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Abstract—We propose a guided image contrast
enhancement framework based on cloud images, in which the
context-sensitive and context-free contrast is jointly improved via
solving a multi-criteria optimization problem. In particular, the
context-sensitive contrast is improved by performing advanced
unsharp masking on the input and edge-preserving filtered
images, while the context-free contrast enhancement is achieved
by the sigmoid transfer mapping. To automatically determine the
contrast enhancement level, the parameters in the optimization
process are estimated by taking advantages of the retrieved
images with similar content. For the purpose of automatically
avoiding the involvement of low-quality retrieved images as the
guidance, a recently developed no-reference image quality metric
is adopted to rank the retrieved images from the cloud. The
image complexity from the free-energy-based brain theory and
the surface quality statistics in salient regions are collaboratively
optimized to infer the parameters. Experimental results confirm
that the proposed technique can efficiently create visually-pleasing
enhanced images which are better than those produced by the
classical techniques in both subjective and objective comparisons.
Index Terms—Contrast enhancement, image quality assessment,

retrieved images, unsharp masking, sigmoid transfer mapping,
free-energy, surface quality.

I. INTRODUCTION

C ONTRAST enhancement plays an important role in the
restoration of degraded images. Due to poor illumination

conditions, low-quality, low-cost imaging sensors and users'
inexperience and operational errors, the contrast of captured
images may not be satisfactory. To recover proper details for
the captured scene, a common applied procedure in low-level
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computer vision is enhancing the image contrast. Generally, it
encompasses the context-free and context-sensitive approaches
[1]. The context-sensitive approach aims to enhance the local
contrast that is dependent on the rate of change in local inten-
sity. In the literature, various algorithms have been proposed
for edge enhancement with linear or nonlinear filtering [2].
However, it is prone to artifacts such as noise and ringing, as
enhancement of these undesirable details will very likely intro-
duce annoying distortions [2], [3]. Moreover, it may destroy
the rank consistency of pixel levels, leading to inconsistent
global contrast. The context-free approach boosts the global
contrast by adopting a statistical method such as manipulating
the pixel histogram. For example, in the well-known histogram
modification (HM) framework, the gray-levels can be spread
to generate a more uniform distribution. The limitation of
methods in this category falls into the lack of adaptation on
various image content, such that the modified histograms of
two different images with the same probability distribution
may become identical.
As a basic perceptual attribute of an image, contrast makes

the representation of objects distinguishable [4]. The most fre-
quently applied context-sensitive enhancement method is un-
sharp masking, which enhances the details of an image by com-
bining the unsharp mask with the original images. The unsharp
mask is generally created by a linear or nonlinear filter that am-
plifies the high-frequency components of the image signal. Ide-
ally, the filter should preserve sharp edges and be robust to noise,
as the enhancement of noise may introduce undesirable details.
In the literature, various edge-preserving filters have been ap-
plied, such as cubic [5] and weighted median filters [6]–[8].
Moreover, in [3], the contrast enhancement of JPEG compressed
images was also studied, in which the image is separated into
structure and texture parts, and the texture component that con-
tains the JPEG artifacts is further processed to reduce the com-
pression artifacts.
The histogram equalization (HE) scheme [9], which is the

most popular HM method, has been widely adopted in many
image processing systems. In HE, the pixel levels are man-
aged according to the probability of input pixel values. The
classical HE method suffers from the excessively enhancement
due to the existence of dominant gray levels. Moreover, the
mean brightness may be no longer preserved. Therefore, var-
ious derivatives of HE methods have been proposed, such as
brightness preserving bi-histogram equalization (BBHE) [10],
dualistic sub-Image histogram equalization (DSIHE) [11], re-
cursive mean-separate histogram equalization (RMSHE) [12],
recursive sub-image histogram equalization (RSIHE) [13],
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Fig. 1. Illustration of the generalized contrast enhancement framework that unifies the context-free and context-sensitive approaches.

weighted thresholded HE (WTHE) [14], generalized equaliza-
tion model [15] and histogram modification framework (HMF)
[16]. In addition to the HE based methods, the tone-curve ad-
justment such as sigmoid transfer based brightness preserving
(STBP) algorithm [17] was proposed to produce visually
pleasing enhanced image according to the close relationship
between the third order statistic (skewness) and the surface
quality [18]. In most cases, these methods are applied globally
to the whole image. Alternatively, they can be easily extended
to image regions [19].
One difficulty in traditional contrast enhancement algorithms

lies in how to choose the optimal parameters that can produce
visually-pleasing quality. Excessive enhancement may destroy
the naturalness of images, while insufficient enhancement may
not well improve the quality. The commonly-used manual pa-
rameter tuning is impractical for most applications as it is labor
intensive and time-consuming, and more importantly, only au-
tomatic operations are feasible in many meaningful situations.
Analogies to image quality assessment (IQA), central to such a
problem is finding appropriate reference images that can serve
as guidance. Thanks to the cloud, which is characterized by a
large quantity of resources, storage and data [20], we can easily
get access to high quality guidance images. Recently, with the
advance of cloud computing, a huge number of images are up-
loaded and stored to the cloud every day. There is a high prob-
ability of finding very similar images, which are captured at the
same location with different views, angles and focal lengths. In-
spired by this, cloud based image processing has demonstrated
its power in a variety of applications, such as image coding [21]
and restoration [22].
In this paper, we attempt to address two issues in contrast en-

