13]–[15]. However, motion
compensation (MC) in H.264 is difficult to adopt in Softcast
because in Softcast the reconstructed frames are determined
by channel noise and the encoder can hardly obtain the same
reconstructed frames as the decoder. Thus this paper proposes
a novel framework called DCast, which not only utilizes the
cross-frame correlation by motion alignment but also retains
the nice properties provided by Softcast.

In the proposed DCast, transformed coefficients are first
coset quantized and then are transmitted as Softcast. Similar
to other DVC frameworks, DCast utilizes the cross-frame
correlation at the decoder. The proposed DCast has two differ-
ent approaches to process motion vectors (MVs). Like most
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Fig. 1. Compression of X when its side information S is available at the
decoder.

traditional DVC schemes, in the first approach motion vectors
are estimated at decoder. It does not need reference frames
at encoder, and greatly reduces the encoding complexity. But
the side information may not be accurate, thus leading to
low coding efficiency. In the second approach, motion vectors
are estimated at encoder and then transmitted to the decoder.
Actually several other DVC schemes also propose to estimate
motion vectors at encoder and transmit them to decoder for
improving the quality of side information [16], [17]. The initial
results of these two approaches have been reported in [18]
and [19]. In this paper we will focus our study on the second
approach but both of them will be evaluated.

The key technical contribution in this paper is the proposed
power distortion optimization. In the proposed DCast, each
pair of quantized DCT coefficients or transformed motion
vectors are transmitted in one time slot and thus the trans-
mission rate is fixed. The distortion is minimized by optimally
allocating transmission power. This paper evaluates the impact
of the channel noise on the distortion of the motion vectors
and then the impact of this distortion on the distortion of
reconstructed video via the power spectrum approach [20].
Furthermore, a joint power optimization among coefficients
and motion data is derived. Our experimental results show
that the proposed DCast can outperform Softcast up to 2 dB in
video PSNR as it can better utilize the cross-frame correlation.
Compared with the typical solution using H.264 over 802.11,
the proposed DCast can gain up to 8 dB in video PSNR in
multicast. Even in unicast, it is still comparable to the typical
solution of H.264 over 802.11.

The rest of this paper is organized as follows. Section II
briefly reviews the related work on distributed video coding
and transmission. Section III introduces the proposed DCast
including both encoder and decoder. Section IV discusses the
proposed power distortion optimization. Section V presents
our experimental results and compares them with Softcast and
H.264 over 802.11. Finally, Section VI concludes this paper.

II. Related Works

A. Distributed Video Coding

To compress a source with its prediction that is only
available at the decoder is a typical problem in distributed
source coding (DSC). As shown in Fig. 1, X is the source to
be compressed (possibly representing the source video), and
S is its side information (possibly representing the predicted
frame). The theoretical foundations of DSC, the Slepian-Wolf
theorem [5], and the Wyner-Ziv theorem [6] show that the
source X can be efficiently compressed with its predictor S

available only at the decoder. In practice, efficient DSC can
be achieved by coset coding, turbo coding and LDPC coding
[21], [22].

Accompanied by advances of practical DSC solutions, DVC
has emerged since a decade. Puri et al. [3], [4] propose a
DVC framework called PRISM, which implements DVC by
coset coding and supports motion estimation (ME) at decoder.
The main attributes of PRISM include the increased robustness
to channel losses and more flexible sharing of computational
complexity between encoder and decoder. Another DVC work
is the low complexity framework proposed by in [1] and [2].
In this framework, the DVC is implemented by turbo code,
while the motion estimation at decoder is based on motion
compensated interpolation (MCI) and motion compensated
extrapolation (MCE).

Although DVC has shown unique advantages in visual com-
munication, its compression efficiency is much lower than con-
ventional framework [2], [23]. In recent years, much research
has focused on improving the performance of DVC. Enabling
transform coding [24], [25] and intra/inter mode selection
[26]–[28] allows DVC to exploit not only inter but also intra
frame redundancy. Hash based DVC lets the encoder send hash
code to the decoder to improve the accuracy of ME and the
side information quality [29]. Successive refinement schemes
[30]–[33] perform ME and DVC decoding alternatively and
recursively, such that the MVs and reconstruction frame are
successively refined during decoding process. More accurate
correlation estimation in DVC improves the utilization of the
side information [34]–[37].

Different from these DVC schemes, the proposed DCast di-
rectly delivers coset quantized coefficients and motion vectors
to the channel coding layer. Furthermore, when coefficients
and motion vectors are transmitted from encoder to decoder,
they are allowed to be corrupted by channel noise. It is clear
from our results that DVC is robust to noise embedded in the
received data.

B. Distributed Video Transmission Over Wireless Network

The transmission of distributed coded video is usually simi-
lar to the transmission of conventional coded video in the PHY
layer of wireless network. Coded binary data is first protected
by channel coding and then is mapped to a constellation for
transmission. When syndrome coding is adopted, DVC coding
and channel coding can be jointly optimized. Xu et al. [9]
made the first attempt to study DVC from a JSCC. It is a
layered coding scheme, where the enhancement layer uses
Raptor code for both video compression and data protection.
In another frame-based JSCC scheme [16], the functionality
of both DVC and channel coding are implemented universally
by one error correction code.

In these JSCC schemes, distributed video transmission are
actually processed as data transmission. The transmission error
are desired to be corrected in the JSCC decoder. Thus many
bits are paid in channel coding to correct transmission errors.
In the proposed DCast, quantized coefficients and transformed
motion vectors are directly transmitted after allocating a cer-
tain power. Although the received data after decoding may still
contain a certain channel noise, it is more efficient on power
consumption because some received noise can be tolerated
by DVC.
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Fig. 2. DCast server (for inter frames).

C. Softcast

Softcast is a simple but comprehensive design for wireless
video multicast, covering the functionality of video com-
pression, data protection and transmission in one scheme
[11]. The Softcast encoder consists of the following steps:
1) DCT transform, power allocation, 2) Hadamard transform,
and 3) direct dense modulation. Transform removes the spatial
redundancy of a video frame. Power allocation minimizes the
total distortion by optimally scaling the transform coefficients.
Hadamard transform is in some sense a precoding to make
packets with equal power and equal importance. After that, the
data is directly mapped into the wireless symbols by a very
dense QAM. The decoder uses linear least square estimator
(LLSE) to reconstruct the signal. Almost all the steps in
Softcast are linear operations and thus the channel noise is
directly transformed into reconstruction noise of the video.
Therefore, Softcast is asymptotically robust in the sense that
each user can get the visual quality matching his channel
condition.

