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a b s t r a c t 

Person re-identification (ReID) is a challenging task due to arbitrary human pose variations, background 

clutters, etc. It has been studied extensively in recent years, but the multifarious local and global fea- 

tures are still not fully exploited by either ignoring the interplay between whole-body images and body- 

part images or missing in-depth examination of specific body-part images. In this paper, we propose a 

novel attention-driven multi-branch network that learns robust and discriminative human representation 

from global whole-body images and local body-part images simultaneously. Within each branch, an intra- 

attention network is designed to search for informative and discriminative regions within the whole-body 

or body-part images, where attention is elegantly decomposed into spatial-wise attention and channel- 

wise attention for effective and efficient learning. In addition, a novel inter-attention module is designed 

which fuses the output of intra-attention networks adaptively for optimal person ReID. The proposed 

technique has been evaluated over three widely used datasets CUHK03, Market-1501 and DukeMTMC- 

ReID, and experiments demonstrate its superior robustness and effectiveness as compared with the state 

of the arts. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Person re-identification (ReID) aims to identify the same indi-

idual across non-overlapping cameras. It has attracted increasing

nterests in recent years in the computer vision and pattern recog-

ition research communities, largely due to its wide applications in

urveillance analysis, etc. On the other hand, person ReID remains

n open research challenge because of two major factors. First, the

ame person often has very large ‘intra-class’ variation due to dif-

erent imaging conditions in camera sensors, human poses, occlu-

ion, background clutters and illuminations as illustrated in Fig. 1 a.

econd, as shown in Fig. 1 b, the ‘inter-class’ variation of differ-

nt persons may be much smaller as compared with the ‘intra-

lass’ variation of the same person. Most traditional methods ad-

ress these challenges by either designing discriminative features

1–8] or learning powerful similarity metrics [7,9–17] . 

Deep neural networks have been widely used for the per-

on ReID task in recent years. Leveraging large-scale person ReID

atasets such as CUHK03 [18] , Market-1501 [19] and DukeMTMC-

eID [20] , they have achieved very competitive performance and

ecome prevalent in human visual feature learning. Most exist-
∗ Corresponding author. 
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ng methods [21,22] learn a global representation from whole-body

mages but lose discriminative information lying around specific

ody parts. For example, the two distinct persons in the middle

f Fig. 1 b have very similar global appearance but fine differences

round the head region. To capture the local discriminative infor-

ation, several works [23,24] have been reported to learn part rep-

esentations from some predefined horizontal partition strips. But

uman images collected by automatic detectors often suffer from

isalignment and even part missing as illustrated in Fig. 1 c. To

ddress the misalignment issue, pose estimation [25,26] has been

xploited to detect human parts to learn the local discriminative

eatures. On the other hand, different regions within the same hu-

an part usually have different im portance to the local discrimina-

ive feature learning, and different human parts also have different

ontributions to the final person ReID matching. 

Visual attention can be exploited to detect informative pix-

ls/regions within an image, which has good potential to train bet-

er deep network models by guiding the learning toward infor-

ative image regions [27,28] . Given top-down target information,

t helps to learn target relevant features and produces an atten-

ion map where regions of interest if present usually have much

tronger response as compared with non-target regions. Atten-

ion has been used in person ReID, but most works [29,30] learn

lobal attention from whole-body images only where discrimina-

ive features of body-part images are often suppressed, e.g. the

lobal attention has strong responses around certain specific re-

https://doi.org/10.1016/j.patcog.2018.08.015
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2018.08.015&domain=pdf
mailto:hzjia@pku.edu.cn
https://doi.org/10.1016/j.patcog.2018.08.015
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Fig. 1. Person ReID Challenges: The ‘intra-class’ appearance variations of the same person in 1a (grouped by green-color boxes) may be larger than the ‘inter-class’ appearance 

variations of different persons in 1b (grouped by red-color boxes) due to different human poses, occlusion, illuminations, etc. Additionally, large ‘intra-class’ variations could 

be introduced by misalignment resulting from the inaccurate human detection as illustrated in 1c. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 

Fig. 2. Global attention detects globally discriminative regions which may suppress local informative regions and is insufficient in representation learning for person ReID 

by itself. 
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gions only as illustrated in Fig. 2 . Several attempts have been re-

ported [29,31] to learn attention in multiple rounds under different

parameters aiming to capture more local discriminative features,

but the learnt attention is still global using whole-body images

which often leads to redundant focus around similar regions. 

We design an attention-driven person ReID network that ad-

dresses the above constraints from two aspects: 1) it learns com-

plementary discriminative representations from global whole-body

images and local body-part images independently, and 2) it fuses

the global and local features according to their learned contribu-

tions/importance to the feature matching. We formulate the two

aspects by two specific terms, namely, intra-attention and inter-

attention. The intra-attention aims to guide the learning to capture

discriminative features of whole-body images and body-part im-

ages more precisely. For the whole body and each of the interested
ody parts, a dedicated intra-attention network is designed to

earn the optimal feature representation and attention maps simul-

aneously. The inter-attention then learns optimal weights adap-

ively for optimal fusion of the output of intra-attention networks.

o the best of our knowledge, this is the first attempt that models

ntra-attention and inter-attention under an end-to-end trainable

etwork architecture. The proposed technique has four major con-

ributions as listed: 

• It designs a novel multi-branch network architecture that learns

precise and discriminative person ReID features under the guid-

ance of intra-attention and inter-attention. 
• It designs a novel intra-attention network that learns discrim-

inative features from precisely aligned global whole-body im-

ages and body-part images concurrently and independently. 



F. Yang et al. / Pattern Recognition 86 (2019) 143–155 145 

 

 

 

 

 

o  

i  

s  

i

2

 

p  

s  

o  

w  

‘  

d  

c  

m  

b  

o

2

 

f  

p  

i  

v  

X  

a  

i  

w  

F  

l  

b  

T  

i  

c  

[  

s  

H  

t  

f  

m  

l  

e  

t  

t  

s  

n  

p  

R  

a

2

 

o  

c  

w  

m  

i  

u  

i  

b  

m  

f  

t  

p  

t  

W  

s  

r  

m  

p  

t  

a  

T  

b  

p  

i  

a  

o  

d  

d  

p

2

 

t  

[  

p  

t  

g  

p  

f  

m  

m  

e  

t  

i  

v  

(  

a  

l  

w  

w  

n  

g  

c  

t  

l

 

t  

m  

c  

a  

r

3

 

c  

t  

r  
• It designs a novel inter-attention module that fuses discrimina-

tive features of the global whole-body images and local body-

part images adaptively for optimal person ReID. 
• It develops an end-to-end trainable deep network system that

achieves superior person ReID performance across a number of

widely used benchmarking datasets. 