hancement: unifying context-sensitive associated with context-
free methods and automatically deriving the proper enhance-
ment level. In the literature, relating different types of contrast
enhancement methods has brought more inspirations to the con-
trast enhancement research. In [23], spatial filters including the
bi-lateral, non-local means, and steering regression etc. were
unified to improve the image quality. In [15], a joint strategy
was proposed by combining the white balancing and contrast
enhancement together. Generally, it is widely acknowledged
that a good contrast enhancement algorithm should highlight

meaningful details properly and suppress visual artifacts simul-
taneously. By combining the context-free together with con-
text-sensitive methods, we propose a unified contrast enhance-
ment framework, where context-sensitive model tends to en-
hance the local contrast from the difference of neighbouring
pixels, and meanwhile the context-free approach modifies the
overall statistical pixel distributions regardless of the local con-
tent. More specifically, a multi-criteria optimization strategy is
proposed, in which the input image, the enhanced image with
unsharp masking, and the sigmoid transformed image are simul-
taneously considered. Furthermore, following this framework,
the best contrast level is inferred by taking advantages of the re-
trieved images that are selected with the help of a no-reference
(NR) IQA method, which predicts the perceived quality of each
retrieved image without referencing to its corresponding pris-
tine quality original image [24]. The basic principle behind it is
from the reduced reference IQA approach [24], [25], which is
based upon the assumption that if the features extracted from the
enhanced and guidance images can be better matched, the en-
hancement quality will be closer to that of the guidance image.
Inspired by the recently revealed free-energy theory [26] and
surface quality [18], the enhancement level is developed in an
automatic manner.
The remainder of this article is organized as follows.

Section II presents the unified framework for contrast enhance-
ment, which includes the context-sensitive and context-free
approaches. In Section III, we investigate the automatic con-
trast enhancement level derivation with retrieved images. The
proposed scheme is verified in Section IV. Section V discusses
the limitations and future work. Finally, Section VI concludes
this paper.

II. UNIFIED CONTRAST ENHANCEMENT FRAMEWORK

In this section, we present the generalized contrast enhance-
ment framework that leverages the context-sensitive and con-
text-free enhancement methods. The advantages of these ap-
proaches are incorporated with a joint strategy, targeting at gen-
erating amore visually-pleasing images. The generalized frame-
work is illustrated in Fig. 1, where the enhanced images from
context-sensitive approach such as unsharp masking and con-
text-free approach such as tone-curve adjustment are fused in
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TABLE I
SUMMARY OF NOTATIONS AND DEFINITIONS

a systematical way to generate the final image. To facilitate un-
derstanding, the summary of some notations and definitions that
will be used throughout the following paper is shown in Table I.

A. Context-Sensitive Approach

The rationale behind the unsharp masking is to amplify the
high-frequency components of the image signal by applying a
linear or nonlinear filter [2]. In general, the filtering process can
be regarded as fitting a particular model to the input [27], and
the residual signal between the original input and the low-pass
filtered (e.g., Gaussian smooth) images can be treated as de-
tails, which generally contain both image structure and noise.
However, in unsharp masking, only image structure should be
enhanced as amplification of the noise is usually undesirable.
This motivated us to firstly pre-process the image to reduce
noise while preserving the edge, followed by a unsharp masking
process [2]. Generally, there are various edge-preserving fil-
ters, and each of them can generate a unsharp masking ver-
sion, as illustrated in Fig. 1. The fusion of the processed images
is regarded as the context-sensitive enhanced image. Here we
demonstrate the case when applying two filters to process the
image, including the impulse function and bilateral filter [28].
For bilateral filter, it possesses well edge-preserving ability, and
is also easy to construct and calculate [29]. The reason of in-
troducing the impulse function to preserve the input image in-
formation is that only applying the edge-preserving filter would
give rise to detailed information loss, while the combination of
them can make a good balance between the noise robustness
and sharpness enhancement. This strategy can also be extended
by employing more than two filters to deal with more complex
scenarios.
Given the input image , the unsharp masking can be de-

scribed as follows:

(1)

where and represent the high frequency signal gener-
ated following the image pre-processing with impulse function
and bilateral filter, respectively. More specifically, the Gaussian
smoothing is further applied on the pre-processed images and
the residuals between the input and smoothened images are
treated as the high frequency signal and . and

are the control factors and here the equal weighting strategy is
applied .