However, Softcast exploits the intra-frame correlation only
and thus is not very efficient in the aspects of video com-
pression. Recently, Aditya et al. [38] proposed another video
coding and transmission scheme called Flexcast. It removes
entropy coding from conventional video coding and adopts
rateless channel coding for channel variation. Thus, it has
the better coding efficiency. However, Flexcast is a unicast
approach and can hardly multicast or broadcast video to the
users with different SNRs simultaneously because of motion
compensation. In a recent improved version of Softcast, the
utilization of 3-D-DCT partially enables inter frame compres-
sion [12]. However, without motion alignment the inter frame
correlation is still not fully exploited yet.

The proposed DCast not only fully utilizes the cross-frame
correlation but also retains the good properties of Softcast.
DCast enables inter frame coding by DVC rather than conven-
tional motion compensation. Instead of transmitting a video
frame itself like Softcast, DCast transmits the coset codes
of the video frame such that the frame can be reconstructed
by utilizing the prediction frame as side information at the
decoder. This saves the transmission power (or equivalently
increases the SNR) because the coset data typically have much
smaller magnitude than the original data. Recently, we also
noticed that Kochman et al. [39] have studied the utilization
of coset coding in the Wyner-Ziv Dirty-Paper problem and

proved its optimality and asymptotical robustness in multicast
applications. It can be considered in general as the theoretical
foundation to support the proposed DCast.

III. Proposed DCast Framework

DCast divides input video sequences into groups of pictures
(GOP). In each GOP, the first frame is an intra (coded) frame,
while the following frames are inter frames. The compression
and transmission of the intra frame in DCast is the same
as in Softcast, which consists of DCT, power allocation and
Hadamard transform. In the rest of this paper, we will focus
on the compression and transmission of inter frames. For
simplicity, we mainly discuss the case with motion vectors
estimated at encoder.

Fig. 2 depicts the server side of DCast. DCast first trans-
forms the current frame into DCT domain. Meanwhile, DCast
performs ME and MC on the original video sequence to
get the encoder predictions and MVs. Then DCast applies
coset coding on the transform coefficients of the original
image to get the coset data for each DCT coefficient. The
quantization step size of the coset coding is determined at the
encoder according to the estimated decoder prediction noise.
The MVs of the current frame, in the form of a matrix, are
also transformed by DCT. The coset data and the motion data
are then scaled for power distortion optimization (PDO).

The scaling factors and other metadata are transmitted by
using a conventional scheme consisting of variable length cod-
ing (VLC), forward error correction (FEC), and BPSK mod-
ulation. The scaled coefficients are transformed by Hadamard
as precoding to make packets with equal power and equal
importance. After that, the resulting coefficients are mapped
to complex symbols directly by a very dense constellation
(64K-QAM). Each coefficient is quantized into 8-bit integer
number and every two integers compose one complex number
of 64K possible values. At last, these complex numbers are
passed into a raw OFDM module undergoing iFFT and D/A
conversion for transmission.

The receiver side of DCast is depicted in Fig. 3. The raw
OFDM module performs A/D conversion and FFT to recon-
struct modulated data including both the scaled coefficients
and the metadata. The metadata is demodulated and decoded
first. Then the scaled coefficients are reconstructed by inverse
64K-QAM and inverse Hadamard transform. The inverse
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64K-QAM here does nothing but splitting each complex value
back into two real values. Each real value here is actually the
8-bit integer number plus channel noise.

After inverse Hadamard transform, linear minimum mean
square error (LMMSE) estimation of the residue coefficients
and the MV coefficients are performed. Then the MVs are
transformed back to spatial domain by inverse DCT. After
this, the MC module generates the predicted frame by the MVs
and the reference frame. The predicted frame is transformed
into frequency domain by DCT. Then with the coset residues
and the predictors, the coset decoding module recovers the
DCT coefficients of the current frame. At last, the signals are
transformed back to spatial domain, and are linearly combined
with the predicted signals by LMMSE to generate the final
reconstruction.

A. Coset Coding

Coset coding is a typical technique used in DSC. It parti-
tions the set of possible input source values into several cosets
and transmits the coset index to the decoder. With the coset
index and the predictor, the decoder can recover the source
value by choosing the one in the coset closest to the predictor.
Coset coding achieves compression because the coset index
has typically lower entropy than the source value.

Let X be the DCT coefficients of the original video frame.
DCast encodes X to get coset values C. DCast divides the
coefficients into 64 subbands according to the frequency. Let
Xi be the ith subband of X, and Ci be the ith subband of C.
For each i, DCast quantizes the ith subband of X by a uniform
scaler quantizer Qi(·) and gets the residue value [39] by

Ci = Xi −Qi(Xi) = Xi − �Xi

qi

+
1

2
�qi (1)

This coset coding is actually throwing away the main part of
X. In some sense C represents the detail of X.

At the client side, with the side information S (i.e. the
predicted DCT coefficients) and the received coset value Ĉ, the
receiver reconstructs the DCT coefficients by coset decoding.
Let Si be the ith subband of S, and Ĉi be the ith subband of
Ĉ. Since Si is close to Xi, Si − Ĉi is around Xi − Ci. Thus
Si−Ĉi is around Qi(Xi) from (1). The quantizers are carefully
designed such that applying quantization Qi(·) on Si − Ĉi we
could get Qi(Xi), i.e.

Qi(Xi) = Qi(Si − Ĉi) (2)

in high probability. Therefore, each subband of coefficients is
decoded by

X̂i = Qi(Si − Ĉi) + Ĉi (3)

where X̂ is the reconstruction of X, and each X̂i is the ith
subband of X̂. When the coset decoding is successful, i.e.
Qi(Xi) = Qi(Si − Ĉi), the reconstruction noise is

X̂i −Xi = Ĉi − Ci. (4)

B. Estimation of Coset Quantization Step

The value of each coset step qi is crucial to the coding
performance of DCast. If qi is too small, the coset decoding
may suffer failure. On the other hand, if qi is too large, the
coset value Ci in (1) will be large and will consume a lot of
transmission power to keep the distortion small. The value of
each qi is determined as follows. Injecting (1) into (2), we get

Qi(Xi) = Qi(Si − Ĉi + Ci −Xi + Qi(Xi)), (5)

= Qi(Xi) + Qi(Si − Ĉi + Ci −Xi) (6)

To guarantee successful coset decoding, the last item should
be 0. This means the quantization step qi should satisfy

qi

2
≥ |Si −Xi + Ci − Ĉi| (7)

In this equation, the Si − Xi is the prediction noise at the
decoder and the Ci − Ĉi is the reconstruction noise of the
coset value Ci due to transmission. In this paper, we assume
they are independent Gaussian source. We let each qi to be
2n times of the standard deviation of Si −Xi + Ci − Ĉi, i.e.

q2
i = 4n2σ2

Si−Xi+Ci−Ĉi
(8)

and this guarantees that condition (7) is satisfied in probability

Pr = erf(n/
√

2) (9)

Under the same assumption, the variance of Si−Xi + Ci− Ĉi

is the summation of the variance of Si −Xi and Ci − Ĉi, i.e.

