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Abstract In this paper, a hierarchical dependency context model (HDCM) is firstly pro-
posed to exploit the statistical correlations of DCT (Discrete Cosine Transform) coefficients
in H.264/AVC video coding standard, in which the number of non-zero coefficients in a
DCT block and the scanned position are used to capture the magnitude varying tendency
of DCT coefficients. Then a new binary arithmetic coding using hierarchical dependency
context model (HDCMBAC) is proposed. HDCMBAC associates HDCM with binary arith-
metic coding to code the syntax elements for a DCT block, which consist of the number of
non-zero coefficients, significant flag and level information. Experimental results demon-
strate that HDCMBAC can achieve similar coding performance as CABAC at low and high
QP s (quantization parameter). Meanwhile the context modeling and the arithmetic decod-
ing in HDCMBAC can be carried out in parallel, since the context dependency only exists
among different parts of basic syntax elements in HDCM.
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1 Introduction

Recent video coding standards, such as HEVC [14], H.264/AVC [21] and AVS [26], are all
based on the motion-compensated hybrid coding framework. In such a framework, intra and
inter predictions are first used to remove the spatial and temporal correlations, generating
the prediction residual. Then the prediction residual is processed by a two dimensional
Discrete Cosine Transform (DCT) followed by quantization (dividing the DCT coefficients
by a quantization step size selected using QP ). Finally, the quantized transform coefficients
are coded using entropy coding methods. Entropy coding is used for data compression by
removing the statistical correlations.

It is well known that for the best entropy coding method, the number of output bits is
-logp for encoding a symbol whose probability of occurrence is p. If we can provide an
accurate context model for the probability of occurrence of each symbol, arithmetic coding
[10] allows us to encode a symbol that actually occurs with probability p using the number
of bits approximating -logp.

One of essential parts in arithmetic coding is the context model, which is used to exploit
statistical correlations behind the symbols or underlying mechanisms that drive to gener-
ate the symbols. A more accurate context model could predict more exactly, based on past
observed symbols, how the symbols will occur next, and the bits for coding the upcoming
symbols will be reduced. A context modeling method [11] for universal data coding was pro-
posed by Rissanen, which is a dynamic tree-based context modeling and can theoretically
approach the bound of the minimal length based on the concept of stochastic complexity
[19].

In recent image/video entropy coding, context modeling has been widely used for achiev-
ing high coding efficiency. However, Rissanen’s context modeling is not favored in these
instances because of its unsuitability to image/video data, such as not being natural to adapt
to an image’s two-dimensional data feature [19, 25] and being prone to context dilution over
an image’s large alphabet size [19, 22]. So a priori domain knowledge is usually used to
guide context modeling for image/video coding. More specifically, for image coding, tex-
ture patterns are used as heuristic information to drive context modeling such as CALIC
[23] and LOCO-I [20] for JPEG-LS, and EBCOT [17] for JPEG2000. In addition, texture
patterns are also used in [24] to solve the context dilution and context quantization prob-
lem in context modeling process. For video coding, DCT coefficients’ statistical behaviors
are usually used to drive context modeling. For example, along the zig-zag scan path of
DCT blocks, non-zero coefficients show a statistical decreasing tendency in magnitude and
the run-length of successive zero coefficients shows a statistical increasing tendency. This a
priori domain knowledge is used to drive the context modeling in Context-Based Adaptive
Binary Arithmetic Coding (CABAC) [8] for H.264/AVC and Context-based Binary Arith-
metic coding(CBAC) [27] for AVS. These context models effectively exploit the statistical
correlations and make image/video arithmetic coding achieve high efficiency.

With the development of the video codec to handle the demand for higher resolution and
frame rates, the data throughput of entropy coding also needs to be considered in addition to
high coding efficiency, since data throughput has direct influence on the processing speed
of a video codec. To improve the data throughput of entropy coding in H.264/AVC, some
coding engines have been proposed in [15] and [9] to process multiple binary symbols (bins)
in one cycle; in addition, some thread-level parallel techniques for CABAC have also been
proposed in [3] and [6] to take advantage of multi-core platforms. During the standardization
of transform coefficient coding for HEVC [12], various techniques to improve the data
throughput have been introduced and detailed in [16]. These techniques include reducing the
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number of context coded bins, grouping bypass coded bins, grouping the bins with the same
context, reducing the context dependency, and reducing total bins, which are summarized
as follows:

1) Reduce the number of context coded bins: For each context coded bin, its probability is
updated based on the value of the previously coded bins that are coded with the same
context, so the data throughput is limited for the context coded bins because of the
data dependencies. For bypass coded bins, they do not have data dependencies, since
they are coded with the equal probability of 0.5. So it is easier to process the bypass
coded bins in parallel compared with context coded bins. Thus, the data throughput
can be improved by using bypass coded bins instead of context coded bins to reduce
the number of context coded bins.

2) Group the bypass coded bins: Multiple bypass coded bins can be processed in one
cycle if they occur consecutively within the bit stream, thus the throughput can be
improved by grouping together the bypass coded bins.