The rest of this paper is organized as follows. Section 2 briefly

verviews related works. Section 3 presents our proposed method

n detail. Implementation details and experimental results are pre-

ented in Section 4 . Finally, several concluding remarks are drawn

n Section 5 . 

. Related work 

Person ReID has been studied for years and a large number of

erson ReID techniques have been reported in the literature. This

ection will focus on prior works using deep networks because

ur proposed approach is deep network based and also deep net-

ork based techniques clearly outperform most prior works using

shallow’ models. According to different learning strategies, existing

eep network based methods can be broadly grouped into three

ategories including: 1) methods using global whole-body infor-

ation only [18,21,22,32–43] , 2) methods using both global whole-

ody and local body-part information [23–26,44–47] and 3) meth-

ds using attention [27–31,48–51] . 

.1. Person ReID using whole-body information 

Earlier deep person ReID works learn global representation

rom whole-body images only. Different approaches have been re-

orted to learn representation features and distance metrics by us-

ng different losses such as identity classification loss, pair-wise

erification loss and triplet ranking loss [18,32,33] . For example,

iao et al. [21] train a classification model by treating images of

 unique person as a specific category. In [36,37] , pose-normalized

mages are included to train the classification model. Different net-

orks have also been investigated for the person ReID problem.

or example, Siamese networks which learn to estimate the simi-

arity between a pair of images have been studied for person ReID

y jointly considering classification and verification losses [34,38] .

riplet networks have also been studied for person ReID by learn-

ng relative similarity among three types of images including an-

hors, positive ones and negative ones. For example, Wang et al.

22] combine triplet loss with a pairwise verification loss to unify a

ingle-image representation and a cross-image representation and

ermans et al. [39] use a variant of the triplet loss to perform end-

o-end deep metric learning. Quadruplet deep network which learn

rom four input images with a margin-based online hard negative

ining strategy have also been investigated for person ReID prob-

em recently [40] . Further, different person attributes have been

xamined to improve the discrimination of the learned represen-

ation, e.g. Lin et al. [42] explore complementary cues from at-

ribute labels for better ReID performance and Su et al. [35] de-

ign a semi-supervised attribute learning framework to learn bi-

ary attribute features. Though these methods can learn global

erson representation effectively, they often produce sub-optimal

eID performance because they ignore the very informative details

round body parts. 

.2. Person ReID using whole-body and part information 

To address the constraints of using the whole-body information

nly, a number of new methods have recently been designed to

apture richer and finer visual cues by jointly learning from both

hole-body images and body-part images. These newly designed
ethods can be broadly classified into three categories depend-

ng on the part generation scheme. Methods in the first category

se some predefined partition strategy such as fixed-height hor-

zontal strips [23,24,46] . This approach is simple to implement,

ut the predefined partitions are often poorly aligned with hu-

an body parts when human images are collected using imper-

ect automatic detectors. Methods in the second category use off-

he-shelf pose estimation models to detect body parts. For exam-

le, Zhao et al. [25] first learn part representation and then fuse

hem with the global representation iteratively for person ReID.

ei et al. [26] perform person ReID by concatenating part repre-

entation and global representation directly. Though learning rep-

esentation from the estimated body parts alleviates the misalign-

ent constraint, it can easily lead to failure when certain body

arts are occluded or missing due to detection errors. Methods in

he third category jointly learn part regions and features. For ex-

mple, Li et al. [47] propose to localize body parts using Spatial

ransformer Networks (STN) [52] but the learned body parts may

elong to similar regions. Yao et al. [53] propose to estimate body

arts in a feature space and generate local features by ROI pool-

ng, but the method is computationally intensive in both training

nd testing stages. More importantly, these methods focus more

n developing robust part partition schemes instead of extracting

iscriminative features from body parts, and most of them ignore

ifferent importance while fusing local features of different body

arts. 

.3. Person ReID using attention 

In recent years, visual attention [54] has been widely exploited

o learn visual representations in various tasks in classification

28,55] , object recognition [27] , image captioning [48] as well as

erson ReID [3,30,31,50,51,56] . Liu et al. [3] propose an atten-

ion model that dynamically generates discriminative features from

lobal whole-body images in a recurrent way. Li et al. [31] pro-

ose a Harmonious Attention (HA) model that locates body parts

rom whole-body images and learns multi-scale feature maps si-

ultaneously. Liu et al. [30] propose a multi-directional attention

odule that generates attentive features by masking different lev-

ls of features using an attention map. Si et al. [50] extract fea-

ure vectors by pooling predefined sub-regions and then apply an

ntra-sequence attention mechanism to refine the extracted feature

ectors. Chang et al. [51] propose a Multi-Level Factorisation Net

MLFN) that learns visual factors at multiple semantic levels where

n attentive factor selection module is designed to dynamically se-

ect which subset of factor modules are activated. Most existing

orks thus focus on attention learning using whole-body images,

here dedicated attention learning from each body parts is largely

eglected. On the other hand, global attention focuses more on

lobal informative regions which often suppresses or ignores lo-

al informative regions around body parts and accordingly leads

o suboptimal ReID performance when person images suffer from

arge pose variations, severe misalignments, local occlusion, etc. 

The proposed attention-driven person ReID technique addresses

he above constraints from two aspects. First, it learns comple-

entary intra-attention from global whole-body images and lo-

al body-parts images independently. Second, it exploits inter-

ttention that fuses the global and local features according to their

elevance to person ReID. 

. Methodology 

Given n training images I = { I i } n −1 
i =0 

of q distinct person with the

orresponding identity labels L = { L i } n −1 
i =0 

(where L i ∈ [0 , . . . , q − 1] ),

he target of person ReID is to learn a model that is capable of

e-identifying images of the same person given some query image.
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Fig. 3. The framework of the proposed attention-driven network: Given a person image I i , an aligned whole-body image and four body-part images are first determined 

by pose estimation. Five intra-attention networks with shared lower convolutional layers then map the respective input image to discriminative features as supervised by 

independent softmax classification loss. An inter-attention module is further trained to fuse the outputs of five intra-attention networks according to their relevance to 

feature matching. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Detailed design and implementation of the base network: MP stands for max- 

pooling, AP stands for average-pooling and S stands for stride. 

