AN INTERACTIVE METHOD FOR CURVE EXTRACTION
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ABSTRACT

We introduce a curve process framework to solve the chal-
lenging problem of curve extraction from ‘“non-traceable”
curve groups. We propose a comprehensive curve model,
which consists of the geometric, photometric and topologi-
cal sub-models. Two typical categories of the non-traceable
curve groups are considered. First, for the interlaced curves
with complex structures, we show how to use the proposed
curve model especially the topological sub-model to extract
curves from the group. Second, for the non-interlaced but
over-dense or faint curves we leverage the curve group pat-
tern priors in addition, and extract the whole pattern in a
global optimization. Applications and experiments demon-
strate the competence of our models and methods.

Index Terms— curve model, curve extraction

1. INTRODUCTION

Curves are ubiquitous in images and they play an important
role in many computer vision applications such as image seg-
mentation and parsing, shape perception and reconstruction,
object detection and recognition. Without explicitly model-
ing curves and 1D curve objects, the performance of many
vision-based methods suffer from degradation. As mentioned
in [1], conventional region-based segmentation methods tend
to produce “degenerated cluttered results” for thin-and-long
regions. Also the state-of-the-art image segmentation meth-
ods based on the Graph-cut, has the “shrinking bias” of miss-
ing thin-and-long structures [2]. Thus the success of higher-
level vision tasks will heavily depends on the modeling of
curves and the performance of curve detection / localization.
In the literature a great deal of related work on curve mod-
eling focuses on the geometric description of curves, such as
the classical spline models, and the statistical curve models
(e.g. the Active Shape Model [3] and the Elastic model [4]).
Nevertheless, only geometrical information is insufficient es-
pecially in case of low image contrasts and appearance vari-
ations. Thus the Active Appearance Model [5], and Tu and
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Zhu [1] incorporate both the geometric and photometric rep-
resentations. However, in [1] it treats each subbranch of trees
as a different curve, without modeling the underlying curve
topologies. The resulted independent curves lose their seman-
tic meaning of being a branch structure. We argue that the un-
derlying model of topologies such as furcations should be part
of a curve process. Another related work in [6] uses a prede-
fined library of subtrees with different topologies to synthe-
size the invisible part of tree structures in graphics. Whereas
our focus here is how to reliably extract curves from images.

In addition, many contour-based methods ([7][8],etc.)
have explored the problems on contour continuities, junction
detections. However they serves for the region-based inter-
pretations. We argue that an advanced curve modeling are
necessary for image interpretation besides region boundaries.

In this paper we provide a curve process framework,
based on a comprehensive curve modeling integrating the ge-
ometric, photometric and topological properties of the curves
(Fig.2). We combine the three aspects into a Markov tree
process, and model their state transitions along the curve.

The major motivation is to solve the challenging problem
curve extraction from non-traceable curve groups, which
is seldom addressed in the curve detection literature. With
simple user interactions, we extract curves of two typical
cases that are non-traceable. (i) It is the interlaced curve
group pattern with complex structures. Typically as the tree
branches (Fig.1), the interlacement makes the conventional
curve tracing methods confused at junctions — whether the
junction is a branching point, or an intersection where several
curves overlap after projection. We adopt the ancestral sam-
pling method under the Bayesian paradigm. The underlying
junction types and curve structures are inferred based on the
curve model especially the topological modeling. (ii) The
curves are not interlaced, but over-dense, too faint or blurred,
so that they cannot be traced individually and reliably. We call
them non-interlaced curve group patterns, e.g. the parallel,
radial patterns (Fig. 3,5,6). we leverage prior knowledge on
the whole pattern. A Linear Programming (LP) approach is
adopted to approximate the solution of this NP hard problem
with efficiency. Some useful applications — smart tree branch
trimming, stroke extraction & zooming line drawings and 3D



Fig. 1. An example of interlaced curve group. (a) The input im-
age. (b) Illustration of junction types (the left collum) and possible
intersection configurations (the others). The highlighted part shows
the ambiguities of a 3-degree intersection. (c) The inferred junction
types. (d) Two extracted curves.

reconstruction, demonstrate the advantages of our method in
dealing with these challenging cases.

In the following we introduce the curve modeling in Sec-
tion 2, and the curve extraction algorithms for the two curve
group categories described above in Section 3. Section 4
demonstrates the applications and experimental results. Fi-
nally Section 5 summarizes this paper.