3) Group the bins with the same context: The speculative computation is required in
context selection to process multiple context coded bins in one cycle. The number
of speculative computations increases if bins with different contexts are interleaved,
because lots of combinations should be considered. Thus, the throughput can be
improved by reducing the speculative computations if bins with the same context are
grouped together.

4) Reduce the context dependencies: The speculative computation is also required for
decoding multiple bins in one cycle, if there are context dependencies in context selec-
tion. Thus, the throughput can be improved by reducing the number of speculative
computations required to process multiple bins in parallel, if the context dependencies
are removed from the context selection.

5) Reduce total bins: A straight approach to improve the data throughput is to reduce
the number of total bins. This can be achieved by inferring the values of some bins,
transmitting higher level flag and so on.

Although the above context models in [8] and [27] provide high coding efficiency, the
context dependencies in these context models make it challenging to exploit the parallelism
for high data throughput. As mentioned in [16], if the context selection of a bin depends on
the value of another bin being decoded in parallel, the speculative computations are required
to pre-calculate the context, which limits the throughput that can be achieved. Therefore, to
reduce the context dependency in the context model for DCT coefficients, we proposed a
variable length coding (VLC) with parallel orientation in [18] for DCT coefficients while
keeping similar coding efficiency as CAVLC [2]. Later in [5], we also proposed a parallel
context model for level information in CABAC.

To further reduce the context dependency in the context model for DCT coefficients,
in this work, an alternative context model for DCT coefficients namely hierarchical
dependency context model (HDCM) is first proposed, in which the number of non-zero
coefficients in DCT block and the scanned position are used to estimate the statistics.
Then, a binary arithmetic coding scheme based on HDCM (HDCMBAC) is proposed to
code the DCT blocks, where the syntax elements consist of the number of non-zero coeffi-
cients, significant flag and level information. Since the context dependency in HDCM only
exists among different syntax elements, the context modeling and the arithmetic decoding
in HDCMBAC can be carried out in parallel. Meanwhile, experimental results demon-
strate that HDCMBAC can achieve similar coding performance as CABAC at low and
high QP s.
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The main difference between this work and our previous works in [27], [18] and [5] is
shown as follows. First, the context used for DCT coefficients in [27] is the maximum of
all previously coded magnitudes of coefficients in the current DCT block. It means that the
context selection for the current coefficient depends on the value of the previously coded
coefficient. Obviously, there are data dependencies among the same syntax elements in
this context model. In this work, the number of non-zero coefficients in DCT block and
the scanned position are adopted as the contexts of DCT coefficients. This context model
can break the above mentioned context dependency and allow the context modeling to be
carried out in parallel with the arithmetic decoding. Second, the coding scheme in [18]
is proposed for variable length coding, in which (run, level) pairs are used as the syntax
elements, where level denotes the magnitude of non-zero coefficient and run denotes the
number of successive zero coefficients before a level. The proposed coding scheme in this
work is devised for binary arithmetic coding, in which significant flag and level information
are used as the syntax elements. Finally, only level information was taken into account in
the work in [5], while the significant flag is also considered in this work in addition to level
information. Moreover, the number of non-zero coefficients in DCT block is introduced as
a new syntax element to break the context dependency between significant flag and last
significant flag.

As shown in [4], the context models are generally devised for a specific coding scheme by
considering the coding engine, transform strategy, prediction tools and so on. The proposed
coding scheme is now specifically devised for DCT coefficients in H.264/AVC and it can-
not be directly applied for HEVC or AVS, since the coding tools in H.264/AVC are different
from those in HEVC and AVS. However, the proposed coding scheme can be extended to
HEVC and AVS, because DCT is also adopted in these video coding standards. To achieve
this, the impact of coding tools used in HEVC and AVS, e.g., the coding structure, predic-
tion tools, and quantization strategy, on the proposed coding coding scheme should be first
significantly investigated. Then, some modifications will be required to be made on the pro-
posed coding scheme, such as refining the context model for more accurate estimation of
transform coefficients’ distribution. In our future work, we will extend the proposed coding
scheme to HEVC and AVS.

The rest of this paper is organized as follows. Section 2 presents the overview of the
context modeling process of CABAC in H.264/AVC. Section 3 describes the hierarchical
dependency context model (HDCM) for DCT coefficients based on their statistical infor-
mation. Section 4 presents the implementation of HDCMBAC. In Section 5, the extensive
experimental results are provided. Finally, Section 6 concludes this paper.

2 Overview of context modeling of CABAC in H.264/AVC

The syntax elements used by CABAC in H.264/AVC consist of significant flag,
last significant flag and level information. The one-bit symbol significant flag is used to
indicate whether a coefficient at each scanned position is zero. If the significant flag is one,
it means that a non-zero coefficient exists at this scanned position, and a further one-bit
symbol last significant flag is transmitted to indicate whether the current non-zero coeffi-
cient is the last non-zero coefficient of the DCT block. For each non-zero coefficient, its
magnitude (level) is coded by level information, which consists of coeff abs level minus1
(represent the absolute value of level minus 1) and coeff sign flag (the sign of
the level).
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The context models used for significant flag and last significant flag depend on the scan-
ning position, i.e., for a coefficient coeff[P]with the scanned position P , the context indexes
are determined as follows:

CSIG(coeff[P]) = CLAST (coeff[P]) = P (1)

where CSIG(coeff[P]) and CLAST (coeff[P]) are the context indexes for significant flag and
last significant flag, respectively.