σ2
Si−Xi+Ci−Ĉi

= σ2
Si−Xi

+ σ2
Ci−Ĉi

(10)

and each qi can be calculated by

q2
i = 4n2(σ2

Si−Xi
+ σ2

Ci−Ĉi
) (11)

In our implementation, we let n = 3 such that the coset
decoding is successful for more than 99.7% coefficients. In
(11), σ2

Si−Xi
is the variance of the hypothetic residue between

the source and the side information, and it is estimated by
simulating at the encoder a receiver with target channel SNR.
σ2

Ci−Ĉi
is the distortion of coset value Ci due to transmission. It

is also the distortion of the source Xi according to (4). σ2
Ci−Ĉi

is related to both the residue σ2
Si−Xi

and the channel SNR. The
explicit expression of σ2

Ci−Ĉi
is given in Section IV.

C. Power Allocation

DCast transmits both the coset values and the motion infor-
mation. Thus, it has two levels of power allocation. The first
allocation is between MV data and coset data. The second level
is the allocation within MV coefficients or coset coefficients.
The optimal power allocation between MV data and coset data
is given in Section IV. The optimal power allocation within
coset coefficients and the optimal power allocation within MV
coefficients are as follows.

Let Pcoset be the total power of coset data, and gCi
be the

gain (scaling factor) of Ci. The problem is how to minimize the
reconstruction distortion of X, by optimally allocating power
among Ci. Under the assumption that the coset decoding is
successful in high probability, the reconstruction distortion of
X will be equal to the reconstruction distortion of C according
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Fig. 3. DCast receiver (for inter frames).

to (4). This means that the problem now becomes how to
minimize the reconstruction distortion of C, by optimally
allocating power among Ci. Thus the solution has a similar
form as the one in Softcast [12], i.e.

C̃i = gCi
Ci, gCi

=

(
Pcoset

σCi

∑
j σCj

)1/2

(12)

where C̃ is the coset value after power allocation, C̃i is the
ith subband of C̃, and σCi

is the standard deviation of Ci.
This power allocation tends to scale down large coefficients
to get better performance under the constrained total power.
The encoder calculates the variance σ2

Ci
for each subband and

transmits it to the decoder. With σ2
Ci

, both the encoder and the
decoder calculate the gain gCi

for each Ci by (12).
On MV data, DCast also performs power allocation. To

apply power allocation, the encoder performs 2-D DCT on
the MVs (the whole MV field) and gets transform coeffi-
cients M. Note that each MV contains horizontal and vertical
components, and the transform is actually applied to both
components separately. Each coefficient Mi is then considered
as a subband. The encoder applies a similar optimal power
allocation over M, i.e.

M̃i = gMi
Mi, gMi

=

(
Pmv

σMi

∑
j σMj

)1/2

(13)

where M̃ is the MV data after power allocation, M̃i is the ith
subband of M̃, σMi

is the standard deviation of Mi, and Pmv

is the total power for motion data. Since each subband of M

contains only one coefficient, it is not efficient to transmit the
variance of each subband. In this light, DCast only transmits
the average variance σ2

M = 1
n

∑
i σ

2
Mi

where n is the number of
subbands. As shown in our previous work [19], the σ2

Mi
and

gMi
are calculated by using σ2

M . Under the assumption that
the motion field is random Markov field where the correlation
coefficient between two neighboring MVs is ρ, each σ2

Mi
can

be calculated by

σ2
Mi

= σ2
MVMi

(14)

where VMi
is the ith element of matrix VM , and

VM = diag(2D−DCT (R(h)))diag(2D−DCT (R(w)))T (15)

is a constant matrix for given ρ. Here the function diag(·)
produces the diagonal elements of the input matrix in the form
of a column vector. 2D−DCT(·) means 2-D DCT transform. w

and h are the width and height of the motion field respectively
and

R(k) =

⎡
⎢⎢⎢⎣

1 ρ · · · ρk−1

ρ 1 · · · ρk−2

...
...

. . .
...

ρk−1 ρk−2 · · · 1

⎤
⎥⎥⎥⎦ . (16)

The value of σ2
M is calculated at the encoder and is transmitted

to the decoder as mentioned in the previous section. Both the
encoder and the decoder calculate the value of each σ2

Mi
by

(14)-(16). In our experiments we let ρ = 0.7 according to
statistics over several different video sequences. With each
σ2

Mi
, the optimal power allocation gain gMi

for each subband
is calculated at both encoder and decoder by (13). The decoder
needs the value of gMi

in (13) to reconstruct the signal.

D. Packaging and Transmission

Similar to Softcast [12], DCast transmits not only a small
amount of binary symbols but mainly real-valued symbols.
The organization of the symbol stream is as follows. The
symbol stream consists of a header and a following data
stream.

symbol−stream = {header−bitstream, data−stream} (17)

The header bitstream contains the meta data, including the
information of coset variances σ2

Ci
, the quantization steps qi,

the average MV variance σ2
M and other useful parameters.

header−bitstream ← {coset variances,

quantization steps,

average MV variance,

parameters} (18)

The header information is coded in a conventional way. The
encoder applies 8-bits scalar quantization on σCi

, qi and σM

respectively. Then the quantization results are compressed by
variable length coding (VLC). The VLC is the universal one
used for coding motion vectors in H.264 [7]. The compressed
header bitstream is transmitted by the standard 802.11 PHY
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layer at the lowest speed, i.e., by using a 1/2 convolutional
code and BPSK modulation. This is to make sure the header
bits are decoded correctly when channel SNR is in typical
working range (5–25 dB) of 802.11. Note that the size of the
header is very small compared to the whole data of one frame.
According to our experiments, the proportion of the bandwidth
required by headers is less than 3%.