Layer # Layer Share Global Branch Part Branch 

1 Conv1 Yes 3 × 3, 32, S-2 × 2 3 × 3, 32, S-2 × 2 

9 Conv2x No 3 × 3 MP, S-2 × 2 3 × 3 MP, S-1 × 2 [1 × 1 , 32 

3 × 3 , 32 

1 × 1 , 64 

]
× 3 

[1 × 1 , 16 

3 × 3 , 16 

1 × 1 , 32 

]
× 3 

9 Conv3x No 

[ 1 × 1 , 64 

3 × 3 , 64 

1 × 1 , 128 

]
× 3 

[1 × 1 , 32 

3 × 3 , 32 

1 × 1 , 64 

]
× 3 

9 Conv4x No 

[1 × 1 , 128 

3 × 3 , 128 

1 × 1 , 256 

]
× 3 

[ 1 × 1 , 64 

3 × 3 , 64 

1 × 1 , 128 

]
× 3 

9 Conv5x No 

[1 × 1 , 256 

3 × 3 , 256 

1 × 1 , 512 

]
× 3 

[1 × 1 , 128 

3 × 3 , 128 

1 × 1 , 256 

]
× 3 

1 FC_reduce No AP AP 

256 128 

1 FC No ID ID 
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We design a multi-branch attention-driven network that simulta-

neously learns and fuses discriminative and complementary fea-

tures from both global whole-body images and local body-part im-

ages as illustrated in Fig. 3 . The following subsections will describe

the design and implementation of the attention-driven person ReID

network in detail, specifically on the base network, the body part

detection and alignment, the intra-attention network and the inter-

attention module. 

3.1. Base network 

We adopt the Residual units [57] as the basic building elements

and design a multi-branch network for person ReID. As illustrated

in Fig. 3 , the designed network consists of five branches includ-

ing: 1) one branch that aims to learn global features from whole-

body images and 2) four independent branches that aim to learn

local features from four body-part images. To minimize the model

complexity, we simplify the ResNet50 in both network layers and

channel numbers. In addition, we remove the last down-sampling

operation in each branch (for higher granularity of the learnt fea-

tures). All five branches learn independently, targeting optimal cap-

ture of complementary and discriminative identification features

from whole-body images and four body-part images as well as

minimization of overfitting risks. More details of the architecture

of the base network are listed in Table 1 . 

3.2. Body part detection and alignment 

Human images especially those collected using automatic de-

tectors often suffer from various misalignment by either including

too much background clutters or missing certain body parts. On

the other hand, robust person ReID often requires good alignment

of human body and sometimes even body parts. Based on the ob-

servation that human body and body parts can usually be localized

by body joints, we employ pose estimation [58,59] to first local-

ize body joints and then use the localized body joints for human

alignment. In particular, we adopt an off-the-shelf pose estimator
58] that directly produces 2D locations of 18 major body joints

 j ( j = 1 , . . . , 18) as illustrated in Fig. 4 a. 

Note that joint detection may suffer from detection errors while

ealing with low-quality images due to occlusion, poor lighting,

tc. We improve the joint detection by leveraging a set of canonical

uman poses that represent a list of typical human body configu-

ations as exhibited in public surveillance cameras. Then for a new

erson image, only body joints with good detection confidence are

ept and those missing or with ultra-low detection confidence are

stimated by using the canonical poses. With 18 landmark body

oints as illustrated in Fig. 4 b, we first localize and divide the hu-

an images into five body regions as illustrated in Fig. 4 c. In par-

icular, the five regions are defined by the respective body joints

hich consist of the whole body region P 0 = { K 1 , . . . , K 18 } , the head

egion P 1 = { K 1 , . . . , K 8 } , the upper-body region P 2 = { K 6 , . . . , K 14 } ,
he upper-leg region P = { K , . . . , K } and the lower-leg region
3 13 16 
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Fig. 4. Illustration of the human part detection: (a) 18 major human body joints by pose estimation, (b) definition of five body parts using the 18 major body joints, (c) 

detection of five body regions based on the definition in Fig. 4b . 
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 4 = { K 15 , . . . , K 18 } . Let ( x j , y j ) denote the coordinates of the 18 ma-

or body joints, several key parameters of the global human region

an be computed as follows: 

H = 

4 

3 

max 
j∈ P 4 

(y j ) −
1 

3 

min 

j∈ P 4 
(y j ) − (2 ∗ min 

j∈ P 1 
(y j ) − max 

j∈ P 1 
(y j )) 

(x c , y c ) = ( x j , y j ) j ∈ P 0 

x l = min (x c − H/ 4 , min 

j∈ P 0 
(x j )) 

x r = max (x c + H/ 4 , max 
j∈ P 0 

(x j )) 

(1) 

here ( x l , x r ), ( x c , y c ) and H denote the horizontal boundary, the

enter and the height of the whole body region, respectively. The

ar symbol in x j and y j denotes a mean operator. For each body

egion P i , (i = 0 , . . . , 4) , the corresponding bounding box R i , (i =
 , . . . , 4) can thus be determined as follows: 

 i = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

(x l , 2 ∗ min 

j∈ P 1 
(y j ) −max 

j∈ P 1 
(y j ) , x r , 

4 
3 

max 
j∈ P 4 

(y j )− 1 
3 

min 

j∈ P 4 
(y j )) i = 0 ,

(x l , 2 ∗ min 

j∈ P 1 
(y j ) − max 

j∈ P 1 
(y j ) , x r , max 

j∈ P 1 
(y j ) + β) i = 1 , 

(x l , min 

j∈ P i 
(y j ) − β, x r , max 

j∈ P i 
(y j ) + β) i = 2 , 3 

(x l , min 

j∈ P 4 
(y j ) − β, x r , 

4 
3 

max 
j∈ P 4 

(y j ) − 1 
3 

min 

j∈ P 4 
(y j )) i = 4 

(2)

here β is the height of overlapping between two neighboring re-

ions which is empirically set at H /10. For the sample image in

ig. 4 a, Fig. 4 c shows the determined five human regions. 