Since coeff abs level minus1 is non-binary valued symbol, it needs to be mapped into
a string of bins by UEG0 [8] binarization scheme before context modeling. For coding
coeff abs level minus1, there are two context models. One is for the first bin with bin index
equal to 0, denoted as bin0. The other is for the bins with bin index between 1 and 13,
denoted as bin13.

Let NumT 1(P ) denote the accumulated number of the previously encoded levels with
absolute value equal to one, and NumLgt1(P ) denote the accumulated number of the pre-
viously encoded levels with absolute value greater than one, where P represents the scanned
position of the current transform coefficient. It is worthwhile to note that the coding of lev-
els is under reverse scanning order, and both counters are initialized with the value of 0 at
the beginning of the reverse scanning. Then the context index CLP

bin0
for bin0 is determined

as follows:

CLP
bin0

=
{
4, ifNumLgt1(P ) > 0
min(3, NumT 1(P )), otherwise

(2)

The context index CLP
bin13

for bin13 is determined as follows:

CLP
bin13

= 5 + min(4, NumLgt1(P )) (3)

It can be seen that last significant flag is encoded or decoded only when significant flag
is equal to 1. This implies that the decision regarding coding of last significant flag is
dependent on the value of significant flag. If it is required to process the significant flag
and last significant flag for multiple coefficients in parallel, their contexts should be cal-
culated in advance. The speculative computation tree required is shown in Fig. 1, in which
0 and 1 represent the values of significant flag and last significant flag, B represents the
DCT block size, P is the scanned position and EOB is the end of the DCT block. We can
see that the number of speculative computations increases exponentially with the number of
the significant flag and last significant flag to be processed in parallel.

According to (2), one can see that the context index for bin0 of coeff[P] can be calculated
only after its closest past symbol bin0 of coeff[P+1] is decoded, since bin0 of coeff[P+1]
involves in the computation of NumT 1(P ) and NumLgt1(P ). It implies that the context

0

1

P B

P B

0

1

0

1

P B
P B

0

1

0

1

Fig. 1 Speculative computation tree required to process significant flag and last significant flag for multiple
coefficients in parallel in H.264/AVC



7356 Multimed Tools Appl (2016) 75:7351–7370

index for bin0 of the following coefficient is different when the bin0 of the current coeffi-
cient has different values. Thus the speculative computation is also required to pre-calculate
the contexts for processing multiple bin0s in parallel. Figure 2 illustrates the speculative
computation tree required, in which 0 and 1 denote the values of bin0 of coeff[P i], and
CLP i

bin0
is the context index for bin0 of coeff[P i]. Here it is assumed that the absolute value

of coeff[P i] is equal to 1, if its bin0 is 0; otherwise, the absolute value of coeff[P i] is
greater than 1. It can be seen that the number of speculative computations also increases
with the number of bin0s to be processed in parallel.

3 Hierarchical dependency context model for DCT coefficients

In this section, significant flag, bin0 and bin13 in CABAC are still used as the syntax
elements to be modeled.

The context modeling for significant flag is defined as follows:

CSIG(P,N) = P + (N − 1) × B (4)

where P is the scanned position, N is the number of non-zero coefficients in DCT block,
and B is a constant denoting the size of DCT block, e.g., B = 16 for 4x4 DCT block.

The context modeling for bin0 of coeff abs level minus1 at scanned position P is
defined as follows:

CLP
bin0

(P,N) = P + (N − 1) × B (5)

where N and B are the same as those in the above equation.
When bin0s of all levels are decoded, NumLgt1 used in the context model of bin13 can

be calculated according to Section 2. This means that the context selection for bin13 only
depends on bin0, and there are no context dependencies between bin13s of different levels.
Thus, the original context model in CABAC is used for bin13, which is shown in (3).

Context modeling in (4) and (5) are inspired by the statistical behavior of DCT coeffi-
cients. The magnitude varying tendency of levels is a normal inference of the behavior that
different DCT sub-bands fall into statistical distributions with different variances. So it is
obviously reasonable to utilize sub-band position to model the level [7]. Sub-band position
P roughly captures the behavior of levels, but not accurately enough. When the number of
non-zero coefficients N in a DCT block is different, even in the same sub-band position
the level may still have diverse distributions. Figure 3 shows the probability distributions of
level when N = 4 and N = 10 at P = 0. It can be seen the distributions in a sub-band
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Fig. 2 Speculative computation tree required to process multiple bin0s in parallel in H.264/AVC
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Fig. 3 Probability distributions of Levels magnitude when N = 4 and N = 10 in Mobile&Calendar CIF

video at P = 0

position are quite diverse when N is different. Actually, N partially reflects the influence
to DCT coefficients’ distributions due to some important factors, such as quantization step
size, local texture complexity, and prediction techniques. So P and N are used for modeling
DCT coefficients’ magnitude more precisely.