The data stream contains the information of the coset data
C̃ and the MV data M̃. Similar to Softcast [12], DCast applies
Hadamard transform on the coset data C̃ and the MV data M̃

to create packets with equal energy. Coset data and MV data
are mixed together and then every 64 numbers are grouped
for Hadamard transform. This forms the data stream

data−stream
H← {coset data, MV data}. (19)

Note that the data stream consists of real values rather than
binary values. In PHY layer, these real values are mapped
to complex symbols directly by 64K-QAM constellation [12].
This constellation is a typical N-QAM constellation with N
equal to 65536 (256 by 256). Each input real value is quantized
into an 8-bit integer number by uniform scalar quantizer. The
dynamic range of the quantizer is formed by the minimal
and maximal input value. It is calculated for each frame at
encoder and sent to decoder as a parameter in (18). After
this quantization, every two integers compose one complex
number as the output of the 64K-QAM constellation. An
inverse FFT is computed on each packet of symbols, giving
a set of complex time-domain samples. These samples are
then quadrature-mixed to passband in the standard way. The
real and imaginary components are first converted into the
analogue domain using D/A converters. The analogue signals
are then used to modulate cosine and sine waves at the carrier
frequency, respectively. These signals are then summed to give
the transmission signal.

In DCast, both MV data and coset data are transmitted by
the aforementioned direct source channel mapping. This makes
the system adaptive to the fluctuation of the channel SNR.
Given a transmitter, high SNR users would receive accurate
MVs and coset values and reconstruct high quality video.
Meanwhile, low SNR users would receive noisy MVs and
coset values, and derive noisy prediction frame based on the
noisy MVs. However, the coset decoding in DCast has good
tolerance to the noise of the prediction. Thus, the low SNR
users would still reconstruct the video.

E. LMMSE at Decoder

The proposed approach contains two LMMSE estimators,
operating in transform domain and spatial domain, respec-
tively.

The purpose of the first LMMSE estimator is to reconstruct
the coset data C and the MV data M in transform domain
with minimum distortion. Let Y be the received signal after
inverse Hadamard transform. Y contains the noisy version of
the coset data and the MV data. Y can be written as:

Y =

[
Ċ

Ṁ

]
(20)

where Ċ is the noisy version of coset data, Ṁ is the noisy
version of MV data. Let W (C) and W (M) be the channel noise
in Ċ and Ṁ respectively. Let Ċi, Ṁi, W

(C)
i and W

(M)
i be the

ith subband of Ċ, Ṁ, W (C) and W (M) , respectively. We model
each element in W (C) and W (M) as i.i.d Gaussian source with
variance N0. Each subband of Ċ and Ṁ can be expressed as

Ċi = gCi
Ci + W

(C)
i , Ṁi = gMi

Mi + W
(M)
i . (21)

Therefore, the LMMSE reconstruction of the original signals
is

Ĉi =
σ2

Ci

σ2
Ci

g2
Ci

+ N0
Ċi, M̂i =

σ2
Mi

σ2
Mi

g2
Mi

+ N0
Ṁi. (22)

And the reconstruction distortion of each subband is

E{(Ĉi − Ci)
2} =

σ2
Ci

N0

σ2
Ci

g2
Ci

+ N0
, (23)

E{(M̂i −Mi)
2} =

σ2
Mi

N0

σ2
Mi

g2
Mi

+ N0
. (24)

The purpose of the second LMMSE estimator is to reconstruct
each pixel x in spatial domain with minimum distortion. DCast
decoder applies inverse DCT transform on coset reconstruction
X̂ and gets a pixel-domain preliminary reconstruction x̂. x̂ is
considered as the first noisy version of x. DCast also has the
predicted pixel s as the second noisy version of x. With x̂ and
s, the optimal LMMSE estimation x∗ is given by:

x∗ = θs + (1− θ)x̂ (25)

where

θ =
σ2

x̂−x

σ2
s−x + σ2

x̂−x

. (26)

σ2
x̂−x is the variance of x̂− x, and σ2

s−x is the variance of
s− x. In DCast, the prediction noise variance σ2

s−x is estimated
at block level. Since x̂ is close to x, σ2

s−x is estimated by
calculating E{(s − x̂)2}. The variance σ2

x̂−x is calculated as
follows. According to the Parseval’s theorem and (4), we have

σ2
x̂−x = E{(x̂− x)2} = E{(X̂−X)2} = E{(Ĉ − C)2} (27)

where E{(Ĉ − C)2} is directly calculated by summation on
(23).

IV. Power-Distortion Optimization

In DCast, both the MVs and the coset values require power
to transmit. Thus it is necessary to investigate the optimal
power allocation between MVs and the coset values. Let D be
the reconstruction distortion, and P be the transmission power.
Pcoset and Pmv be the transmission power for the coset values
and the MVs, respectively. The optimal power allocation is
the one minimizing the reconstruction distortion D for given
power P , i.e., the optimization problem is

min D, (28)

s.t. Pmv + Pcoset ≤ P.
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A. Relationship Between Variables

The distortion D is directly related to both the decoder
prediction noise variance σ2

S−X, and the coset transmission
power Pcoset . Intuitively, using larger transmission power Pcoset

decreases the variance of the coset error Ĉ−C at decoder. This
means smaller D since the reconstruction error X̂−X equals
to the coset error Ĉ − C according to (4). Meanwhile, larger
σ2

S−X means lower quality of side information (SI), and lower
quality SI leads to larger reconstruction distortion. Therefore,
the distortion D should be a decreasing function of the coset
power Pcoset and an increasing function of the prediction noise
variance σ2

S−X.
Furthermore, the prediction noise variance σ2

S−X is related
to the MV transmission power Pmv. We use a two dimen-
sional random vector � ∼ N (0, σ2

�I2×2) to model MV error,
while σ2

� = 1
2 E{�T �} is the distortion of MV. Using larger

transmission power Pmv decreases the MV distortion σ2
� and

this means more accurate MVs. More accurate MVs produces
higher quality of decoder SI S, and hence a smaller prediction
noise variance σ2

S−X. Thus the prediction noise variance σ2
S−X

decreases in the MV transmission power Pmv. However, due
to the power constraint, giving more power to coset (i.e. using
larger Pcoset) means less power to MV (i.e., using smaller
Pmv), and vice versa. This is why we need power distortion
optimization. In the following part of this section, before
solving (20) we will derive the relationship between:

1) MV transmission power Pmv and MV distortion σ2
�;

2) MV distortion σ2
� and prediction noise variance σ2

S−X;
3) Distortion D, coset power Pcoset and prediction noise

variance σ2
S−X.