.3. Intra-attention network 

The intra-attention network is constructed by stacking multi-

le representation learning blocks B i (i = 1 , . . . , 4) as illustrated in

ig. 5 . Multiple attention branches are adopted to generate atten-

ion maps at multiple resolutions, targeting to refine the learned

epresentation progressively. In particular, features from the previ-

us conv-layer are first fed into Block 1 to extract low level fea-

ures. Blocks 2–4 each consists of two paths, one for feature ex-

raction and the other for attention estimation. The feature extrac-

ion path acts as multiple detectors to extract semantic structures,

here the initial features of the i th block B i can be formulated as

ollows: 

 i = F(v i , θi ) (3)

here v i and a i are the input and output of feature extraction path

f block B i , and F is the stacked residual unit with parameters θ i .

he output a i is a 3-D tensor a i ∈ R 

h ×w ×c , where h, w , and c de-

ote the height, width, and channel number of the feature map a i ,

espectively. 
The attention path acts as a mask function to re-weight the fea-

ures for automatic inference of regions of interest. It processes ev-

ry input features of B i to obtain an attention score m i ∈ R 

h ×w ×c 

ith the same size as a i : 

 i = M (v i , φi ) (4)

here M is the attention scoring function with parameters φi .

ith the attention mask, the basic form of the adjusted features

ecome: 

 i +1 = m i � a i (5) 

here � denotes element wise product, and v i +1 is the output

f B i . Higher scores will be computed around the local regions

hat are more relevant to the discriminative representation, largely

riven by the loss function that aims to reduce the person ReID

rror to be described in Section 3.5 . 

More details of the proposed intra-attention network will be

escribed in the following subsections, including encoder-decoder

etwork, spatial-wise and channel-wise attention and optimization

s illustrated in Fig. 5 . 

.3.1. Encoder-decoder network 

Coherent understanding of the whole image and further focus-

ng on discriminative local regions are essential for confidence es-

imation in various image recognition and classification tasks. For

xample, head, hat and glasses become the most discriminative

isual cues around the head region while working on images of

ower resolutions progressively. Aiming to capture discriminative

eatures across multiple scales, we design an intra-attention net-

ork that employs the popular encoder-decoder structure as illus-

rated in Fig. 5 . The encoder aims to learn multi-scale feature maps

f the whole image region, where residual unit and max pooling

re applied to process features down to lower resolutions. After

eaching a predefined lowest resolution, the decoder employs sym-

etrical up-sampling iteratively to produce pixel-wise attention.

o consolidate information across scales, skip layers are employed

o combine features across the encoder and decoder at the same

esolution, where the combination is implemented by an element

ise addition of two sets of features. Note that we apply max pool-

ng two times in Block 2, and one time in Blocks 3–4 as shown in

ig. 5 . 

.3.2. Spatial-wise and channel-wise attention 

A convolutional layer employing c channel filters scans an in-

ut image or feature map and outputs a h × w × c feature map,

here each filter detects one specific feature pattern across the

patial domain. Convolutional feature detection is therefore spatial-

ise and channel-wise. Inspired by this observation, we design a
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Table 2 

Settings of person ReID datasets that are used in the ensuing experiments. 

Dataset Cams IDs Train IDs Test IDs Images 

CUHK03-Labeled 6 1467 1367 100 14,097 

CUHK03-Detected 6 1467 1367 100 14,097 

Market-1501 6 1501 751 750 32,668 

DukeMTMC-ReID 8 1404 702 702 36,411 
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novel attention learning strategy that decomposes attention into

a spatial-wise attention component and a channel-wise atten-

tion component. Specifically, it decomposes attention of dimen-

sion h × w × c (the same size as features as in conventional atten-

tion models) into a spatial-wise attention component of dimen-

sion h × w × 1 and a channel-wise attention component of dimen-

sion 1 × 1 × c . The decomposition thus reduces the number of pa-

rameters as well as the searching space significantly which helps

to lower the model complexity and improve the person match-

ing clearly, more details to be discussed in the experiments in

Section 4 . 

In particular, the spatial-wise attention attempts to focus on

semantic-related regions in the spatial domain, e.g. the head when

we want to extract features from the head region as illustrated in

Fig. 4 c. In the proposed intra-attention networks, the spatial-wise

attention S i ∈ R 

h ×w ×1 of block B i is computed by a convolutional

layer which is formulated as follows: 

S i = f (A i , W 

s 
i ) (6)

where f is the convolutional operation with parameter matrix W 

s 
i 
,

A i is the initial attention confidence score as computed by the

encoder-decoder network. 

At the other end, each feature channel is actually an activa-

tion response of the corresponding convolutional filter and can be

viewed as a semantic attribute. The learning of the channel-wise

attention can therefore be interpreted as a process of selecting the

most discriminative semantic attributes across multiple channels.

For example, the channel-wise attention attempts to assign higher

weights to the features of hat, glasses and hair while learning

features around the head region. In implementation, an averaging

pooling is first applied to each channel A i to obtain a channel fea-

ture V i ∈ R 

1 ×1 ×c . A convolutional layer is then employed to obtain

the channel-wise attention map C i ∈ R 

1 ×1 ×c . Finally, the spatial-

wise attention S i and channel-wise attention C i are combined by

first multiplying S i and C i and followed by a 1 × 1 convolution op-

eration. The output m i is normalized to the range of [0, 1] using a

sigmoid function as illustrated in Fig. 5 . 

3.3.3. Optimization 

As studied in [28] , element-wise production in Eq. (5) using a

mask ranging from 0 to 1 may degrade the features of deep net-

work layers. We address this issue by using a residual attention

scheme which modifies the masking operation as follows: 

v i +1 = (1 + m i ) � a i (7)

As defined in Eq. (7) , the adjusted features will approximate the

original ones when the attention score approximates 0. Otherwise,

they are enhanced depending on the attention score. The new

masking operation therefore attenuates the feature adjustment as

compared with the one in Eq. (5) . 

3.4. Inter-attention network 

The intra-attention networks learn discriminative features

within the respective input images, where global features from

whole-body images lay the groundwork and local features from

body-part images capture complementary identification informa-

tion. Local features of images of the four body parts usually cap-

ture different visual cues that have different contributions to the

feature matching. Additionally, images of the four body parts of-

ten have different qualities due to variations in human poses, back-

ground clutters, etc. As a result, direct concatenation of the output

of the four intra-attention body-parts networks with equal weights

often leads to sub-optimal person ReID features. 

We design an inter-attention module that adaptively fuses the

output of the four intra-attention networks. Let E i (i = 1 , . . . , 4) de-

note local features of the four intra-attention body-part networks,
he corresponding weights μi can be learnt via four independent

ully-connected layers as follows: 

i = Sigmoid(w i E i + b i ) (8)

here w i and b i , i = 1 , . . . , 4 denote the weight vector and bias

erm of the four fully-connected layers. By applying the same

forementioned residual scheme in Eq. (7) , the fused local feature

 l can be derived by: 

 l = [(μ1 + 1) E 1 , (μ2 + 1) E 2 , (μ3 + 1) E 3 , (μ4 + 1) E 4 ] (9)

here [, ] denotes concatenation. 