Figure 4 illustrates the context dependency among the syntax elements, where SIGi ,
bin0i and bin13i denote the significant flag, bin0 and bin13 for DCT coefficient at
scanned position i, respectively. It can be seen that the context dependency in the proposed
context model only exists among different syntax elements, which means significant flag
depends on N ; bin0 depends on N and significant flag, and bin13 depends on bin0. We
call the context model as hierarchical dependency context model (HDCM), since its context
dependency is hierarchical.

4 Binary arithmetic coding using HDCM: HDCMBAC

4.1 Implementation of HDCMBAC

To separate the coding of significant flag from the coding of last significant flag in
CABAC, HDCMBAC uses the number of non-zero coefficients (N ) in the DCT block to
indicate the position of the last non-zero coefficient instead of last significant flag. There-
fore, the syntax elements in HDCMBAC consist of N , significant flag, bin0 and bin13, and
their coding order is N → significant flag → bin0 → bin13 due to the context dependency
in HDCM.
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N

SIGN-1 SIGN-2

bin0N-1 bin0N-2 bin00

bin13N-1 bin13N-2 bin130
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of bin0
Context Dependency 

of bin1
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Fig. 4 Context dependency in the hierarchical dependency context model

For coding N , it should be mapped into a string of bins by unary code before context
modeling, since it is non-binary symbol. For each bin of N , the context index CN bin is
determined as follows:

CN bin(binIdx, N̂) = binIdx + (N̂ − 1) × B (6)

where binIdx is the bin index, B is a constant denoting the size of DCT block, and N̂ is
defined as NU +NL

2 , in which NU and NL are the number of non-zero coefficients of its two
neighboring blocks on the top and on the left of the current DCT block.

According to the context modeling process for bins of N , significant flag and bin0,
the number of contexts used for each syntax element is up to B2 for a DCT block with
block size equal to B. Take 4x4 DCT block as an example, there are 256 different contexts
for each syntax element. So many contexts will increase the model cost and may cause
the context dilution problem. To balance the model accuracy against the model cost and
avoid the context dilution problem, the contexts with similar probability distribution should
be merged into one context. To achieve this, we employ the Lloyd-max algorithm [24] to
classify the context set into K clusters, and then the contexts in the same cluster are merged
together.

After context quantization, the context index for N is determined as follows:

CN bin(binIdx, N̂) = kN [Δ
N̂

][binIdx] (7)

where kN [Δ
N̂

][binIdx] is a table to store the context index, and Δ
N̂

is determined by N̂

according to the following equation.

Δ
N̂

=

⎧⎪⎪⎨
⎪⎪⎩

0, if N̂ < 2
1, if N̂ < 4
2, if N̂ < 8
3, otherwise

(8)
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The determination of the context index for significant flag is similar to that for N , which
is described as follows:

CSIG(P,N) = kSIG[P ][ΔN ] (9)

where kSIG[P ][ΔN ] is a table to store the context index, and ΔN is determined by N

according to the following equation.

ΔN =

⎧⎪⎪⎨
⎪⎪⎩

0, if N < 3
1, if N < 5
2, if N < 10
3, otherwise

(10)

The context index for bin0 is determined as follows:

CLP
bin0

(P,N) = kbin0[P ][N ] (11)

where kbin0[P ][N ] is a table to store the mapping relationship between (P,N) and context
index, which is {(P,N)} → {0, 1, 2, 3} with 0 ≤ P ≤ 15 and 1 ≤ N ≤ 16.

After determination of the context index, the syntax element is coded by the binary arith-
metic coding engine M-coder [8]. In M-coder, the probability of a symbol to be coded is
represented by (pLPS, VMPS), in which pLPS is the probability of the least probable symbol
(LPS), and VMPS is the value of the most probable symbol (MPS); and the probability range
associated with LPS is projected into a set of representative values Sp = {p0, p1, ..., p63}.
Each representative probability pσ , 0 ≤ σ ≤ 63, is implicitly addressed by its index σ in
M-coder. Therefore, the context index should be mapped to (σ, VMPS) pair, which is shown
as follows:

CX −→ {(σ, VMPS)|0 ≤ σ ≤ 63, VMPS ∈ {0, 1}} (12)

where CX represents the context index for bins of N , significant flag or bin0. In the imple-
mentation, the initial values of (σ, VMPS) pairs for each context index of N and bin0 are
determined over typical videos under typical bit-rates, while the initial values of (σ, VMPS)

pairs for each context index of significant flag are the same as those in CABAC.
The complete description for encoding a DCT block using HDCMBAC is illustrated

in Fig. 5. Table 1 provides an example of the context derivation in HDCMBAC. In this
example, it is assumed that the coefficients at scanning positions between 5 and 15 are all
zero.