B. MV transmission Power Pmv and MV Distortion σ2
�

This subsection focuses on the relationship between MV
transmission power Pmv and MV distortion σ2

�. According to
Parseval’s theorem, the MV distortion σ2

� in spatial domain
equals to the MV distortion in DCT domain, i.e.

σ2
� =

1

nmv

∑
i

E{(M̂i −Mi)
2} (29)

where nmv is the number of MV coefficients. From (23), we
get

σ2
� =

1

nmv

∑
i

σ2
Mi

N0

σ2
Mi

g2
Mi

+ N0
≈ 1

nmv

∑
i

N0

g2
Mi

(30)

where the approximation is accurate when Pmv � N0. Substi-
tuting (13) into (30), we get

σ2
� ≈

N0(
∑

i σMi
)2

nmvPmv

. (31)

Then using (14) we get

σ2
� ≈

N0σ
2
M(
∑

i V
1
2

Mi
)2

nmvPmv

. (32)

By defining

αmv = (
1

nmv

∑
i

V
1
2

Mi
)2 (33)

we can rewrite (32) as

σ2
� ≈

nmvN0σ
2
Mαmv

Pmv

= αmvσ
2
M

(
Pmv

nmvN0

)−1

. (34)

In this equation, σ2
M is the variance of the MV signal to

transmit, Pmv

nmvN0
is the SNR for MV signal. Thus αmv can be

considered as the extra gain owning to the power allocation in
(13). From this equation, the MV distortion σ2

� is proportional
to the inverse of the MV transmission power Pmv.

C. MV Distortion σ2
� and Prediction Noise Variance σ2

S−X

This subsection focuses on the relationship between MV
distortion σ2

� and prediction noise variance σ2
S−X. Let Ṡ be

the original decoder prediction when the MVs are perfectly
received. The practical decoder prediction noise S−X consists
of two components: the original prediction noise Ṡ−X, and the
additional prediction noise S − Ṡ caused by erroneous MVs.
In this paper, we assume they are independent of each other,
and therefore

σ2
S−X = σ2

Ṡ−X
+ σ2

S−Ṡ
. (35)

Given that the Ṡ is a phase-shift version of S, σ2
S−Ṡ

can be
analyzed by using power density. Similar to the derivation in
[20], we have

σ2
S−Ṡ

=
1

4π2

∫ π

−π

∫ π

−π

2�ss(ω)(1− E{cos(ωT �)})dω (36)

where �ss(·) is the power density function of side infor-
mation, ω is two-dimensional frequency (in radians), and
� ∼ N (0, σ2

�I2×2) is the MV error. For small σ2
�, we have

1− E{cos(ωT �)}) ≈ 1

2
E(ωT �)2 =

1

2
σ2

�ωT ω, (37)

and thus

σ2
S−Ṡ

≈ 1

4π2
σ2

�

∫ π

−π

∫ π

−π

�ss(ω)ωT ωdω. (38)

We define

γ =
1

4π2

∫ π

−π

∫ π

−π

�ss(ω)ωT ωdω (39)

and γ is a constant for a given video frame. Then we get

σ2
S−Ṡ
≈ γσ2

�. (40)

Substituting (40) into (35), we get

σ2
S−X = σ2

Ṡ−X
+ γσ2

�. (41)

Therefore, the prediction noise variance σ2
S−X is linear to the

MV distortion σ2
�.

D. Distortion D as a Function of Pcoset and σ2
S−X

The derivation of the distortion D is as follows. Firstly,
from (4) we have X̂ − X = Ĉ − C in high probability. Thus
the distortion D approximately equals to the distortion of the
coset value, that is

D = σ2
X̂−X
≈ σ2

Ĉ−C
. (42)
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Similar to section IV-B, we can derive and express the coset
distortion as

σ2
Ĉ−C
≈ αcosetσ

2
C

(
Pcoset

ncosetN0

)−1

(43)

where αcoset is the coding gain of power allocation, σ2
C is the

variance of C, and ncoset is number of coset subbands.
In general, our DCast transmits the coset values of the

source X over Gaussian channel, with the side information S at
the receiver side. Therefore, for each subband, it forms a typi-
cal Wyner–Ziv dirty-paper problem, in which transmitting the
coset values has been proven to be as efficient as transmitting
the residue S −X over the same channel (in case that S −X

is available to the encoder) [39]. Actually, according to the
theorem in [39] (the existence of good lattice), the coset value
C of each subband has the same variance with the prediction
residue S −X of each subband, that is

σ2
Ci

= E{C2
i } = E{(Si −Xi)

2}. (44)

Thus the coset value and the prediction residue have the same
variance in frame level, that is

σ2
C = E{(S −X)2} = σ2

S−X. (45)

Therefore, (42),(43) and (45) implies

D = σ2
Ĉ−C
≈ αcosetσ

2
S−X

(
Pcoset

ncosetN0

)−1

. (46)

This means D is proportional to the prediction noise variance
σ2

S−X and the inverse of coset power Pcoset

E. Solution

Substituting (34) and (41) into (46), we get

D=(σ2
Ṡ−X

+γαmvσ
2
MnmvN0P

−1
mv )αcosetncosetN0P

−1
coset . (47)

Then taking (47) into the problem (28), and solving the
problem, we get

Pmv = [(A2 + A)1/2 − A]P, (48)

A =
γαmvσ

2
MnmvN0P

−1

σ2
Ṡ−X

.

Although it seems that A contains so many variables, there
is actually a quite straightforward way to estimate A. In
A, σ2

M is the variance of the MV signal to transmit, P
nmvN0

is the SNR when all power is allocated to MV, and αmv

is the coding gain of the power allocation. This means
that, if all power is allocated to MV, the MV distortion
σ2

� will be αmvσ
2
MnmvN0P

−1 according to (34). Furthermore,
(34) together with (40), implies that γαmvσ

2
MnmvN0P

−1 is
the variance of the additional prediction noise caused by
erroneous MVs when all transmission power is allocated to
MV. Therefore, the parameter A is estimated as follows. DCast
simulates the transmission and decoding process to get for
each frame a hypothetic side information S∗, which is the side
information when all transmission power is allocated to MV
data. DCast also calculates for each frame another hypothetical
side information Ṡ, which is the side information assuming the

transmission of MVs are lossless. Since S∗−Ṡ is the additional
prediction noise caused by erroneous MVs, we have

σ2
S∗−Ṡ

= γαmvσ
2
MnmvN0P

−1. (49)

With (49), the solution (48) is rewritten as

Pmv = [(A2 + A)1/2 − A]P (50)

A =
σ2

S∗−Ṡ

σ2
Ṡ−X

.

