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Abstract—High accuracy image registration is critical for the
success of multi-frame super-resolution. Conventionally, the shift
between images are estimated directly based on the under-
sampled low-resolution (LR) image data. However, the high-
frequency of LR data is unreliable due to the aliasing effect of
sub-sampling, which will deteriorate the accuracy of registration.
This paper proposes to resolve the aliasing by converting the
LR images to high-resolution (HR) domain and then perform
registration on the restored HR spectrum. To recover the HR
spectrum for each corresponding LR image, we fuse the LR
images into one HR image and project the estimation difference
back to the reconstructed HR spectrum iteratively. To address the
unequal reliabilities of different restored frequencies, weighted
least square is employed to improve the precision of registra-
tion. Experimental results show that the proposed method can
outperform other existing methods and improve the quality of
super-resolution image.

Index Terms—Image registration, super-resolution, aliased im-
age, spectrum restoration, weighted least square

I. INTRODUCTION

Image super-resolution has been studied widely over the

past two decades. Based on the sampling theorem, the original

high-resolution (HR) image can not be generally reconstructed

using only a single under-sampled low-resolution (LR) image.

However, several LR images sampled from the same scene

with relative shifts allow the possibility of reconstructing the

HR image. Tsai and Huang [1] first proposed a system that

describes the relationship between LR images and a HR image

using relative shifts between LR images. Most super-resolution

(SR) methods are performed in two stages: registration and

reconstruction. Generally, the performance of SR algorithms

relies heavily on the accuracy of estimated shifts. However,

high precision registration is difficult to achieve due to the

presence of alias caused by under-sampling.

Various image registration methods have been proposed in

literature [2]–[13]. Based on the Fourier shift theorem, Vande-

walle [2] uses only the low frequency spectrum instead of the

whole spectrum to reduce the influence of alias. Murat Balci
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[3] and Jinchang Ren [4] apply a phase correlation technique to

find the shifts between images. Keren [5] proposes a method

based on Taylor expansions. Although these methods work

well for alias-free images, the registration accuracy is far

below the demand for aliased images.

In this paper, we propose a high-precision frequency-domain

registration method for aliased images. Due to the presence of

alias, high-frequency components of LR images are unreliable.

Meanwhile, we show in the paper that components of higher

frequency offer better resolving capability for estimating the

shift. As a result, registering the LR images directly cannot

achieve high estimation precision. Unlike conventional meth-

ods, the proposed method tries to restore the high-resolution

spectrum from the whole set of LR images and register them

in the higher resolution with less alias. The HR spectrum

is iteratively restored based on a back projection scheme.

Furthermore, we employ weighted least square to handle the

unequal reliability of different frequency coefficients.

This paper is organized as follows. Section II gives some

analysis of the aliased image registration problem. Section III

presents the framework of our method. Section IV explains

some details of the proposed scheme. Experimental results are

then given in Section V and Section VI concludes the paper

with a few remarks.

II. PRELIMINARY ANALYSIS

Assume we have two images f1 and f2 captured from the

same scene with horizontal and vertical shifts, d1 and d2. The

relationship between them can be described in the frequency

domain as follows:

F1(u) = ej2πu
TdF2(u). (1)

where u=(u1, u2)
T is frequency point and d=(d1, d2)

T is the

shift vector. This translates to the following phase equations:

2πuTd = ∠(F2(u)/F1(u)) (mod 2π) (2)

Eq. (2) actually represents a plane with slope d and we call

it phase difference plane (See Fig.1(a)). The parameter d
can thus be computed as the slope of the phase difference

∠(F2(u)/F1(u)). More generally, we usually use a least-

square estimator to make the estimation less sensitive to noise:

Δx = argmin
Δx

‖2πUd−Ψ‖22 (3)
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U and Ψ are as follows where the index i denotes the ith

frequency point:

U =

⎡
⎢⎢⎢⎢⎢⎢⎣

uT
1
...

uT
i
...

uT
N

⎤
⎥⎥⎥⎥⎥⎥⎦
, Ψ =

⎡
⎢⎢⎢⎢⎢⎢⎣

∠(F2(u1)/F1(u1))
...

∠(F2(ui)/F1(ui))
...

∠(F2(uN )/F1(uN ))

⎤
⎥⎥⎥⎥⎥⎥⎦

(4)

Fig. 1. Phase difference plane. From left to right: (a) clean; (b) noisy; (c)
aliased

Actually, Eq. (2) is valid only for the ideal case. In practice,

we usually have to take the following issues into account: (1)

the images may be sampled under the Nyquist rate, and (2) the

images may contain noise. In such cases, the phase difference

plane will be disturbed, as illustrated in Fig.1(b) and (c). This

brings challenges for registration.