B. Context-Free Approach
The context-free enhancement is achieved by the sigmoid

transfer mapping [17], [30]. The authors of [18] found that
human eyes use skewness or a similar measure of histogram
asymmetry in judging the surface quality (e.g., glossiness),
and an image with a long positive tail in histogram (namely a
positively skewed statistics) tends to appear darker and glossier.
This hints the usage of the sigmoid mapping to improve the
surface quality [17], such that the quality of the enhanced
image better matches the preference of the human visual system
(HVS). The context-free enhanced image is obtained by a
four-parameter logistic mapping

(2)

where operation is used to clip the pixel values into the
range of [0, 255] and are parameters to be
determined. This function characterizes the mapping curve, and
to derive these parameters, four points on the curve, denoted
as should be firstly fixed prior to the
transfer process. Here indicates the input intensity and in-
dicates the transfer output. As the sigmoid mapping is rolling-
symmetry with respect to the straight line , three pairs
are fixed as follows, ,
and , where is the maximum in-
tensity value of the input image . Another pair

can be set up to control the shape. For example, can
be fixed as a certain number except and . Once is
fixed, given a value, the optimal control parameters can
be obtained by searching for the minimization of the following
objective function:

(3)

Consequently, is the only control parameter that alters the
curvature of the transfer function. In this work, we fix as 25
and set to be 3.
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Fig. 2. Comparison of the context-sensitive and context-free enhancement results. (a) Input image “Lighthouse”; (b) ; (c) ; (d) with and .

C. Unified Contrast Enhancement Framework
Both the context-sensitive and context-free approaches have

their own advantages in optimizing the contrast quality, and
therefore in this paper we formulate the contrast enhancement
as a multi-criteria optimization problem. Basically, the goal is to
find an image that is close to the enhanced images as desired, but
also preserve the structure from the input image . Therefore,
given the parameters and that control the contrast enhance-
ment level, the generalized framework is defined as follows:

(4)

where denotes the enhanced image in the generalized contrast
enhancement framework. The enhanced images and are
generated by the context-free and context-sensitive approaches,
respectively. To obtain an analytical solution, D is defined as
the squared Euclidean distance. In general, given any two equal-
length vectors and , it is formulated as follows:

(5)

Combining (4) and (5), the quadratic optimization problem is
derived as follows:

(6)

resulting in the following image fusion process to get the final
enhanced image

(7)

Consequently, different and will create different enhance-
ment results. For example, when goes to infinity converges
to a global enhanced image, and when and turn to zero,
preserves the original input image. Therefore, various levels of
contrast enhancement can be created by adjusting the two pa-
rameters. Ideally, the generation of and should be highly
dependent on the image content. Fortunately, as and are au-
tomatically determined based on the retrieved guidance images
with feature matching, the enhancement parameters in deriving

and can be set as constant values that reach the maximum
enhancement levels.
In Fig. 2, we demonstrate the contrast enhancement results,

including the input image, and with parameters

and . As the proposed scheme incorporates the advan-
tages of both the context-free and context-sensitive approaches,
the finally enhanced images appears more natural and vi-
sually-pleasing. It is observed that the unsharp masking of the
input image can preserve more details. Moreover, we observe
that better surface quality is achieved with the sigmoid transfer,
as shown in Fig. 2(c). As a matter of fact, by setting
and in the optimization process, the enhanced image is
upper-bounded by the and , and lower-bounded by the input
image .

III. GUIDED CONTRAST ENHANCEMENT SCHEME

In the literature, with numerous approaches proposed to
enhance image contrast, much less work has been dedicated
to automatic determination of contrast enhancement levels.
However, improper enhancement level may cause excessive
enhancement, leading to unnatural images, which are not
desirable in real applications. To avoid manually selection
of contrast enhancement parameters, we employ retrieved
images to influence the automatic contrast enhancement level
derivation. Generally speaking, a large number of near and
partial duplicate images in the cloud are captured at the similar
location, but with different scales, orientations, and focus
lengths. According to the statistics, around 300 million photos
are uploaded to Facebook every day. These images are captured
with different devices and processed by different softwares, and
many of them are highly correlated. For instance, for a given
landmark image, it is easy to retrieve many highly correlated
images [31]. Another particular example is photo album [32],
[33], in which the images have similar content as well as
semantic meanings.
In general, automatically enhancing an image to the desired

contrast level is difficult, as quality assessment of contrast en-
hancement is still a non-trivial task [34]. Thanks to the avail-
ability of a large number of images from cloud, which make
the automatic contrast enhancement from the cognitive point
of view possible. Here we make an assumption that the guid-
ance images from cloud could have the perfect enhancement
quality, as many of them may have already been manually se-
lected and processed when they were uploaded. To realize the
automatic guidance image selection, an NR-IQA method is ap-
plied to re-rank the retrieved images such that the one with best
quality from the retrieved images is treated as the “guidance”.
Specifically, given an input image, image retrieval system will
return a batch of images with similar content. In additional to the
scenario of photo album contrast enhancement, which will be
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Fig. 3. Flowchart of the automatic contrast enhancement scheme.