The final person ReID feature is derived by assigning the same

eight to the global feature E g (learnt from the whole-body im-

ges) and the fused part feature E l . The principle here is that the

lobal feature E g and the fused part feature E l have similar con-

ributions to the person ReID though they usually capture comple-

entary identification information, more details to be discussed in

ection 4.4 . Note we also investigated the scheme of learning the

eight of E g in the similar way as in Eq. (8) , but the obtained per-

ormance is slightly lower than the scheme described above. 

.5. Loss functions 

We use the cross-entropy classification loss to train both intra-

ttention networks and inter-attention module. Given a training

mage I i with identity label L i and X i denoting the input of the pre-

iction layer, the cross-entropy loss l can be evaluated as follows

 = −1 

n 

n −1 ∑ 

i =0 

log( 
exp(W L i X i ) ∑ q −1 

k =0 
exp(W k X i ) 

) (10)

here n is the number of training images, q is the number of iden-

ity and W k is parameter of the prediction function for the training

dentity k . 

As described in the previous subsections, each intra-attention

etwork is trained separately using an independent loss. Addition-

lly, the inter-attention module also employs a loss to learn how

o fuse features for optimal person ReID. The overall loss is thus

efined as follows: 

 = λ
5 ∑ 

j=1 

l j 
intra 

+ l inter (11)

here λ controls the relative weights of the intra-attention loss

nd the inter-attention loss which is empirically set at 0.5 in our

mplemented system. 

. Experiments 

.1. Datasets and settings 

.1.1. Datasets 

Our proposed method is evaluated over three widely used

atasets including CUHK03 [18] , Market-1501 [19] and DukeMTMC-

eID [20] ( Table 2 ). The CUHK03 consists of 14,097 images of 1467

ifferent identities, where 6 campus cameras were deployed for
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Table 3 

Comparison with the state of the arts on the Market-1501. 

Methods R1 R5 R10 R20 mAP 

LOMO + XQDA [7] 43.79 – – – 22.22 

NFST [13] 55.43 – – – 29.87 

BoW + Kissme [19] 44.42 63.90 72.18 78.95 20.76 

HP-net [30] 76.90 91.30 94.50 96.70 –

Spindle [25] 76.90 91.50 94.60 96.70 64.67 

MSCAN [47] 80.31 – – – 57.53 

Part-Aligned [29] 81.00 92.00 94.70 – 63.40 

SVDNet [41] 82.30 – – – 62.10 

PDC [37] 84.14 92.73 94.92 96.82 63.41 

APR [42] 84.29 93.20 95.19 97.00 64.67 

TriNet [39] 84.90 – – – 69.10 

JLML [46] 85.10 – – – 65.50 

DPFL [64] 88.60 – – – 72.60 

GLAD [26] 89.90 – – – 73.90 

MLFN [51] 90.00 – – – 74.30 

HA-CNN [31] 91.20 – – – 75.70 

DuATM [50] 91.42 97.09 – – 76.62 

Ours 94.99 98.25 99.12 99.38 86.47 

Table 4 

Comparison with the state of the arts on 

the DukeMTMC-reID. 

Methods Rank-1 mAP 

LOMO + XQDA [7] 30.75 17.04 

BoW + Kissme [19] 25.13 12.17 

GAN(R) [20] 67.68 47.13 

APR [42] 70.69 51.88 

SVDNet [41] 76.70 56.80 

DPFL [64] 79.20 60.60 

HA-CNN [31] 80.50 63.80 

MLFN [51] 81.00 62.80 

DuATM [50] 81.16 67.73 

Ours 86.04 74.57 
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mage collection and each identity is captured by 2 campus cam-

ras. This dataset provides two types of annotations, one by manu-

lly labeled bounding boxes and the other by bounding boxes pro-

uced by an automatic detector [60] . The dataset also provides 20

andom train/test splits used in [18] which selects 100 identities

or testing and the rest for training. We select the first split and

se 100 identities for testing and the rest 1367 identities for train-

ng. The Market-1501 is collected using 6 cameras, which consists

f 32,668 images of 1501 identities as generated by an automatic

etector. We follow the training and evaluation protocol in [19] ,

hich splits images into a training set with 12,936 images and

 testing set with 19,732 images. The DukeMTMC-ReID is a sub-

et of DukeMTMC which was collected using 8 cameras for the

tudy of cross camera tracking. It consists of images of 1404 iden-

ities where half is used for training and the other half for test-

ng. Specifically, there are 2228 queries, 17,661 galleries, and 16,522

raining images, respectively. We follow the protocol in [20] for ex-

eriments on this dataset. 

.1.2. Evaluation protocol 

The performance of person ReID is evaluated by using the

idely used cumulative matching characteristic (CMC) [61] across

ll three datasets. CMC is a widely used metric in person ReID

valuation. Take the single-gallery-shot setting (each gallery iden-

ity has only one instance) as an example. For each query, all

allery samples are ranked according to their distances to the

uery, and the CMC top-k accuracy is evaluated by: 

cc k = 

{ 

1 if top-k ranked gallery samples contain the query 
identity , 

0 other wise 

(12) 

t is actually a shifted step function, and the CMC curve can be de-

ived by averaging the shifted step functions over all queries. Due

o the space limit and also for direct comparison with the state

f the arts, we only report the CMC accuracy at selected ranks

nstead of plotting actual CMC curves. The mean Average Preci-

ion (mAP) score [19] is also reported for the Market-1501 and

ukeMTMC-ReID. But for the CUHK03, the mAP is not reported as

n [18,37,46,47] because the gallery has only one image for each

dentity. All experiments adopt the single-query evaluation mode,

nd no re-ranking is performed for our method as well as com-

ared methods. 

.1.3. Implementation details 

Our ReID model is implemented and trained on the Keras

62] , and Stochastic Gradient Descent (SGD) is used for optimiza-

ion. The model is first pre-trained on the ImageNet (ILSVRC2012)

63] for 9 epochs, where the learning rate is initially set as 0.01

nd further divided by 10 after every 3 epochs. It is then fine-

uned on each of the three ReID datasets for 100 epochs, respec-

ively, where the learning rate is initially set as 0.01 and further

ivided by 10 after every 40 epochs. The batch size is set at 32

or both pre-training and fine-tuning, and dropout is applied be-

ore every prediction layer with the dropout ratio empirically set

t 0.5. Further, all training and testing image are rescaled to a fixed

ize of 384 × 192 and each of the four body parts has a fixed size

f 96 × 192. Each training image is first normalized by subtracting

ts channel means and then fed to the network in a random order

or training. 

.2. Comparison with state of the arts 

The proposed method is evaluated and benchmarked with

ost state-of-the-art person Re-ID techniques over the three most
idely used datasets including the Market-1501, the DukeMTMC-

eID and the CUHK03. 