Therefore, for optimal power distortion optimization, the en-
coder first estimates σ2

S∗−Ṡ
and σ2

Ṡ−X
, and then calculates

optimal MV transmission power Pmv by (50).

V. Experiments

In our experiments, we evaluate the performance of the
proposed DCast in video streaming applications including
both unicast and multicast. We compare DCast with Softcast
[11], [12] and conventional frameworks. We have implemented
two versions of Softcast based on 2-D-DCT and 3-D-DCT
respectively, i.e. Softcast2-D [11] and Softcast3-D [12].

We also implement two conventional frameworks. One uses
H.264 as video encoder and the other uses a DVC codec named
Witsenhausen-Wyner Video Codec (WWVC) [17]. Both of the
two frameworks use standard 802.11 PHY layer with FEC and
QAM modulations. We use JM14.2 software as H.264 codec.
For error resilience, the intra MB refresh rate is set to be 10%.
Each video slice is packed into one RTP packet. We set the
maximal slice size to be 1192 bytes such that the length of
RTP packet is no greater than 1200 bytes. The WWVC coded
bitstream is also packed into RTP packet of maximal length
1200bytes. We append to each RTP packet a 32-bits CRC, and
then encode each packet separately. Similar to the experiments
in [12], for error protection we apply on each packet an outer
Reed-Solomon code with the same parameters (188/204) used
for digital TV [40]. Each packet is individually interleaved
between the outer Reed-Solomon code and the inner FEC in
accordance with the same recommendation. For inner FEC, we
generate the 1/2 convolutional code with polynomials {133,
171} and puncture it to get 2/3 and 3/4 convolutional codes.
The FEC coded bits are mapped to the complex symbols by
BPSK, QPSK, 16QAM or 64QAM. The complex symbols are
then transmitted over OFDM. We assume the channel noise is
Gaussian and the channel bandwidth is 1.15 MHz. The FEC
decoding is done by soft Viterbi algorithm. After the FEC
decoding and RS decoding, the decoder performs CRC check
for each RTP packet, and forward those error-free packets
to video decoders. The WWVC decoder performs Wyner-Ziv
decoding and is able to reconstruct the video frames when the
reference frames have some error. The H.264 decoder can also
tolerate a small percentage of RTP packet loss, by utilizing the
error concealment. In our test, we have configured the H.264
decoder to use the most complex error concealment method
in JM14.2, the motion copy one, to get best reconstruction
quality. The test video sequences are standard CIF sequences
(352× 288, 30 Hz), including Akiyo, Bus, Coastguard, Crew,
Flower, Football, Foreman, Harbour, Husky, Ice, News, Soccer,
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Fig. 4. Verification of the models of power distortion optimization in Section
IV. Pcoset and PMV are transmission power of coset data and MV data
respectively. D is reconstruction distortion.

Stefan, Tempete, Tennis, and Waterfall. To evaluate average
performance of each framework, we also create a monochrome
512-frame test video sequence, called all−seq, by combining
the first 32 frames of the above 16 test sequences.

For DCast, H.264 and WWVC, the GOP structure is ‘IPPP’
and the GOP length is 32. In the following tests, all the PSNR
results are for all the frames including both intra and inter
frames. The number of reference frame for inter frame is 1. In
DCast, the intra frame coding is exactly the same as Softcast2-
D and the inter frame coding is by proposed framework. The
transmission power allocated to an intra frame is set to be
4 times of the power of an inter frame. According to our
experiments, this approximately makes intra and inter frames
have similar video PSNR. The search range of ME is 32× 32
and the MV precision is 1/4 pixel. In ME, DCast uses only
8×8 block size, while H.264 and WWVC use all the 7 block
size from 4 × 4 to 16 × 16. Table I gives a summary of the
techniques and configurations of these frameworks.

A. PDO Model Verification

This test is to verify the models of power distortion op-
timization (PDO) in Section IV. We use all−seq as the test
sequence. In the first test, we fix the coset transmission power
Pcoset and let the MV transmission power PMV change. The
channel noise power N0 is set to 1. The results are given
in Fig. 4. Fig. 4(a) shows the relation between the MV
transmission power PMV and the MV distortion σ2

	. According
to the result, the inverse of PMV is proportional to the MV
distortion. This confirms the equation (34). Fig. 4(b) shows
the linear relation between the MV distortion σ2

	 and the
prediction noise variance σ2

S−X. This verifies the model of
equation (41). Fig. 4(c) shows the relation between the MV
transmission power PMV and the reconstruction distortion D.

Fig. 5. Unicast performance comparison. Both the encoder and the decoder
are assumed to know the channel SNR.

They are approximately in linear relation as shown in the
equation (47).

In the second test, we fix the MV transmission power
PMV and let the coset transmission power Pcoset change. The
channel noise power N0 is set to 1. The result is given in
Fig. 4(d). The reconstruction distortion D is proportional to
the inverse of the coset transmission power Pcoset . This verifies
the model in equation (46) and (47).

B. Unicast Performance

This test is to compare unicast performance among all the
above frameworks. In this test the input video is all−seq
and the channel SNR is 5 − 20 dB. Both the encoder and
the decoder is assumed to know the channel SNR. For each
channel SNR, the parameters of DCast are optimally tuned.
The total transmission power is optimally allocated to coset
data and motion data as explained in Section IV. The con-
ventional framework is assumed to be able to choose the best
combinations of the FEC and the QAM methods recommended
by 802.11 according to the channel SNR, to get maximal
bitrate for source coding layer. The RS coding is skipped in
this unicast test. The source coding layer, i.e. the H.264 codec
or WWVC codec, performs rate control to utilize the bitrate
as much as possible.