To better understand the proposed algorithm and describe the analysis to the proposed
algorithm in the rest of paper, the summary of some important notations is provided in
Table 2.

4.2 Potential parallelism between context modeling and arithmetic decoding in
HDCMBAC

The context dependency in HDCM can be viewed as data dependency, since the current
instruction e.g. context modeling, refers to the data of a preceding instruction e.g. arithmetic
coding. However, the data dependency only exists among different syntax elements, thus
the closest past symbol will not involve in the context modeling of the symbol to be coded.
For example, different from CABAC, the value of the bin0 for coeff[P+1] is not used in
the context modeling of bin0 for coeff[P], this is because the context indexes for all bin0s
can be obtained when N and significant flag are decoded. Therefore, the context model-
ing and arithmetic decoding in HDCMBAC could be carried out in parallel by appropriate
organization. Here, we present a parallel organization for context modeling and arithmetic
decoding.
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Algorithm: HDCMBAC

Inputs:    N, significant_flag and coeff_abs_level_minus1
For each bin in bin string of N, where 1 <= N <= 16

Calculate CN_bin according to (7);

Encode bin with CN_bin.

End for

Coded_Sig_Num = 0;

For i = 0; i < B; i++

Calculate CSIG according to (9);

Encode significant_flag[i] with CSIG.

If significant_flag[i] == 1

Coded_Sig_Num = Coded_Sig_Num + 1;

End if

If Coded_Sig_Num == N

break;

End if

End for 

For i = B - 1; i >= 0; i--

If significant_flag[i] == 1

Calculate Cbin0 according to (11);

Encode bin0 with Cbin0;

End if

End for

For i = B - 1; i >= 0; i--

If coeff_abs_level_minus1[i] > 1

Calculate Cbin13 according to (3);

Encode bin13 with Cbin13;

End if

End for

Fig. 5 HDCMBAC encoding scheme for a DCT block

Since the bin index is used as the context for bins ofN , the value of the current bin is used
to determine whether the decoding of N is finished. For the parallel processing between
context modeling and arithmetic decoding, the context index for each bin of N is always
input to the arithmetic decoder before it is finished. When the value of the current bin is
decoded, we can reset the state of the arithmetic decoder if the decoding of N is finished
and start to calculate the context index for significant flag at the same time.

Table 1 Example for determination of context index in HDCMBAC

Scanning position P 0 1 2 3 4

DCT coefficient 9 0 3 −1 1

Significant flag 1 0 1 1 1

CSIG kSIG[0][1] kSIG[1][1] kSIG[2][1] kSIG[3][1] kSIG[4][1]
Cbin0 kbin0[0][4] kbin0[2][4] kbin0[3][4] kbin0[4][4]
Cbin13 6 5
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Table 2 Important notations in this paper

Notation Description

SIG significant flag

LAST last significant flag

bin0 the first bin with bin index equal to 0 of coeff abs level minus1

bin13 bins with bin index between 1 and 13 of coeff abs level minus1

N the number of the non-zero coefficients in DCT block

P the scanned position of a DCT coefficient

B DCT block size

σ the index of each representative probability for LPS (least probable symbol)

VMPS the value of MPS (most probable symbol)

From the encoding scheme of HDCMBAC, the value of significant flag is used to deter-
mine whether the decoding of level information starts. For the parallel processing between
context modeling and arithmetic decoding, the context index of significant flag is always
input to the arithmetic decoder before decoding level information. When the value of the
current significant flag is decoded, we can reset the arithmetic decoder to the starting state
if the upcoming syntax element is level information, and start to calculate the context index
for level information.

Here we provide an example to better illustrate the parallelism between context mod-
eling and arithmetic decoding in HDCMBAC. It is assumed that there are two significant
coefficients in a DCT block, and both of them are greater than one. For decoding such a
DCT block, the parallel organization of context modeling and arithmetic decoding for N is
illustrated in Fig. 6. The parallel organization for significant flag, bin0 and bin13 is shown
in Fig. 7. The R&D module in Fig. 6 and Fig. 7 executes reading a code-word from a code
stream and decoding the code-word into a bin. The Undo module executes resetting the
arithmetic decoder.

From Fig. 6 and Fig. 7, it can be seen that the context index can be calculated in par-
allel with R&D. It seems that there is no context modeling process when parsing the
coding stream. For example, when R&D circled by red square is executed for bin0 of
coeff abs level minus1[1], the calculation of CL0

bin0
circled by green square for bin0 of

coeff abs level minus1[0] can be carried out at the same time because the prerequisite
parameters like N and P0 are available at that moment.