For the Market-1501, the proposed method is compared with

7 state-of-the-art methods and Table 3 shows experimental re-

ults (the three methods above the horizontal line use traditional

shallow’ model and the rest uses deep models). As Table 3 shows,

ur method achieves superior ReID accuracy and outperforms the

tate of the arts by 3.57% in Rank-1 (94.99% versus 91.42% by Du-

TM) and 9.85% in mAP (86.47% versus 76.62%). Specifically, our

ethod outperforms the pose-driven methods Spindle, PDC and

LAD (without using attention) by 18.09%, 10.95% and 5.09%, re-

pectively in Rank-1 and 21.8%, 23.06% and 12.57%, respectively in

AP. The outstanding performance demonstrates the importance

f using attention in feature learning. In addition, our method im-

roves Rank-1 by 13.99%, 4.99% and 3.79% and mAP by 23.07%,

2.17% and 10.77%, respectively, as compared to the Part-Aligned,

LFN and HA-CNN which use the global attention only. The clear

erformance gain is largely attributed to the intra-attention net-

orks and inter-attention module that learn discriminative fea-

ures from both global whole-body images and local body-part im-

ges simultaneously. Further, our strategy of progressive feature se-

ection at multi-scale feature maps also helps to learn robust and

iscriminative features. 

For the larger and more recent dataset DukeMTMC-reID, the

roposed method is compared with 9 state-of-the-art methods and

able 4 shows experimental results (the two methods above the

orizontal line use traditional ‘shallow’ model and the rest uses

eep models). As Table 4 shows, our method obtains superior ac-

uracy on a very different dataset, and it outperforms the state-

f-the-art by 4.88% in Rank-1 (86.04% versus 81.16% by DuATM)

nd 6.84% in mAP (74.57% versus 67.73%), respectively. This further
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Table 5 

Comparison with the state of the arts on the CUHK03 (CUHK03-L and 

CUHK03-D refer to the manually labeled boxes and auto-detected boxes). 

Methods CUHK03-L CUHK03-D 

R1 R5 R10 R1 R5 R10 

LOMO + XQDA [7] 52.20 82.23 94.14 46.25 78.90 88.55 

NFST [13] 58.90 85.60 92.45 53.70 83.05 93.00 

GOG [8] 67.30 91.00 96.00 65.50 88.40 93.70 

MSCAN [47] 74.21 94.33 97.54 67.99 91.04 95.36 

MuDeep [38] 76.87 96.12 98.41 75.64 94.36 97.46 

Part-Aligned [29] 85.40 97.60 99.40 81.60 97.30 98.40 

JLML [46] 83.20 98.00 99.40 80.60 96.90 98.70 

DPFL [64] 86.70 – – 82.00 – –

PDC [37] 88.70 98.61 99.24 78.29 94.83 97.15 

HP-net [30] 91.80 98.40 99.10 – – –

MLFN [51] – – – 82.80 – –

Ours 96.43 99.73 99.91 93.58 98.91 99.42 
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verifies the advantages of our attention-driven network that em-

ploys intra-attention and inter-attention to guide feature learning

and feature selection at multiple scales simultaneously. Note that

lower accuracy is obtained over the DukeMTMC-reID as compared

with the Market-1501, largely because images in the DukeMTMC-

reID have more variations in image background and scene layout. 

For the CUHK03, two types of annotations are provided for each

identity including manually labeled boxes and boxes produced by

automatic detector. This dataset thus allows a direct model bench-

marking in the presence of two types of most widely available

annotations with distinct annotation quality. Table 5 show exper-

imental results (the three methods above the horizontal line use

traditional ‘shallow’ model and the rest uses deep models). For the

manually labeled boxes, our method outperform the state of the

art by 4.63% in Rank-1 (96.43% versus 91.80% by HP-net). For the

auto-detected boxes, our method wins out more, with a 10.78% im-

provement in Rank-1 (93.58% versus 82.80% by MLFN). This fur-

ther shows the superior performance of our attention-driven net-

work. By taking a second look, it can be observed that our model

performs more consistently with respect to manually labeled and

auto-detected boxes. It just obtains a 2.85% improvement in Rank-1

for manually labeled boxes whereas most state-of-the-art methods

have much larger performance drops while working with lower-

quality boxes by automatic detector, e.g. 88.70% versus 78.29% by

PDC, 86.70% versus 82.00% by DPFL, 85.40% versus 81.60% by Part-

ligned, etc. 

4.3. Ablation study 

Our proposed method learns discriminative person ReID fea-

tures by using both global whole-body images and local body-part

images. To tackle the misalignment and background clutters, pose

estimation is employed to align the whole-body images and ex-

tract body-part images automatically. In addition, five branches of

intra-attention networks are designed each of which learns atten-

tion of the whole body or one of four body parts, respectively. Fur-

ther, an inter-attention module is designed which fuses the outputs

of the five intra-attention networks according to their importance

to person ReID. To find out how each of these innovative compo-

nents help to achieve the outstanding person ReID performance in

Tables 3–5 , we develop five networks for ablation analysis includ-

ing 1) a baseline model that implements the base multi-branch

network without using attention (body parts are derived using

predefined fixed horizontal strips [23,24] ); 2) an aligned model

that uses pose estimation to extract the four body parts beyond

the baseline ; 3) an intra-attention model that includes the intra-

attention network in each branch beyond the aligned model; 4) an

inter-attention model that includes the inter-attention module be-
ond the aligned model; and 5) an intra+inter model that include

he inter-attention module beyond the intra-attention model. 

Table 6 show how the five networks perform over the three

atasets where only Rank-1 and mAP results are shown. As

able 6 shows, the inclusion of pose estimation, intra-attention

nd inter-attention all helps to improve the person ReID perfor-

ance clearly. The use of pose estimation consistently improves

he person ReID performance, largely because it helps for more

ccurate person alignment and body part detection as compared

ith the use of some fixed predefined partitioning in the baseline

odel. In addition, either intra or inter model outperforms the

ligned model consistently across the three datasets, demonstrat-

ng the effectiveness of using intra-attention and inter-attention in

he person ReID problem. Furthermore, the concurrent inclusion of

ntra-attention and inter-attention in the intra+inter outperforms

he use of either intra-attention or inter-attention alone, demon-

trating the complementariness of the two proposed attention net-

orks. 