2. MODELING SINGLE CURVES

As shown in Fig.2, a curve is represented by a series of con-
trol points C' = (c1, ¢3, ..., ¢, ) on its middle axis. Each point
¢; is associated with the geometric, photometric and topolog-
ical attributes, ¢; = (G;,.A;,7;). According to the connec-
tion degree k;, the control points are divided into curve seg-
ment control points (k; < 3) and junction points (k; > 3).
For curve segment control points, the attributes are extracted
from a local patch/curve segment at c;. The patch length is
about twice the curve profile width. G; = (x;,w;, s¢;), de-
scribing the point position, the curve segment profile width,
and the shape context feature [9]. A; = h;, where h; de-
notes the color/intensity histogram over the patch, or the av-
erage intensity profile across the curve inside the patch. 7; =
(ki, Ni, ©;), where N is the set of neighbor control points
of ¢;, ©; denotes the angles between neighbor segments. The
Jjunction points [J inherit their ancestors’ photometric and ge-
ometric properties as their own. The topological attributes are
captured as that of the curve segment points.

A general curve with branches is modeled by a Markov
Tree. If a curve does not furcate, the model reduces to a
Markov Chain model. Let ¢;_; be the direct ancestor of c;.
The other neighboring points of ¢; are the direct successors

SJ = {lev"' » Cip ,,1},Wehave
p(C) :p( CQ|01 H p Cl|cz 1,Ci— 2 H p S |C]
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where 7 = U,¢ ;S;. For the non-branching curve parts, M
p(cilci—1, ci—2) = p(kilki—1)p(Xi|Xi—1,%Xi—2)
p(wilwi—1, wi—2)p(hilh;—1)  (2)

where p(xi|xi_1,xi_g)p(wi|wi_1,wi_2) is the geomet-
ric sub-model, being the second order linear regressions

Geometric model

w F 'lh,..nn "ll\

Photometric model

Al J.LMMJJLM

Topological model

Fig. 2. Curve modeling.

with Gaussian perturbations. The photometric sub-model

p(h;|h;—1) = G(h;;hi—1,X;) (G denotes the Gaussian

models), constraining the appearance coherence. The fopo-
logical sub-model is modeled by a transition matrix. p(k;|k;_1)
is the transition probability. p(ca|cy) is the first order Markov
Chain, of which the sub-models are similar to the second
order ones. p(cy) is assumed to be uniform and initialized by
user interactions. sc is not introduced here but explored in the
curve group patterns (Sectlon 3.2). For the ]unctlon model,

H p(wj,, |w;) - H p(hy,,[h;) (3

where the three terms are the tOpologzcal, geometrzc, and pho-
tometric sub-model for a junction respectively. p(w;, |w;) =
G(wj,,;wj — 0w, 05,), p(hy,, [hy) = G(hy, by, 2p), p(©;)
is the angle distribution modeled by a truncated Gaussian.

p(Sjlej) =

3. CURVE EXTRACTION FROM NON-TRACEABLE
CURVE GROUPS

In this section we provide the curve extraction framework of
the two typical curve group patterns — the interlaced curve
groups and the non-interlaced curve group patterns. Simple
interactions are used to provide initialization information and
relieve the computational burden.

3.1. The interlaced curve groups

To extract curves such as the branches in Fig.1 and 4, we as-
sume each curve in the group is independently distributed.
Due to the interlacement and various junction configurations,
the global method such as in [1] will be hard to design, and
of rather high computational cost. Instead we adopt a greedy
method based on the ancestral sampling for efficiency. More-
over, the curve structure is recovered based our comprehen-
sive curve model including the topological modeling.
According to the Bayesian rule p(C|I) = p(C)p(I1|C),

pIC) = ] p(I,le;) = J] GAc, = 3c50,07), @)
c;eC c,ieC

where I, J is the local original image patch and the synthe-

sized patch respectively. The sampling starts from an end

point c¢; (initialized by the user) to its descenders. At each

step t, the state of ¢; is selected from a library of candidate
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Fig. 3. Stroke extraction & zooming. (a) The original image. (b)
User interactions: example strokes (red lines), pattern ranges (or-
ange contours). (c) The candidate curves. (d) Curve matching. (e)
The graph model for all the candidate curves (the deep blue nodes —
curves in the pattern, the dotted nodes — spurious curves, 0 — virtual
start, N 4 1 — virtual end). (f) The stroke extraction result. Four pat-
terned groups, each of similar colors, are detected in the eyelashes,
eyebrows and hairs. The zooming-out results by our method in (g)
and down-sampling after smoothing (h).