Fig. 6 Parallel organization of
context modeling and arithmetic
decoding for N in HDCMBAC

R&D

Code Stream

Undo

R&D R&D R&D

_N binC_N binC _N binC

SIGC
Time t Time t Time t Time t
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Fig. 7 Parallel organization of context modeling and arithmetic decoding for significant map and level
information in HDCMBAC

4.3 Comparisons between HDCMBAC and transform coefficient coding in
HEVC

HDCMBAC has some distinctions over the transform coefficient coding scheme [12] in
HEVC. First, HDCMBAC uses the number of the significant coefficients in the block for
separating the coding of significant flag from the coding of last significnat flag, while
HEVC uses the position of the last significant coefficient. Second, the context for sig-
nificant flag and the context for bin0 of level (corresponding to the syntax element
coeff abs level greater1 flag in HEVC) in HDCMBAC depend on the number of the sig-
nificant coefficients and its scanned position. This context model for significant flag and
bin0 of level in HDCMBAC is simple to implement and allows the potential parallelism
between context modeling and arithmetic coding. The last one is that the proposed context
model could be embedded into the transform coefficient coding scheme in HEVC to further
improve the data throughput by taking advantages of all methods (including mode depen-
dent coefficient scanning method, Rice binarization for coeff abs level remaining, and sign
data hiding).

5 Experimental results

In this section, HDCMBAC is compared with CABAC to evaluate its coding perfor-
mance, computational complexity and space complexity. The following experiments adopt
H.264/AVC reference software Jm15.1 as the test platform, and the 4x4 DCT defined
in H.264/AVC is used. The coding conditions for CABAC and HDCMBAC consist of
5 reference frames, 1/4-pixel motion vector resolution, +/-32 pixel motion search range,
and R-D optimization enabled. The test videos include Mobile, Foreman, and Paris in
CIF@30Hz; City, Crew and Ice in 4CIF@30Hz; and City, Bigships and Cyclist

in 720p@30Hz; BasketballDrive@50HZ, BQT errace@60HZ and Cactus@50HZ in
1920x1080; PeopleOnStreet and T raff ic in 2560x1600@30HZ. The QP s 16, 20, 24,
28, 32 and 36 are used.
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5.1 Coding performance of HDCMBAC

To evaluate the coding performance, the experiments are conducted under three configura-
tions, which include all Intra, IPPP and IBBP coding structures. The bit rate difference
(BD-Rate) is used to measure the coding performance, which can be calculated according to
[1]. The BD-Rate under each configuration is shown in Table 3, where BD-Rate in LowQP

column is calculated at QP s 16, 20, 24 and 28, while BD-Rate in HighQP column is cal-
culated at QP s 24, 28, 32 and 36. A negative value of BD-Rate means that HDCMBAC
requires less bits than CABAC to achieve the same video quality, while a positive value
of BD-Rate means HDCMBAC requires more bits than CABAC to achieve the same video
quality.

As shown in Table 3, the coding performance of HDCMBAC is similar as that of CABAC
on average. But it can be seen that the BD-Rate is different for different configurations
at both LowQP and HighQP columns. More specifically, HDCMBAC results in a little
coding loss for IPPP and IBBP configurations, while it has some coding gain for all
intra configuration. In addition, the coding loss and coding gain in HighQP column are
less than those in LowQP column.

To explain the reason for that, we use the mutual information I (X;Y ) of the syntax
elementX and its context Y to evaluate the efficiency of the context model, which is defined
as follows:

I (X; Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log(
p(x, y)

p(x)p(y)
) (13)

Table 3 Bit-rate difference [%] of HDCMBAC relative to CABAC

Sequences BD − Rate[%]

LowQP HighQP

Intra IPPP IBBP Intra IPPP IBBP

Mobile@CIF −0.5 0.2 0.1 −0.2 0.3 0.4

Paris@CIF −1.2 −0.7 −0.8 −0.7 0.1 0.0

Foreman@CIF −0.2 −0.1 0.0 0.0 −0.2 0.2

City@4CIF −0.2 0.4 0.4 −0.1 −0.2 0.1

Crew@4CIF −0.3 0.2 0.3 −0.5 −0.2 0.0

Ice@4CIF −1.1 −0.7 −0.5 −0.1 0.0 0.1

City@720p −0.1 0.4 0.4 0.1 0.0 0.4

Bigships@720p −0.1 0.7 0.6 0.1 0.2 0.2

Cyclist@720p 0.0 −0.1 0.1 0.0 −0.3 0.1

BasketballDrive@1920x1080 0.2 0.3 0.5 0.0 −0.1 0.0

BQTerrace@1920x1080 −0.5 0.9 0.9 −0.7 0.3 0.2

Cactus@1920x1080 0.0 0.8 0.7 0.0 0.1 −0.1

PeopleOnStreet@2560x1600 −0.2 −0.3 −0.3 −0.1 −0.1 0.0

Traffic@2560x1600 −0.6 −0.5 −0.5 −0.2 0.1 0.0

Average −0.343 0.107 0.136 −0.171 0.000 0.114



7364 Multimed Tools Appl (2016) 75:7351–7370

where p(x, y) is joint probability distribution function of X and Y , p(x) and p(y) are the
marginal probability distribution functions of X and Y , respectively.

As we know, the mutual information I (X; Y ) is larger, it means that the context model
is more efficient, thus the number of bits to code the syntax element X using Y is
smaller. Therefore, we compare the efficiency of the context model in HDCMBAC with
that in CABAC by calculating the mutual information on some test sequences, which
are shown in Table 4. According to the comparison, we find that the context model for
last significant flag in CABAC is more efficient than that for N in HDCMBAC, the con-
text model for significant flag in HDCMBAC is more accurate than that in CABAC, and
the accuracy of the context model for bin0 in HDCMBAC is similar as that in CABAC.