discussed in Section III-A, we apply the content-based image re-
trieval method to obtain the content-similar images. Since con-
tent-based method compares the image distances based on the
image content such as colors, texture and shapes, it is more
appropriate for the task of locating the appropriate guidance
images. Subsequently, the NR-IQA is performed to rank the
guidance image. As aforementioned, there may exist many high
quality retrieved images in cloud, and employing more images
as guidance may improve the robustness of the algorithm at
the cost of higher computational complexity. In this work, we
demonstrate the solution with only one guidance image. It is
feasible to extend the scheme by using more guidance images,
which will be further discussed in Section IV-B.
The remaining task is to derive the contrast enhancement

level that best matches the guidance image. There are various
methods for matching the quality of two images.With registered
image pairs, this problem can be formulated to be designing
full reference IQA methods to compute the visual distance be-
tween them. Nevertheless, as the images from cloud may have
different orientation and scale, it is difficult to directly apply
the full reference IQA. Locating keypoints and extracting de-
scriptors can be an alternative solution, such as computing the
well-known Scale-invariant feature transform (SIFT) [35] and
Speeded Up Robust Features (SURF) [36] descriptors. How-
ever, the design philosophy of these features has little correla-
tion with image quality. Inspired by the reduced reference IQA
methods, in this work a few extracted features that can sum-
mary the whole image are utilized for contrast enhancement
quality comparison and matching. As a matter of fact, contrast
is highly revelent to image complexity and surface quality sta-
tistics, which inspires us to explore the contrast level derivation
with recent findings on brain theory.

A. Guidance Image Selection With NR-IQA
The guidance image selection process is illustrated in Fig. 3.

Initially, the input image is used to retrieve highly correlated
images from cloud. Since images in the cloud can be either per-
fect quality or corrupted by various types of distortions, it is
desirable to apply an NR-IQA algorithm to rank these images
and select the best one. This motivates us to adopt a recently
proposed NR-IQA method [37], which achieves state-of-the-art

prediction accuracy. It is also worth noting that any other ad-
vanced NR-IQA algorithms can be applied here in principle.
In the NR-IQAmethod, features that are based on the free-en-

ergy theory are used to establish the constructive IQA model.
Based on the observation that there exists an approximate linear
relationship between the structural degradation information and
the free-energy of original images, the structural degradation

and are compared with the free-energy
feature , and the divergence between them

and
are employed for quality evaluation. The com-

putation of free-energy is described in Section III-B. The struc-
tural degradation is evaluated by

(8)

where denotes the mathematical expectation operator and
is a small positive stability constant that accounts for the sat-

uration effects. Here and are defined to be local mean and
standard deviation of with a 2D circularly-symmetric Gaussian
weighting function. By contrast, and are the local mean
and standard deviation using the impulse function instead of the
Gaussian weighting function. denotes the local covari-
ance between two vectors and , such that the structural
degradation information corresponds to the cosine of the angle
between the two mean vectors. Analogies to that, denotes
the local covariance between two vectors and .
The design physiology is due to the fact that both

and values of high-quality images (with very few
distortions) are quite close to zero, whereas they will be far from
zero when distortions become larger. The parameters
and are trained based on the least square method using the
Berkeley database [38]. In additional to these features, image
size is also considered as a criterion to exclude low resolution
guidance images.
In addition to the single image contrast enhancement with

retrieved images from cloud, the framework can be further
extended to “photo album contrast enhancement”. Photo album
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[32], [33] is regarded as a special existence form in cloud
storage. For instance, people may want to enhance a batch of
images that are taken at similar places. Besides the contrast
enhancement for each image in the photo album from the guid-
ance images selected in cloud, alternative strategies based on
the proposed framework can be applied as well. For example,
they can manually select one guidance image when browsing
these images (as the total number of images may not be infin-
itely large), or manually enhance one image to perfect contrast
and treat this image as guidance. Subsequently, other images
can be automatically enhanced with the guidance information.

B. Free-Energy-Based Brain Theory

The free-energy theory, which was recently introduced by
Friston et al. in [26], attempts to explain and unify several brain
theories in biological and physical sciences about human ac-
tion, perception and learning. The basic premise of the free-en-
ergy based brain theory is that the cognitive process is manipu-
lated by an internal generative model (IGM). The human brain
can actively infer predictions of the meaningful information of
input visual signals and avoid the residual uncertainty in a con-
structive manner. In this work, the free-energy is applied both in
NR-IQA as well as the feature matching for contrast enhance-
ment level derivation.
Assuming that the IGM for visual perception is parametric,

which explains the scene by adjusting the parameter . Given
the input image , its “surprise” (determined by entropy) is eval-
uated by integrating the joint distribution over the space
of model parameters [39]

(9)

Since the precise expression of joint distribution is still
well beyond our current level of knowledge about the details of
how the brains are working, a dummy term is integrated
into both the denominator and numerator in (9), which can be
rewritten as follows:

(10)

where is an posterior distribution of the model param-
eters given the input image signal . This can be regarded as
the posterior approximation to the true posterior of the model
parameters in the cognitive process. Another interpreta-
tion is that when we perceives the image , the parameter vector
of is adjusted to obtain the optimal explanation of

, such that the discrepancy between the approximate posterior
and the true posterior is minimized [39]. The

same technique has been used in ensemble learning or in a varia-
tional Bayesian estimation framework. The negative “surprise”
can also be interpreted as the log evidence of the image data
given the model. In this manner, the minimization of surprise is
equivalent with the maximization of the model evidence.
By applying Jensen's inequality, from (10) we derive that