The experimental result is given in Fig. 5. This figure
compares the reconstruction quality of six frameworks at
different channel SNR. The reconstruction quality is measured
by video PSNR. DCast is uniformly 4 dB better in video PSNR
than Softcast2D at all channel SNR, mainly due to enabling
inter frame prediction. DCast gains about 1.5 dB in video
PSNR over Softcast3D, which mainly comes from motion
alignment. Compared with H.264 based framework, DCast is
about 0.8 dB worse in video PSNR at low channel SNR but
is about 2.9 dB better in video PSNR at high channel SNR.
WWVC based framework performs slightly worse than H.264
based framework. In this test, we also implement another
version of DCast in which the ME is performed at the decoder
by motion compensated extrapolation [2]. Compared with
conventional framework, the DCast with decoder ME is about
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TABLE I

Summary of the Four Frameworks

Frameworks Softcast2D Softcast3D DCast H.264/WWVC+802.11
GOP IIII... – IPPP... IPPP...

Reference frames 0 – 1 1
ME N N Y Y

ME block size – – fixed variable
ME search range – – 32× 32 32× 32

MV precision – – 1/4 1/4
DCT 2-D 3-D 2-D 2-D

Coding delay 1 frame 4 frames 1 frame 1 frame
Modulation OFDM OFDM OFDM OFDM

Constellation 64K-QAM, 64K-QAM, 64K-QAM, BPSK, QPSK,
BPSK BPSK BPSK 16-QAM, 64-QAM

FEC rate 1/2 (BPSK only) 1/2 (BPSK only) 1/2 (BPSK only) 1/2, 2/3, 3/4
RS rate – – – 188/204

Fig. 6. Evaluation of each module. The contribution of coset coding, ME
and PDO are about 2.7 dB, 0.8 dB and 0.5 dB in video PSNR respectively.

1.6 dB worse in video PSNR at low channel SNR but is 1.7 dB
better in video PSNR at high channel SNR.

Note that the result in Fig. 5 does not mean DCast can
outperform H.264 in compression efficiency. H.264 is a video
coding standard while DCast is a wireless video transmission
framework. H.264 has very high compression efficiency but
the bitstream is not very robust to error. This is why H.264
bitstream needs additional FEC bits to protect. DCast may not
be as efficient as H.264 in video compression, but is robust
to channel noise. Thus, it can skip FEC and can use a very
dense 64K-QAM modulation, and achieves high transmission
efficiency.

C. Evaluation of Each Module

DCast has several modules such as coset coding, motion
estimation (ME) and power distortion optimization (PDO). In
the following test, we incrementally turn off these modules
in DCast to evaluate their contribution. In this test the input
video is all−seq, and the channel SNR is 5 − 15 dB. The
test results are given in Fig. 6. In this figure, "PDO off"
means there are no PDO and the encoder utilizes an adhoc
power allocation where the total transmission power is equally

Fig. 7. Robustness test. DCast is configured to optimized for target channel
SNR of 5 dB, 10 dB and 15 dB respectively, and then tested under different
channel SNR.

allocated between motion data and coset data, i.e. Pmv

Nmv
= Pcoset

Ncoset
.

"ME off" means there are no ME and the decoder uses
previous reconstructed frame directly as side information. Note
that there are dependencies between the three modules (coset,
ME, and PDO). When ME is disabled, the PDO must be
off because there is no MV to transmit. When coset coding
is disabled, the ME should be disabled also because the
decoder no longer needs side information. Furthermore, when
all the three modules (coset, ME and PDO) are off, the DCast
becomes the same as Softcast2-D. According to the result in
Fig. 6, the contribution of coset coding, ME and PDO are
about 2.7 dB, 0.8 dB and 0.5 dB respectively in video PSNR.

D. Robustness Test

In practical wireless applications, the channel SNR may
not be perfectly known to the encoder. In the following
tests, we will evaluate the performance of DCast in this
situation. The input video is all−seq and the channel SNR
is 5 − 15 dB. We let DCast to optimize for target channel
SNR of 5 dB, 10 dB and 15 dB respectively. The video PSNR
are compared in Fig. 7. According to the result, each of
the three encoders performs best when the practical channel
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Fig. 8. Robustness comparison between DCast and (a) H.264 and (b) another
DVC framework: WWVC. Channel SNR is unknown to all the encoders.
DCast encoder is optimized for channel SNR of 5 dB.

SNR matches its optimization target, but performs slightly
worse than the best one when the practical channel SNR does
not match the target. The one optimized for 15 dB channel
performs 1.2 dB lower in video PSNR than the optimal one
when the practical channel SNR is 5 dB. This indicates that
DCast should optimize for a lower channel SNR for more
robustness in multicast.

We then compare DCast with the conventional frameworks
based on H.264 and WWVC. Still we assume that only the
decoder knows the channel SNR. DCast is optimized for a
target channel SNR of 5 dB in the following tests. For conven-
tional framework, we implement all the eight recommended
combination of channel coding and modulation of 802.11. We
calculate the corresponding bitrates respectively according to
the bandwidth, and set the bitrates constraint to the H.264
encoder and WWVC encoder for rate control. Both the video
bitrate and the channel bitrate (the bitrate after RS coding
and FEC) under the eight transmission approaches are given
in Table II (Note that WWVC and H.264 have same bitrate
constraints.). For DCast, there are no bitrate but only channel

Fig. 9. Multicast performance on different video sequences.

Fig. 10. Multicast to three receivers.

Fig. 11. Serving a group of receivers with diverse channel SNR. The average
channel SNR of each group is 14 dB.
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Fig. 12. Visual quality comparison, channel SNR is 5 dB. (a) Original frame. (b) Softcast2D. (c) Softcast3D. d) DCast.

symbol rate. Note that all the frameworks consume the same
bandwidth and transmission power.

The video PSNR of each framework under different channel
SNR is given in Fig. 8. In Fig. 8(a), all eight conventional
transmission approaches suffer a very serious cliff effect. For
example, the approach ‘H.264,1/2FEC,16QAM’ performs well
when channel SNR is between 13 dB to 14 dB, but is not good
when channel SNR is out of this range. When the channel
SNR becomes more than 14 dB, the reconstruction quality
does not increase. When the channel SNR becomes 12 dB, the
reconstruction quality drops very quickly. When the channel
SNR becomes even lower, the video decoder cannot work since
almost all received RTP packets have bit error. Note that the
cliff effect can be partially mitigated in a layered approach
[41] combining the scalable video extension of H.264 and
a hierarchical modulation PHY layer. However, as shown
in [12], the layered approach needs a higher channel SNR
than the single layer approach to achieve the same PSNR.
Fig. 8(b) shows the performance of WWVC based framework.
In erroneous situation, WWVC can benefit from Wyner-Ziv
decoding and gains 1-2 dB in video PSNR over H.264. This
complies with the results in [17]. However, it still suffers a
very serious cliff effect.