A. Role of High-Frequency in Image Registration
To simplify the description, we focus our discussion on

one-dimensional (1-D) signal, but all the conclusions can be

applied to the 2-D case.
For 1-D signal, formula (2) changes to a scalar form:

2π · u · d = Θu (5)

where Θu = ∠(F2(u)/F1(u)). Typically, the signals are

influenced by noise or aliasing effect and errors will exist in

Θu:

2π · u · d = Θu +ΔΘu (6)

Consequently, the error in shift estimation can be expressed

as follows:

Δd =
∣∣∣d̃− d

∣∣∣ =
∣∣∣Θ̃u −Θu

∣∣∣
2π · u =

|ΔΘu|
2π · u (7)

We can see from the above formulation that larger u
corresponds to smaller Δd for a given ΔΘu. In other words,

the coefficients of higher frequency have better resolving

capability in registration. Low-frequency components are less

useful than the high-frequency components, when they are

equally reliable. This indicates the benefit to use reliable high-

frequency coefficients.

B. Super-Resolution from Aliased Images
Assume we have a periodic, band-limited continuous image

f(x) with period of 1 and its Fourier decomposition can be

expressed as follows

f(x) =

K1∑
k1=−K1

K2∑
k2=−K2

αke
j2πkTx, (8)

where αk are the L1L2 = (2K1 + 1)(2K2 + 1) Fourier

coefficients of f(x) and k = (k1, k2)
T,x = (x1, x2)

T.

Through moving the sampling camera, the continuous image

is sampled with M shifted images at horizontal and vertical

frequencies N1 and N2. The horizontal and vertical shifts are

tm = (tm,1, tm,2), 1 < m < M . The sampled image can be

expressed using f(x) as

ym(n) = f(
n1

N1
+ tm,1,

n2

N2
+ tm,2) (9)

=

K1∑
k1=−K1

K2∑
k2=−K2

αke
j2π(k1tm,1+k2tm,2)ej2π(k1

n1
N1

+k2
n2
N2

)

(10)

The above formula describes the observation model, i.e., the

HR image is firstly shifted and then these shifted HR images

are sampled to generate the LR images. In the following, these

shifted HR images are defined as fm. By using lexicographic

ordering for the indices, a matrix vector form of the observa-

tion model is as follows

ym = Φtmα, (11)

where Φtm is an L1L2 × N1N2 sampled basis matrix and

ym, α are N1N2 × 1 and L1L2 × 1 vectors rearranged by

lexicographic ordering. If all the sets of ym are combined

into a single vector y and, similarly, the basis matrices are

combined into Φtm , with t = {t1, t2, · · · tM} denoting the

offset vector, this can be written as follows:

y =

⎡
⎢⎢⎢⎣

y1

y2

...

yM

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

Φt1

Φt2
...

ΦtM

⎤
⎥⎥⎥⎦α = Φtα. (12)

Therefore, the reconstruction of a HR image requires us to

determine Φt and solve this inverse problem. It is well known

that the HR image can be perfectly reconstructed if the shifts

between the LR images are known or well estimated.

III. THE PROPOSED FRAMEWORK

Instead of directly using LR images, we use the shifted HR

images {fm} defined in section II-B to estimate the shifts

between the LR images. The proposed scheme is shown in

Fig. 2. Given a sequence of aliased images {ym} , we firstly

use an existing method to get an initial estimation of shifts

{t0m} . Then an HR image f0 is reconstructed based on

the methodology described in section II-B. Afterwards, the

shifted HR images {fm} are generated using the relationship

between alias-free shifted images (See formula (1)). These two

steps coarsely recover the aliased spectrum of the LR images.

However, the obtained spectrum is not always reliable because

of the unavoidable errors in {t0m}. Therefore, we use a back-

projection scheme to modify the spectrums of {fm} here.

After the modification, {fm} is registered using a registration

method for the noisy but alias-free images. The above process

can be iterative. So we repeat the process until the registration

errors is small enough.



Fig. 2. The proposed framework.

In our scheme, the main technical contributions in this paper

are the de-aliasing module and image registration module.

We will discuss how to de-alias the LR image set and do

registration in the next section.

IV. DETAILS OF THE FRAMEWORK

A. Spectrum Restoration via Back-Projection

Because of alias, the spectrums of under-sampled low-

resolution (LR) images are overlapped and unreliable. Under

this circumstance, the use of high-frequency coefficients will

destroy the estimation. How can we reuse these helpful data?

One feasible scheme is de-aliasing and recovering the high-

frequency spectrum of the LR images. The interior of the de-

Fig. 3. Illustration of the spectrum restoration procedure.

aliasing module is shown in Fig.3. After the shifted HR images

{fm} have been generated, they are down-sampled to generate

the ’false’ LR images {y′m}.