(11)

Fig. 4. The relationship between the contrast enhancement level (controlled by
parameter ) and free-energy (evaluated in terms of residual entropy) for image
“Lighthouse”.

and the free-energy is defined as follows:

(12)

The free-energy defines the upper bound of the input
image information as . In [39], it is shown
that the free-energy can be characterized by the total description
length for the th order autoregressive (AR) model

with (13)

where denotes the total number of pixels in the images. Thus,
the entropy of the prediction residuals between the input and
predicted images plus the model cost can be used to estimate

. The residuals are also known as the disorderly informa-
tion that cannot be well explained by the HVS. The derivation
process of the AR coefficients can be found in [40]. In this stage,
a fixed-model order is chosen, resulting in the ignorance of the
second term in comparison.
The free-energy based brain theory also reveals that the HVS

cannot fully process all of the sensation information and tries
to avoid some surprises with uncertainties, which can be re-
garded as free-energy. In practice, positive contrast change ren-
ders high quality images by highlighting the visibility details,
which produces more informative content. When perceiving the
positive contrast image, the additional informative content will
make the image more difficult to describe, as in general the
HVS has stronger description ability for low-complexity images
than high-complexity versions [41]. This leads to higher free-
energy, and vice versa. The prior information from the guid-
ance is able to predict the appropriate free-energy of a visu-
ally-pleasing image with a good contrast, which is very efficient
in deriving the contrast enhancement levels.
The relationship between the contrast enhancement level and
is demonstrated in Fig. 4, where the enhancement level is con-

trolled by the context-sensitive parameter . It is observed that
the free-energy is increasing monotonously with the enhance-
ment level, which indicates that it has strong description ability
for contrast. Moreover, the residual maps between the original
and predicted images with AR model are shown in Fig. 5. This
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Fig. 5. Input image and prediction residuals with AR model in terms of different enhancement levels (the residuals are enlarged for visualization and brightness
indicates a smaller residual). (a) Image “Lighthouse”; (b) ; (c) ; (d) ; (e) .

Fig. 6. Surface quality comparison of two synthetic images of Michelangelo's
St. Matthew sculpture with the same mean luminance [18]. (a) Skewness:

; (b) skewness: .

also verifies that the energy of prediction residual is highly rel-
evant with the enhancement strength, and high contrast image
results in large free-energy.

C. Surface Quality Statistics
It is generally acknowledged that contrast provides a valid

cue to surface reflectance [42] and shares more high-level prop-
erties with gloss in human perception dimensions [43]. In [18],
it is discovered that the human observers use skewness , or
histogram asymmetry to judge the surface quality. In Fig. 6,
two renderings of a three-dimensional model of Michelangelos
sculpture of StMatthew are demonstrated. It is observed that the
right image appears darker and glossier than the left one, and
moreover, the skewness of the left image is lower than the right
one. Skewness is a measure of the asymmetry of a distribution,
and it indicates the balance between the positive and negative
tails. As the glossiness is increased regardless of the albedo, the
skewness of image histogram tends to increase. To explain the
skewness from physiology in human brains, a possible neural
mechanism was proposed in [18], which includes on-center and
off-center cells and an accelerating nonlinearity to compute the
subband skewness.

D. Contrast Level Derivation From Guidance
The flowchart of the contrast enhancement level derivation is

illustrated in Fig. 3. Given an input image, the context-free and
context-sensitive methods are applied to fuse the enhanced ver-
sions. Since human cortical cells are likely to be hard wired to

preferentially respond to high contrast stimulus [44], and image
saliency is sensitive to noise injection whereas immune to con-
trast enhancement [30], a saliency region detection algorithm is
performed on both the guidance and the fused images. Specifi-
cally, the saliency regions are detected by applying a threshold
on the saliency maps of the guidance and the fused images, re-
spectively. Subsequently, the features including the free-energy
and surface quality within the salient regions are extracted. The
parameters that can lead to a minimal feature distance are em-
ployed to generate the final enhanced image.
1) Visual Saliency Detection: In the literature, various ap-

proaches of visual saliency detection have been proposed [45]
and successfully applied in image processing tasks, e.g., IQA
metrics design [46], [47] and high efficiency video compression
[48]. The recently proposed image signature model [49] makes
use of the sign of each DCT component to generate the saliency
map. As such, this model just requires a single bit per compo-
nent, making it efficient with very low cost of computational
complexity. Specifically, the image signature is defined as

(14)

where sign is the entrywise sign operator and for each entry
with the input value

(15)

Subsequently, the reconstructed image is derived by

(16)

where DCT2 and IDCT2 respectively stand for discrete cosine
and inverse discrete cosine transforms for the two dimensional
image signal. The saliency map is finally obtained by smoothing
the squared reconstructed image

(17)

where is a Gaussian kernel and ‘ ’ and ‘ ’ are the entry-wise
and convolution product operators respectively. In practical im-
plementations, the saliency map can be converted into a inten-
sity image in the range from 0.0 to 1.0, and with the empirically
determined threshold the saliency regions can be classified.
2) Automatic Contrast Enhancement: Based on the anal-

ysis of free-energy and surface quality statistics, two features
are extracted from the guidance and fused images. Instead of
pixel-wisely or patch-wisely comparing image pairs, the global
features can achieve high efficiency in dimension reduction,
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Fig. 7. One hundred test images.