In contrast, the three all-in-one frameworks do not suffer the
cliff effect. When the channel SNR increases, the reconstruc-
tion PSNR increases accordingly, and vice versa. DCast is still
the best one among the three all-in-one frameworks. At low
channel SNR, DCast is still 1.5 dB and 4 dB better in video

PSNR than Softcast3D and Softcast2D respectively. However,
when the channel SNR increases, the gain of DCast decreases.
When channel SNR is 25 dB, DCast performs similar to
Softcast3D and gains only about 2.5 dB in video PSNR over
Softcast2D. Compared with the unicast result in Fig. 5, the
performance of DCast becomes 1.5 dB worse in video PSNR
at high channel SNR. This is mainly due to the fact that the
optimization of DCast (including both the PDO and the coset
quantization step) is for 5 dB channel SNR in this test. Fig. 9
gives the performance comparison on different video sequence.

E. Multicast Performance

Next, we let all the frameworks serve a group of three
receivers with diverse channel SNR. The channel SNR for each
receiver is 6 dB, 12 dB, and 18 dB, respectively. The test result
is given in Fig. 10. In conventional frameworks based on H.264
and WWVC, the server transmits the video stream by using
3/4 FEC and BPSK. It cannot use higher transmission rate
because in that case the 6 dB user will not be able to decode the
video. Due to this, although the other two receivers have better
channel conditions, they will also receive low speed 802.11
signal, and reconstruct low quality video. In Softcast and
DCast, the server can accommodate all the receivers simul-
taneously. Using DCast, the 6 dB user can get slightly lower
reconstruction quality than using H.264 or WWVC based
conventional frameworks. However, the 12 dB and 18 dB users
get 4 dB and 8 dB better reconstruction quality respectively by
using DCast other than conventional frameworks.
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TABLE II

Comparison of Complexity and bitrate

Encode time Decode time Video bit rate Channel bit rate Channel symbol rate
H.264+1/2FEC+BPSK 387 ms 7 ms 530 Kb/s

1.15 Mb/s
H.264+3/4FEC+BPSK 387 ms 8 ms 795 Kb/s
H.264+1/2FEC+QPSK 406 ms 9 ms 1060 Kb/s

2.3 Mb/s
H.264+3/4FEC+QPSK 389 ms 10 ms 1590 Kb/s
H.264+1/2FEC+16QAM 381 ms 11 ms 2120 Kb/s

4.6 Mb/s
1.15 M/s

H.264+3/4FEC+16QAM 385 ms 14 ms 3180 Kb/s
H.264+2/3FEC+64QAM 371 ms 15 ms 4240 Kb/s

6.9 Mb/s
H.264+3/4FEC+64QAM 427 ms 16 ms 4770 Kb/s
DCast 304 ms 10 ms – –

Fig. 11 compares the multicast performance of four frame-
works, with respect to the range of receiver SNR. The range of
receiver SNR is defined as the difference of the maximal and
minimal channel SNR of the users in the group. The average
channel SNR of the users in group is 14 dB. When the channel
SNR range is 0 dB, i.e., the channel SNR of all the users
are equally 14 dB, DCast, Softcast3D and H.264 framework
performs similar. However, when the users’ channel SNR
becomes diverse, the performance of H.264 framework drops
quickly.

The visual quality comparison is given in Fig. 12. The
channel SNR is set to be 5 dB. DCast has clearly better visual
quality than both Softcast2-D and Softcast3-D.

In all the tests, including unicast and multicast, DCast per-
forms better than both Softcast2-D and Softcast3-D. Moreover,
DCast does not introduce frame delays as Softcast3-D does,
and is applicable for realtime video multicast like Softcast2-D.

F. Complexity and Bitrate

The proposed DCast allows the ME to be performed at
encoder. Therefore the encoder would be in high complexity
but the decoder would be in low complexity. Table II shows
the average encoding time and decoding time per frame in
millisecond. The test machine has a Pentium (R) Dual-Core
CPU E5300 @ 2.60 GHz, 2G internal memory and Microsoft
Windows XP Professional 5.1.2600, with Service Pack 3. The
input video is all−seq of ‘CIF’ size at 30 frames per second.
DCast has less encoding time than H.264 codec (JM14.2)
possibly because that DCast has no mode decision and no
entropy coding. As to the decoding time, DCast is comparable
to the H.264 codec.

Table II also shows the video bitrate and channel bitrate of
H.264 solutions. For example, when the modulation is BPSK,
the channel bitrate is equal to the channel symbol rate, i.e.
1.15 M/s. If the FEC is 1/2 convolutional code and the RS
code is 188/204, then the video bitrate is 1.15 M × 1

2 × 188
204 =

530 Kb/s. When the modulation is QPSK and the FEC is 3/4
convolutional code, then the channel bitrate is 2.3 Mb/s and
the video bitrate is 1590 Kb/s. The decoding time of H.264
codec depends on the video bitrate. Basically, the decoding
time becomes longer when the bitrate increases. The DCast
framework has no bitrate but a universal channel symbol rate.
Its decoding time is fixed and is similar to the decoding time
of H.264 decoder at bitrate 1590 Kb/s.

VI. Conclusion

In this paper, we proposed a novel framework called DCast
for distributed video coding, and transmission over wireless
networks. DCast first presented a new design on how to
efficiently transmit distributed coded video data over Gaus-
sian channel. Furthermore, we also proposed a new power
distortion optimization for the proposed DCast.

DCast avoided the annoying cliff effect of conventional
frameworks caused by the mismatch between transmission rate
and channel condition. A single DCast server accommodated
multiple users with diverse channel SNRs simultaneously in
multicast without sacrificing any user’s coding performance
approximately. As shown in the experiments, DCast performed
competitively with H.264 framework in unicast but gained up
to 8 dB in video PSNR in multicast.

DCast, as a unique DVC framework, did not utilize some so-
phisticated video coding tools such as variable block ME, intra
mode, or mode decision. How to enable these tools to further
improve the performance of DCast is one possible future work.
Furthermore, the DCast in this paper was mainly designed
and optimized for Gaussian channel. Another opportunity for
future work is to extend the proposed DCast to fading channel
which may require more complicated channel estimation and
power distortion optimization.
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