Then errors between the original LR images {ym} and

’false’ LR images {y′m} can be computed:

Em = ym − y′m (13)

Where Em is the error between ym and y′m.

As we all know, the low-frequency parts take up most of the

energy of one image. So Em is mainly caused by the wrongly

estimated low-frequency parts. To make {fm} more reliable,

the errors are back-projected to {fm} in the Fourier domain:

F(f ′
m) = F(fm) + P (F(Em)) (14)

The operation P (·) means padding Em with zeros to the same

size of fm while the zero-frequency of fm and Em are both in

the center. This process is illustrated in Fig.4. Now the more

Fig. 4. Example of error back-projection (scale=2)

reliable {fm} are obtained and the aliased image registration

problem is equivalent to estimate the shifts between these HR

images.

B. Reliability Based Image Registration

As soon as the LR images are coarsely de-aliased, the high-

frequency coefficients can participate in registration. However,

this is not sufficient to attain high precision in registration.

Though more reliable {fm} have been obtained, the high-

frequency coefficients can not be reliable completely. In this

case, the reliability of the frequency coefficients should be

considered.

As shown in Fig.1 (b) and (c), we find out that some

of the frequency components (especially the low-frequency

parts) are cleaner than others. It is because the amplitudes of

these components are generally much larger and can not be

easily changed by noise or aliasing artifacts. This illustrates

that those slightly disturbed frequency components should

contribute more while those severely disturbed ones contribute

less. If we regard aliasing artifacts as a special case of noise

interference, the algorithm should mask out contributions from

spectral components whose amplitudes are small compared to

the noise amplitude, regardless of whether they occur at low

or high frequencies. Then the objective function (3) should

changes to the following weighted least squares form:

Δx = argmin
Δx

‖W 1
2 ·Υξ(2π ·U · d−Ψ)‖22 (15)

W is a diagonal matrix with W(i, i) = wi. wi is the

weight of the ith frequency coefficient. Υξ is an operator with

threshold ξ which masks out the contributions from unreliable

coefficients. As demonstrated in [7], under the assumption of

Gaussian noise, wi can be computed as follows:

wi =
1

2σ2
≈ |F̂ (ui)|2

2σ2
n

(16)

where F̂ (ui) = mean(|F1(ui)|, F2(ui)|) and σn is the stan-

dard variance of Em. Here we use the same suggestion to

compute the weights.

V. EXPERIMENTAL RESULTS

In this section, simulated experiments are performed on real

images to evaluate the performance of the proposed method.

To make the image circularly symmetric and avoid boundary

effects, the test images are multiplied by a Tukey window. Five

shifted and aliased low-resolution images are created from

an original high resolution image with a scale of 2 in both

dimensions. The shift parameters are generated randomly from



TABLE I
COMPARISON OF THE AVERAGE ABSOLUTE ERROR

Images method[2] Keren[5] method [6]) Proposed
Castle 0.0884 0.0311 1.7375 0.0093

Airplane 0.1021 0.0186 1.8898 0.0043
Motor 0.2737 0.0303 1.7386 0.0096
Parrot 0.1506 0.0199 1.6189 0.0057
Pepper 0.1770 0.0352 1.7321 0.0106
Lenna 0.1936 0.0280 1.7321 0.0080

the interval [0, 2]. The threshold is empirically chosen as 0.1

for the registration module. For other comparative methods,

we choose the empirical parameter settings, which give the

best performance for the images. The proposed method is

compared with three representative aliased image registration

methods. As shown in Table 1, the four registration results are

reported in each cell. In the experiments, 100 simulations were

repeated and then the results are averaged for each method

to make the experiments more stable and convincing. The

average absolute errors (pixel) are computed as a criterion to

measure the performance of registration. In the following, the

shifts were estimated using our method and the high resolution

image was reconstructed from the low resolution images. Due

to the limited space, the results of four images are shown

in Fig.5. As can be seen in Table 1, our proposed method

outperforms all the four methods evidently. Fig.5 shows that

the original double resolution image is perfectly reconstructed

using our registration method. All the results prove that our

method can satisfy the demand for super-resolution.

VI. CONCLUSIONS

This paper presents a new scheme for registration of aliased

image. The proposed technique discusses the role of high-

frequency components in registration. Based on the analysis,

we use the high resolution versions of the LR images instead to

estimate the relative shifts between the LR images. These high

resolution images are estimated and a weighted least squares

method is proposed to improve the accuracy. Experiments

show that the proposed approach can achieve high-precision

in face of alias.
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