Fig. 8. One hundred guidance images.

Fig. 9. Contrast enhancement results comparison. (a) Guidance image; (b) input image; (c) enhanced image with proposed method; (d) HE output.

and also provide good accuracy in summarizing the contrast
strength. As such, contrast matching can be converted to the op-
timization problem based on the guidance image and the fused
image as follows:

(18)

where the parameter balances the magnitude and importance
between the complexity measure and skewness measure. Pa-
rameters and are the optimized values that lead to an ap-
propriate enhancement level. To facilitate the comparison and
reduce the computational complexity, the guidance and fused
images are firstly downsampled to the same scale for the feature
computation. The final enhanced image is obtained by fusing
and with parameters and according to (7).
It is not straightforward to differentiate the objective function

with regards to and . Practically, we perform a search to ob-
tain the best enhancement level, as given in [50]. More specif-
ically, the extracted feature is firstly compared in terms of grid
within a given range of parameters, followed by a fine search
within the reduced ranges.

IV. EXPERIMENTAL RESULTS
In this section, we evaluate the performance of the proposed

contrast enhancement scheme in various aspects. Firstly, we
present the contrast enhancement results that are evaluated ob-
jectively and subjectively in comparison with the methods in-
cluding the classical HE as well as the more advanced methods
such as RSIHE [13], WTHE [14] and HMF [16]. Secondly, the
scenario of multiple guidance images is considered, and subjec-
tive tests are further conducted to investigate this issue. Thirdly,
the robustness of the scheme is evaluated in cases when there is
no appropriate guidance image. Finally, the complexity of the
proposed scheme is analyzed and demonstrated.

A. Contrast Enhancement Evaluation
As illustrated in Figs. 7 and 8, to evaluate the proposed

scheme, in total 100 images are used for testing, which cover
a wide range of applications and scenarios including humans,
animals, indoor, outdoor, landmarks, products, etc. The corre-
sponding guidance images are obtained based on the similar
content retrieved images, which are subsequently ranked via
the NR-IQA method. In Fig. 9, we demonstrate the guidance,
test, as well as enhanced images with methods including the
proposed and classical HE, respectively. As given in Fig. 9(d),
the HE usually produces too-dark and too-bright regions,
making the image excessively enhanced and unnatural. This
results from the large backward-difference of the equalized
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Fig. 10. Demonstration of the blocking artifacts in contrast enhancement (cropped for visualization). (a) Input image; (b) enhanced image with proposed method;
(c) HMF output; (d) RSIHE output.

histogram. In comparison, our model not only appropriately
enhances the detailed information, but also generates much
glossier images for both the natural scenes and objects, being
enabled by the sigmoid transfer mapping.
Another interesting observation is that when the input images

are corrupted (e.g., the commonly seen JPEG compression), the
artifacts after contrast enhancement can be easily boosted by the
traditional enhancement methods. However, our method suffers
less from this problem thanks to the guided contrast enhance-
ment strategy. As the free-energy increases monotonously with
the injected artifacts, such as noise and blocking [39], the con-
trast enhancement level is suppressed accordingly to achieve
matching statistics, resulting in less distortion introduced. One
example is demonstrated in Fig. 10, where the cropped images
are demonstrated for visualization. Though the input image is in
JPEG format, it is observed that the artifacts in the input image
are not obvious. However, the variants of HE approach such as
HMF and RSIHE clearly amplify the blocking artifacts in con-
trast enhancement, whereas our approach is able to create com-
pelling images and avoid these apparent artifacts.
To further validate the proposed scheme, we have conducted

both objective and subjective experiments. In the subjective test,
25 naive subjects were invited to give an integer score between
0 and 10 for the perceptual quality of each contrast enhanced
image, including the proposed, HE, WTHE [14], RSIHE [13]
and HMF [16] methods. The subjects participating in this test
include 11 females and 14 males, and their ages are between
18 to 31. The principle is to judge the quality based on the
basic attributes of natural images such as quality, contrast, as
well as naturalness. Moreover, 0 denotes the worst quality and
10 the best. The final quality score of each individual image is
computed as the average of subjective scores, termed as mean
opinion score (MOS), for all subjects. The subjective testing is
conducted with a conventional monitor and each image is ran-
domly played twice. In Fig. 11, we demonstrate the MOSs for
each image. It is observed that, the proposed scheme has ob-
tained outstanding results by winning the first place on 82 image
sets.
Moreover, objective assessment measures are further em-

ployed to evaluate the quality of the contrast changed images.
We adopt the analysis of distortion distribution-based (ADD)
quality measures, including ADD-SSIM and ADD-GSIM [51],
as both of them achieve the state-of-the-art prediction accuracy
on contrast-changed images. The average scores over the 100
test images are shown in Table II. Following the methodology
of image quality assessment, the scores are obtained by a
nonlinear mapping with the logistic regression function, and

Fig. 11. Mean opinion score for each image.

the mapping parameters are trained using the contrast change
image database [52]. It is observed that the proposed scheme
produces significantly better images than HE, HMF, RSIHE and
WTHE methods in terms of both ADD-SSIM and ADD-GSIM.
These results provide proof of the superiority of the proposed
scheme in contrast enhancement applications, which originates
from both the unified contrast enhancement framework and
appropriate enhancement levels derived from retrieved images
in similar content.