Because there are only a few non-zero coefficients in DCT block in IPPP and IBBP

configurations, the number of bits saved by coding significant flag cannot complement
the number of bits consumed by coding N ; whereas the number of bits saved by coding
significant flag can complement the number of bits consumed by coding N in all intra

configuration, since there are more non-zero coefficients in a DCT block. So, HDCMBAC
results in a little coding loss for all IPPP and IBBP configurations, and has some coding
gain for all intra configuration. In addition, the number of the non-zero coefficients in DCT
block will be decreased when the QP increases, thus the coding loss and coding gain of
HDCMBACwill be decreased withQP . In addition to the context model, the rate-distortion
technique [13] for video compression and the frame content have also some influences on
the coding performance of HDCMBAC.

5.2 Analysis of potential parallelism in HDCMBAC

If the context modeling and arithmetic decoding are organized according to the method
described in Section 4, it seems that there is no context modeling process in HDCMBAC
when parsing the coding stream. Since HDCMBAC is a coefficient-level parallel technique,
it only requires two processors to achieve the parallelism in HDCMBAC. However, it can
be adopted by some parallel entropy coding algorithms [3, 6] related to multi-core platform
to further improve the throughput; e.g. replacing CABAC with HDCMBAC. Not limited on
the multi-core platform, HDCMBAC can also be implemented on other platforms support-
ing parallel processing, such as GPU, hardware architecture and so on, since the parallelism
of HDCMBAC results from the reduction of the context dependencies between syntax
elements, and it is not designed for a specific platform.

Table 4 Mutual information of syntax elements and their contexts in CABAC and HDCMBAC

Sequences Mutual Information

CABAC HDCMBAC

LAST SIG bin0 N SIG bin0

Mobile@CIF 0.282 0.102 0.278 0.164 0.285 0.287

City@4CIF 0.322 0.127 0.202 0.233 0.257 0.224

Bigships@720p 0.240 0.236 0.181 0.199 0.262 0.187

BQTerrace@1920x1080 0.311 0.067 0.176 0.188 0.208 0.196

PeopleOnStreet@2560x1600 0.157 0.146 0.306 0.202 0.212 0.271

Average 0.2624 0.1356 0.2286 0.1972 0.2448 0.2330
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In our experiments, there is only one binary arithmetic coding engine M-coder, this
means that the arithmetic decoding for all syntax elements is serial due to the strict data
dependencies introduced by M-coder. In this case, we focus on the decoding process of
the syntax elements designed for DCT coefficients in CABAC and HDCMBAC to obtain
their execution time, i.e. N , significant flag and coeff abs level minus1 in HDCMBAC, and
significant flag, last significant flag and coeff abs level minus1 in CABAC.

According to the parallel organization applied to HDCMBAC in Section 4, the execution
time in HDCMBAC is the maximum one between context modeling and arithmetic decod-
ing, while the execution time in CABAC is the sum of context modeling and arithmetic
decoding due to the context dependency between syntax elements.

The execution time for HDCMBAC and CABAC is measured with the number of clock
cycles consumed by the basic instructions in assembly language, since HDCMBAC and
CABAC can be implemented through the basic instructions in assembly language. The basic
instructions involved consist of Add, Subtract, Shift, Compare, Logical and Move. If the
operands for Add, Subtract, Shift, Compare and Logical are all in registers, their execution
time is one clock cycle for Pentium processors. If one operand forMove is in memory and
the other is in register, its execution time is also one clock cycle.

To quantitatively analyze the parallelism of HDCMBAC, the speedup of HDCMBAC
relative to CABAC is used, which is defined as follows:

Sp = TCABAC

THDCMBAC

(14)

where p is the number of processors; and TCABAC and THDCMBAC are the number of
clock cycles consumed by CABAC and HDCMBAC, respectively. In our experiments, two
processors are used to achieve the parallelism of HDCMBAC, thus p = 2.

Table 5 presents the speedup of HDCMBAC relative to CABAC under IBBP coding
structure. The average speedup of HDCMBAC relative to CABAC is 1.184 ∼ 1.153 at