Fig. 6 further illustrates how our proposed attention-driven net-

ork improves the baseline model that does not include pose-

ased alignment, intra-attention and inter-attention. Four sample

mages are selected from the dataset Market-1501, DukeMTMC-

eID, CUHK03 with manual human annotation and CUHK03 with

utomatic human detection. For each query image in the first col-

mn in Fig. 6 , we compute its similarity to all gallery images and

ank the gallery images according to their similarity to the query

mage. Fig. 6 shows the top five most similar gallery images as

anked by the ‘Intra+Inter’ and the ‘Baseline’, where the green-

olor rectangles highlight person images which have the same ID

ith the query image and red-color rectangles highlight person

mages which have different ID from the query image. In addition,

he five images under both ‘Baseline’ and ‘Intra+Inter’ are five most

imilar gallery images that are arranged according to the similarity

alues from left to right. As Fig. 6 shows, the use of intra-attention

nd inter-attention helps to improve the person Re-ID performance

ignificantly as compared with the baseline model. 

.4. Discussion 

Beyond the ablation analysis, we also study three individual fac-

ors that could affect the person ReID performance including the

ontributions of individual human regions with and without using

ntra-attention, the decomposition of attention into spatial-wise at-

ention and channel-wise attention, and different combinations of

he local and global features. 

.4.1. Intra-attention analysis 

We evaluate how the global feature from whole-body images

nd local feature from body-part images contribute to the per-

on ReID performance with and without intra-attention. Table 7

hows experimental results over the Market-1501 dataset. As

able 7 shows, global features from whole-body images have much

igher contributions than local features from any individual body

arts. In addition, the fusion of local features from the four body

arts can achieve comparable performance with the global fea-

ures. Furthermore, the combination of the global and local fea-

ures further improves the performance with or without using the

ntra-attention. The different contributions of each body part also

how the necessity of learning adaptive weights for feature fusion.

he significance of using the intra-attention networks and inter-

ttention module to capture the complementariness of global fea-

ures from whole-body images and local features from body-part

mages is further illustrated in Fig. 7 . For each example image, six

ntra-attention maps are computed where the three in the first row

re computed from global whole-body images and the three in the
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Table 6 

Ablation study on the datasets Market-1501, DukeMTMC-reID and CUHK03 (CUHK03-L and 

CUHK03-D refer to the manually labeled and auto-detected boxes). ∗The R1 and mAP are 

evaluated by using optimal parameter β and λ to be discussed in the ensuing subsection 

‘Parameter Setting’. 

Models Market-1501 DukeMTMC-reID CUHK03-L CUHK03-D 

R1 mAP R1 mAP R1 mAP R1 mAP 

Baseline 86.63 66.25 75.98 57.23 85.46 – 80.02 –

Aligned 89.98 72.46 76.71 60.67 89.15 – 84.47 –

Intra 92.04 78.92 80.12 63.75 91.50 – 88.38 –

Inter 92.07 78.46 79.62 64.27 91.76 – 89.53 –

Intra + inter 94.65 85.22 84.78 71.92 94.96 – 93.45 –
∗Intra + inter 94.99 86.47 86.04 74.57 96.43 – 93.58 –

Table 7 

Evaluations on how information from different human part contributes to the person ReID 

with and without using intra-attention (over the Market-1501). 

Market-1501 With intra-attention Without intra-attention 

R1 R5 R10 mAP R1 R5 R10 mAP 

Global 90.11 96.05 97.33 75.23 85.75 94.54 96.79 68.24 

Head 50.86 73.31 81.00 26.76 43.17 67.37 76.00 21.83 

Up-Body 48.96 70.57 78.06 25.55 43.37 64.87 72.74 21.96 

Up-Leg 48.96 71.41 79.54 28.54 42.66 66.15 75.38 23.54 

Lower-Leg 36.22 58.07 67.51 18.08 30.58 51.92 61.01 14.23 

Part Fusion 91.62 96.82 98.01 75.35 87.10 95.37 97.62 69.84 

Global + Part 94.65 98.21 98.96 85.22 92.07 97.35 98.51 78.46 

Fig. 5. Architecture of the proposed intra-attention network: multiple blocks are stacked to learn intra-attention at different scales. From the second block, an attention 

branch is included which learns spatial-wise attention and channel-wise attention simultaneously. 
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Table 8 

Comparison of attention estimation with and without decomposing into spatial- 

wise and channel-wise attention (over the Market-1501). 

Market-1501 R1 R5 R10 R20 mAP 

Without attention decomposition 93.26 97.92 98.90 99.17 82.47 

With attention decomposition 94.65 98.21 98.96 99.38 85.22 
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econd row are computed from four body-part images. Addition-

lly, each of the three intra-attention maps from left to right are

utput of Blocks 2, 3, and 4 in Fig. 5 , respectively, which are com-

uted progressively at different scales. As Fig. 7 shows, the intra-

ttention of whole-body images and body-part images are com-

lementary which detects different regions for feature learning. In

articular, the intra-attention of whole-body images detects more

lobal structures whereas the intra-attention of body-part images

etects more local details within respective body parts. This fur-

her shows the necessity and effectiveness of learning global and

ocal level attention simultaneously. 

.4.2. Spatial-wise and channel-wise attention 

One key idea in the intra-attention networks is to first de-

ompose the attention into spatial-wise attention and channel-

ise attention and then derive the overall attention by multiply-

ng the spatial-wise attention and channel-wise attention as de-
cribed in Section 3.3 . We study how this attention decomposition

pproach helps to improve the person ReID performance as com-

ared with the traditional attention estimation without decompo-

ition. Table 8 shows experimental results over the Market-1501

ataset. As Table 8 shows, the attention decomposition scheme im-

roves the person ReID performance clearly, with a Rank-1 im-

rovement by 1.39% and a mAP improvement by 2.75%, respec-

ively. This demonstrates the advantages and effectiveness of learn-

ng spatial-wise and channel-wise attention separately. 
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Fig. 6. Illustration of person ReID improvement using the proposed intra-attention and inter-attention: For the four sample images selected from the dataset Market-1501, 

DukeMTMC-reID, CUHK03-labeled and CUHK03-detected from top to bottom. For each query image in the first column, we compute its similarity to all gallery images and 

rank the gallery images according to their similarity to the query image. The second column and third column show the top five most similar gallery images as ranked by 

the ‘Baseline’ and ‘Intra+Inter’, where the green-color rectangles highlight person images which have the same ID with the query image and red-color rectangles highlight 

person images which have different ID from the query image. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 

this article.) 

Table 9 

Comparison of different feature combination strategies over the 

Market-1501 (FC: fully-connected). 

Market-1501 R1 R5 R10 R20 mAP 

Concatenation 89.98 96.31 97.68 98.49 72.46 

FC fusion 90.94 96.58 97.89 98.93 77.11 

Inter-attention 92.07 97.35 98.51 99.02 78.46 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 10 

Evaluation on influence of parameter λ. 