B. Impact of the Number of Guidance Images

Conceptually, involving more appropriate guidance images
may improve the robustness and provide more accurate feature
values that represent the perfect image contrast. As such, the ro-
bustness of the method can subsequently get improved, leading
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TABLE II
OBJECTIVE PERFORMANCE COMPARISONS IN
TERMS OF ADD-SSIM AND ADD-GSIM [51]

Fig. 12. Selected images in the investigation of the impact of NoG and robust-
ness evaluation.

Fig. 13. Quality rank for each enhanced image generated by different NoG
images.

to better enhanced images. To validate this assumption, we con-
duct a subjective test in which 25 images are selected for eval-
uation, which are shown in Fig. 12. The same 25 subjects as
in Section IV-A are invited. The numbers of guidance (NoG)
images are from 1 to 4. The multiple guidance images are ob-
tained after using NR-IQA to rank the retrieved images. To dis-
tinguish the differences between the enhanced images, we adopt
a different strategy in subjective testing, where subjects are sug-
gested to provide the rank among the four images. Specifically,
“4” indicates best quality among these four images and “1”
indicates the lowest quality. The results are demonstrated in
Fig. 13. One can discern that employing more images can im-
prove the contrast enhancement results in most cases.Moreover,
in Figs. 14 and 15, we demonstrate two examples of the en-
hanced images with different NoG, where the original input, en-
hanced images with one and three guidance images are shown.
In Fig. 14, increasing the NoG significantly boost the contrast
of the enhanced image, leading to better visual quality. By con-
trast, in Fig. 15, proper contrast is assigned when increasing the

NoG, such that the enhanced image looks more natural. There-
fore, it is concluded that the NoG also plays an important role
in avoiding the excessive and insufficient enhancement. How-
ever, there exists a trade-off when using more guidance images,
as more guidance imagesmay imposemore computational over-
head on the calculation of the features values as well. To validate
the concept of the approach, we only use one guidance in other
experiments. How to determine the optimal number of guidance
images will be studied in the future.

C. Robustness Analysis

It is worth noting that the appropriate guidance images may
not always exist in cloud. One reason lies in the fact that re-
trieved images in similar content can not always be found. An-
other reason is that the selected guidance image may have im-
proper contrast, especially when there are only low quality im-
ages after retrieval. To deal with these cases, in our contrast en-
hancement, it is not allowed to reduce the image contrast by
forcing and . As such, contrast can only get en-
hanced with the proposed method, implying that the contrast
enhanced image is lower bounded by the input image , and
upper bound by and . Finally, three possibilities may arise
after the contrast enhancement, including insufficient, proper
and excessive enhancement. In particular, insufficient enhance-
ment will improve the image quality, but the improvement may
not achieve the desired level. The proper enhancement exactly
meets the target level, which produces the enhanced image with
best quality. By contrast, the excessive enhancement may pro-
duce unnatural images.
To further investigate the robustness issue, two additional ex-

periments are conducted, and again images in Fig. 12 are used
for testing. In the first experiment, the corresponding guidance
images are randomly selected from the 100 guidance images
in Fig. 8 to simulate the case when there do not exist retrieved
images in similar content. In this manner, the content of input
test and guidance are totally different. In the second experi-
ment, the corresponding guidance images that are selected in
Section IV-A are further blurred with a Gaussian low-pass filter,
targeting at generating the low quality images with improper
contrast.
To examine whether the quality of the input image has

been improved, we perform a comprehensive subjective study
based on the two-alternative forced-choice (2AFC) method.
The 2AFC method is widely used in psychophysical studies
[53]–[55], where in each trial, a subject is shown a pair of
images/videos and is asked (forced) to choose the one he/she
thinks to have better quality. Therefore, in each test, 25 pairs of
images are evaluated, where each pair is composed of one input
image and one enhanced image. The results of the subjective
tests are reported in Fig. 16. In each figure, the percentage by
which the subjects are in favor of the original input against
the enhanced image is shown. We also plot the error bars (
one standard deviation between the measurements) over the
25 image pairs. For the first experiment, as can be observed
in Fig. 16(a), it turns out that for eight images subjects show
obvious preference to the input image against the enhance im-
ages . This originates from the reason that
these images get excessive enhancement, leading to unnatural
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Fig. 14. Contrast enhancement results comparison (insufficient enhancement case). (a) Test image; (b) enhanced image with ; (c) enhanced image with
.

Fig. 15. Contrast enhancement results comparison (excessive enhancement case). (a) Test image; (b) enhanced image with ; (c) enhanced image with
.