Table 5 Speedup of HDCMBAC Relative to CABAC under IBBP coding structure

16 20 24 28 32 36

Mobile@CIF 1.17 1.18 1.18 1.18 1.18 1.18

Paris@CIF 1.17 1.17 1.17 1.15 1.18 1.13

Foreman@CIF 1.16 1.16 1.18 1.18 1.17 1.18

City@4CIF 1.19 1.19 1.18 1.17 1.17 1.17

Crew@4CIF 1.19 1.18 1.16 1.15 1.14 1.13

Ice@4CIF 1.19 1.17 1.17 1.17 1.17 1.16

City@720p 1.19 1.19 1.18 1.17 1.16 1.15

Bigships@720p 1.19 1.18 1.18 1.17 1.17 1.15

Cyclist@720p 1.18 1.17 1.16 1.15 1.16 1.13

BasketballDrive@1920x1080 1.19 1.18 1.18 1.16 1.16 1.16

BQTerrace@1920x1080 1.18 1.19 1.19 1.19 1.17 1.16

Cactus@1920x1080 1.19 1.19 1.18 1.16 1.15 1.16

PeopleOnStreet@2560x1600 1.18 1.15 1.12 1.13 1.12 1.15

Traffic@2560x1600 1.19 1.18 1.18 1.17 1.16 1.15

Average 1.184 1.177 1.172 1.166 1.163 1.153
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different QP s. As can be seen, the speedup is not significant, and it is nearly the same at
different QP s, this is because the arithmetic decoding of all syntax elements is serial due to
the strict data dependency introduced by M-coder, and the arithmetic decoding dominates
the decoding process of HDCMBAC and CABAC. According to the collected data, the time
cost by arithmetic coding is nearly four times more than that cost by context modeling. If
the execution time of arithmetic decoding could be reduced, the speedup would become
larger. For example, if we use the parallel binary arithmetic coding engine [15] to decode
the syntax elements, and the speedup will be 1.423.

5.3 Computational complexity and memory requirement of HDCMBAC

The number of operations e.g. Table lookup, Compare and Add , is used to measure the
computational complexity of the context models in HDCMBAC and CABAC.

In HDCMBAC, both N and significant flag require 1 Compare and 1 Table lookup to
get the (σ, VMPS) pairs; for bin0, it first requires 1 Table lookup to get the context index
and then 1 Table lookup to get the (σ, VMPS) pair. In CABAC, both significant flag and
last significant flag require 1 Table lookup to get the (σ, VMPS) pair, and 1 Compare is
still required for last significant flag to decide decoding it or not; for bin0, 1 Compare and
1 Add are required to calculate NumT 1 and NumLgt1, then 1 or 2 Compare is required
to get the context index, finally 1 Table lookup is used to get (σ, VMPS) pair. Table 6 lists
the number of operations consumed by the context modeling process in HDCMBAC and
CABAC. It can be seen that the computational complexity of the context modeling process
in HDCMBAC is lower than that in CABAC.

There are 5 block types in HDCMBAC and CABAC, which are Luma DC (for DC
coefficients in intra16x16 prediction block), Luma AC (for AC coefficients in intra16x16
prediction block), Luma 4x4 (for coefficients in intra 4x4 or inter prediction block),
Chroma DC (for DC coefficients in chroma block) and Chroma AC (for AC coefficients
in chroma block). HDCMBAC needs the memory for storing the contexts of N , signifi-
cant flag, bin0 and bin13 for each block type, and the mapping relationship of (11) for
bin0. CABAC spends memory to store the contexts of significant flag, last significant flag,
bin0 and bin13 for each block type. Since it requires 7 bits to represent one (σ, VMPS) pair
(6 bits for σ and 1 bit for VMPS) and 2 bits to represent one entry of the mapping relationship
of (11), the memory consumption for HDCMBAC and CABAC is listed in Table 7, in which
T ableSize represents the number of bits consumed by the context table for a corresponding
syntax element. The total size of the memory required by HDCMBAC is 5307 bits, while
the total size of the memory required by CABAC is 1470 bits.

Table 6 The number of operations cost by context models in HDCMBAC and CABAC in H.264/AVC

Syntax Elements Operations

Table lookup Compare Add

HDCMBAC N 1 1

significant flag 1 1

bin0 2

CABAC significant flag 1

last significant flag 1 1

bin0 1 3 or 2 1
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Table 7 Memory Requirement for HDCMBAC and CABAC in H.264/AVC

Objects Table Size Memory Requirement

HDCMBAC N 5 × 4 × 16 × 7 5307 bits

significant flag 5 × 4 × 16 × 7

bin0 16 × 16 × 2 + 5 × 4 × 7

bin13 5 × 5 × 7

CABAC significant flag 5 × 16 × 7 1470 bits

last significant flag 5 × 16 × 7

bin0 5 × 5 × 7

bin13 5 × 5 × 7

6 Conclusion

In this paper, a hierarchical dependency context model (HDCM) is firstly proposed for DCT
block based on its statistical information, in which the number of non-zero coefficients in
DCT block and the scanned position are used to capture the magnitude varying tendency of
DCT coefficients. Then a new arithmetic coding scheme namely HDCMBAC is proposed
to code the DCT block based on HDCM. HDCMBAC uses HDCM with binary arithmetic
coding to code the number of non-zero coefficients, significant flag and level information of
DCT block. Experimental results demonstrate that HDCMBAC can achieve similar coding
performance as CABAC at low and high QP s. Meanwhile, the context modeling and the
arithmetic decoding in HDCMBAC can be carried out in parallel, and a parallel organization
scheme between them is proposed. Based on this parallel organization scheme, HDCMBAC
can parse the coding stream almost like CABAC without context modeling.
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