λ Market-1501 DukeMTMC-reID CUHK03-L CUHK03-D 

R1 mAP R1 mAP R1 mAP R1 mAP 

0 83.64 63.70 72.17 54.35 80.22 – 74.83 –

0.1 94.98 86.45 85.90 74.10 94.99 – 93.51 –

0.2 94.92 86.19 85.63 73.40 95.91 – 93.56 –

0.3 94.84 85.58 85.56 72.83 95.74 – 93.53 –

0.4 94.73 85.36 84.93 72.27 95.41 – 93.49 –

0.5 94.65 85.22 84.78 71.92 94.96 – 93.45 –

0.6 94.50 84.82 83.71 70.27 94.88 – 92.99 –

0.7 94.26 84.74 83.58 69.42 94.74 – 92.57 –

0.8 94.09 84.61 83.21 69.10 94.40 – 91.99 –

0.9 94.00 84.13 82.49 68.14 94.16 – 91.65 –

1.0 93.97 84.02 81.46 67.32 93.56 – 91.19 –

t  

a  

i  

b  

h  

o  

w  

w  

p

 

p  
4.4.3. Inter-attention analysis 

We also study the effectiveness of the proposed inter-attention

module by testing three feature fusion variants including: 1) di-

rect concatenation of global and local features in testing stage; 2)

conventional fully-connected fusion of global and local features in

both training and testing stages; and 3) inter-attention fusion that

learns adaptive feature weights. Table 9 shows experimental results

over the Market-1501. As Table 9 shows, fusing features across

global and local regions in training stage generally outperforms

fusing features in testing stage only. In addition, fusing features

using learned adaptive weights further improves the person ReID

accuracy, which validates the rational of our inter-attention design

that learning the relative importance of local features is beneficial

to person ReID. 

4.4.4. Parameter setting 

We first studied how λ in loss function affects the person ReID

performance over three datasets. The results are shown in Table 10 ,

where two points can be observed: 1) a moderate λ can bring ex-
ra supervision that helps to enhance the feature discriminability

s learned by intra-attention networks; 2) the ReID performance

s sensitive to λ when person images have more occlusion and

ackground clutters. The first point can be observed by the clearly

igher person ReID accuracy when λ becomes non-zero. The sec-

nd point can be seen from the DukeMTMC-reID images that have

ider camera views and more complex scene layout (as compared

ith Market-1501 and CUHK03 images) and so experience larger

erformance degradation when λ becomes larger. 

We also studied the impact of β , the height of the overlap-

ing between two neighboring regions, over the Market–1501 and
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Fig. 7. Intra-attention of global whole-body images and local body-part images is complementary in feature selection: For each example image, the first row and the second 

row show three attention maps that are generated by global whole-body images and local body-part images, respectively. From left to right, (a) the original image, (b) the 

attention map from Block 2 in Fig. 5 , (c) the attention map from Block 3, (d) the attention map from Block 4. Note the attention maps from images of four body parts are 

fused for better visualization. 

Table 11 

Evaluation on influence of parameter β . 

β Market-1501 DukeMTMC-reID 

R1 R5 R10 mAP R1 R5 R10 mAP 

0 94.28 98.14 98.91 85.19 84.42 92.23 94.28 71.26 

H /48 94.35 98.18 98.81 85.22 84.87 92.81 94.66 71.62 

2 H /48 94.36 98.18 98.78 85.53 85.41 92.63 94.85 71.87 

3 H /48 94.95 98.45 98.99 85.85 85.42 92.68 94.48 72.32 

4 H /48 94.77 98.12 98.87 85.57 85.14 92.28 94.32 71.96 

5 H /48 94.65 98.21 98.96 85.22 84.78 92.10 94.30 71.92 

6 H /48 94.53 98.30 98.90 85.13 84.41 92.68 94.79 71.42 

Table 12 

Comparisons of model size and complexity. FLOPs: the 

number of FLoating-point OPerations; PN: Parameter 

Number. 

Model FLOPs PN (million) Stream 

AlexNet 1.07 × 10 9 58.3 1 

VGG 2.28 × 10 10 134.2 1 

ResNet50 5.58 × 10 9 23.5 1 

GoogLeNet 2.31 × 10 9 6.0 1 

Basemodel 2.26 × 10 9 6.8 5 

Full model 2.69 × 10 9 10.4 5 

t  

w

 

m  

(  
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v  

p
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s  
he DukeMTMC-reID. Experimental results are shown in Table 11 ,

here we can see that the person ReID is not very sensitive to β . 

In addition, the new studies also show that our proposed

ethod achieves the best performance when β and λ are set at

0.1, 3 H /48), (0.1, 3 H /48) and (0.2, 3 H /48), for the Market-1501,

ukeMTMC-reID and CUHK03 as shown in the last row of Table 6 .

he small variations of the optimal parameter settings across three

ery different datasets also demonstrate the robustness of our pro-

osed technique. 

.4.5. Model complexity 

We compared the proposed model with four seminal clas-

ification CNN architectures (Alexnet [65] , VGG [66] , GoogLeNet

67] , and ResNet50 [57] ) in model size and complexity. As the

able 12 shows, our base network has the 2 nd smallest model size

nd the 2 nd smallest FLOPs, though it consists of five branches that

hare the first conv layer only. The fair model size and computa-

ional complexity is largely due to the simpler and smaller network

odel as presented in Table 1 . Additionally, the intra-attention and
nter-attention are both computational light and do not introduce

uch computational overhead. 

. Conclusion 

This paper proposes an end-to-end trainable network frame-

ork that learns a multi-branch attention-driven network model

or accurate and robust person ReID. Different from most existing

eID methods that either ignore the matching misalignment prob-

em or exploit global attention learning methods, the proposed

ntra-attention network is designed to detect informative regions

ithin whole-body images and body-part images independently at

ultiple resolutions. This is achieved by the intra-attention mod-

le design in combination with a five-branch CNN architecture. In

ddition, a novel inter-attention module is designed which learns

daptive weights to fuse different intra-attention features for the

ptimal person ReID. Experiments over three widely used bench-

arking datasets show that the proposed technique achieves su-

erior person ReID performance as compared with the state of the

rt. 

An ablation analysis is also performed to provide more insight

f the designed network model. Leveraging our unique exploitation

f local features of body-part images with inter and intra attention,

e will continue to investigate more accurate and robust person

eID by incorporating trainable pose estimation and even semantic

uman part parsing in our future work. 
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