Fig. 16. Subjective tests on the examination of robustness (mean and standard
deviation of preference for individual enhanced image). (a) Guidance images
with different content case; (b) guidance images with low quality case.

looking. One example is shown in Fig. 17. Moreover, although
the guidance images have different content, the quality of
five images get significantly improved .
This is due to the fact that these guidance images occasionally
provide useful features that lead to better quality images, even
if the derived contrast level may not be perfect. For the rest of

Fig. 17. Illustrated of the excessively enhanced image with inappropriate guid-
ance information. (a) Input image; (b) excessively enhanced image.

the images, subjects are difficult to judge whether the enhanced
or the input image has better quality. In the second experiment,
when the guidance images are blurred, for most of the cases
the percentage is still close to 50% and all error bars cross the
50% line. This is because that our proposed approach dose
not allow the reduction of image contrast. Even though most
of the images cannot get enhanced, their quality has not been
degraded either. These results further illustrate the robustness
of the proposed scheme.

D. Complexity Analysis
In this subsection, we conduct an experiment to test the

complexity of the scheme. In the proposed scheme, both the
guidance image selection and contrast enhancement manipula-
tions may introduce computational overhead. Here we focus on
the complexity of the contrast enhancement manipulations with
guidance images. Given the test image , the enhanced images
and can be computed via unsharp masking and tone-curve

modification. The remaining task is to derive best parameters
( and ) for image fusion. Here we employ the computation
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Fig. 18. Running time of procedure1 and procedure2.

uint (CU) to facilitate the quantitative measurement of the
computational consumptions. Specifically, we choose the com-
putation time of the context-sensitive unsharp masking as the
CU, as this operation is frequently applied in real applications
of contrast enhancement. To obtain more accurate complexity
comparison, we perform the program in MATLAB for 10 times
for each image, and each time the average results over all test
images are recorded. The test computer has Intel 3.40 GHz Core
processor and 8 GB random access memory. The computational
complexity of the context-free and context-sensitivity images
( and ) generation (procedure1) and the parameters ( and
) derivation (procedure2) is demonstrated in Fig. 18. One can

discern that the complexity of the proposed guidance image
contrast enhancement scheme is around 8 times of the unsharp
masking, and the computational resources are mostly allocated
to the optimal fusion parameters derivation. It is also worth
noting that most of the computations (such as AR modeling
and Gaussian smoothing) can be performed in parallel within
the local image patch. These parallel friendly manipulations
also enable its future applications in real scenarios.

V. DISCUSSIONS

As one of the first attempts on relating the contrast en-
hancement with “cloud multimedia”, our scheme has several
limitations that should be improved in the future. First, the
current method employs global features such as free-energy and
histogram statistics for matching. In practice, users may require
enhancement of local areas. In this scenario, after locating the
matching position using local descriptors such as SIFT, devel-
oping more local feature extraction and statistical modeling
work for contrast enhancement is necessary. Second, in the
future, how are these statistical features that can describe the
quality of contrast enhancement related and what is best way
to combine these features may be further exploited. Finally,
associating the scale space with image quality and contrast
enhancement to gain more adaptability is also meaningful for
the guided contrast enhancement scheme.
With the development of large scale image processing, we

believe that this area has tremendous potential for future ex-
ploration. Here we discuss in detail our vision and hypothe-
size about possible paths to tread in the future. In the scenario
of large scale contrast enhancement, the method must adapt to
several stringent requirements. Firstly, the processing must be

fast, as light-weighted and power-saving algorithmsmay greatly
benefit the large scale image processing. In the similar fashion of
photo album enhancement, one way to achieve this is to exploit
the internal correlations within the large scale dataset to further
reduce the processing complexity. Secondly, large scale image
retrieval requires more accurate retrieval algorithms. Treating
the low contrast images as the input for large-scale image re-
trieval may affect the accuracy of the retrieval performance.
Therefore, with the rapid growth of multimedia big data, how to
generalize the model to unify the image retrieval with enhance-
ment and select more appropriate guidance images from cloud
should be investigated. Thirdly, how to design the sophisticated
crowdsourcing system to provide an efficient way in conducting
the very large subjective study is very critical, as it can be used
to benchmark the large-scale contrast enhancement systems and
algorithms. All of these requirements pose new challenges to
image quality assessment, retrieval and contrast enhancement
research and open up new space for future explorations.

VI. CONCLUSION
We have proposed a guided image contrast enhancement

framework based on the retrieved images from cloud, targeting
at automatically generating a visually-pleasing enhanced image.
The novelty of this paper lies in the unifying of context-sen-
sitive and context-free contrast enhancement methods, and
automatically estimating the enhancement level by matching
the extracted features in visual salient region. In particular, the
optimization problem is formulated as generating an image that
is close to the input, context-free enhanced, as well as the con-
text-sensitive enhanced images. With the utility of the retrieved
image, the blind estimation of the contrast enhancement level
is performed based on free-energy and surface quality. Exper-
imental results demonstrate the effectiveness of the scheme in
image enhancement applications.
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