set as illustrated in Fig.1.(b). We compute each candidate
configuration’s posterior probability, p(ct|I.,, ct—1, ct—2)
p(Ie, |ct)p(et]ci—1,ci—2), and draw a sample from them.
(Points of different topological attributes will be differen-
tiated, e.g. for P in Fig.1.(b), if the Y-junction model fits
the data much better, the extra curve segment is interpreted
as another curve. The sub-branches of a curve can overlap
each other as in the highlighted region of Fig.1.(c).) When
a non-branching control point is sampled, the curve process
continues ahead. Otherwise if a branching point, we sample
each sub-branch along its direction as an independent thread.
It stops if a termination is sampled. Once a whole curve C
is sampled, we evaluate it by p(C II). If it is above a prede-
fined threshold e the sample is kept, and otherwise discarded.
This process continues until no new curve can be extracted.

3.2. The non-interlaced curve group pattern

We consider the group of similar curves that are orderly
distributed in the image space without interlacement, but
form perceptually salient patterns. We discuss the parallel
and radial pattern here, in which curves are organized in a
chain model. However, there are always spurious curves
detected (Fig.3.(c)), which break the real neighboring rela-
tion in-between the patterned curves. So a fully-connected
graph is built, of which each node represents a candidate
curve (Fig.3.(e)). Let z;; € {0,1} associate to each graph
edge. z;; = 1 indicates C; and C} are true neighbors in the
pattern; otherwise z;; = 0. Now the problem is formulated
as a constrained linear optimization:

min Z(i,j) (E(C;,C)) + L(E(CT) + E(C;[T)) — XN)zi; (5)

; 0§Zi¢kxik22‘ Tk <11 < k< N);
S.T.
Z;‘VZI zoj =15 X winer =15 wi; €{0,1}.

where the constraints ensure a chain model to be found; A is
positive encouraging more patterned curves. The weights on
the links to the virtual start and end nodes of the chain (“0”
and “N+1" respectively) are zeros. The single curve potential
E(C;i|I) = —logp(C;|I). The edge potential E(C;,C;) =
Ep(C;,Cj) + Ean(C;, C;), measured by the spatial distribu-
tion and similarity of the two curves. By using any LP solver
for Eq.(5), the patterned curves will be extracted from spuri-
ous ones, and simultaneously arranged in order.

Ep(CiCh) = 5 3 (o)~ Xewioll — u(s))” ©)
“om(s)

where u(s) = as—+ [ is a distance function with respect to the

normalized arc length s € [0, 1]. @ = 0 for parallel patterns,

a # 0 for radial patterns. m(s), m’(s) denote the control

point index at s on C; and C respectively. o2 is the variance.

The similarity potential E;(C;, C;) is measured by the
matching cost of the two sets of curve control points(Fig.3.(d)).
We adopt the algorithm proposed in [10] to compute the curve
matching cost, utilizing the geometric and photometric at-
tributes at control points. The feature matching cost (c in [10]
) is computed as d(¢p, G ) = Ai||Wim, — Wit || + A2|[sCr, —
sCo ||+ As| by — o], ¢ € Ciy ey € Cj. And the spatial
matching cost (g in [10] ) is designed similarly.

User interactions are illustrated in Fig.3.(b), including
designation of the pattern type (parallel or radial). The in-
teractions help to (1) learn the single curve model from the
example curve; (2) acquire candidate curves by sampling
along the directions approximately vertical to the example
curve; and discard some candidates too dissimilar to the
example Cegp in advance according to Ep(Ci, Cezp); (3)
obtain the spatial distribution parameter u(s) (if two example
curves are labeled). The single curve potential E(C;|I) can
be improved to — log p(C;|I) + En(Ci, Ceap)-

4. APPLICATIONS AND EXPERIMENTS

Smart tree branch trimming. Fig.4 shows an application
of interactively extracting and removing tree branches. The
whole piece of a branch with its actual structure topologies
is traced out, and the attached objects (such as resting birds,
hanging fruits) are together erased. Because some branch seg-
ments and junctions may be occluded or missed, some possi-
ble connections are proposed at first according to the smooth-
ness, distance of the connected segments, and the reversibility
constraint of the connection. The parameters e.g. in the junc-
tion modeling, are set 6,, = 0.2w;,0,, = 2, ¥, an identity
matrix. And symmetric angle distributions are enouraged.
We provide a layered image inpainting method adapted
based on [12] to remove branches from the image. We first
inpaint the the empty regions only in the background layer,
with all the other foreground branches being fixed. Then we
inpaint the originally occluded branch regions by the branch
layer information. Our inpainting results is better than those
of simply applying traditional inpainting methods. It can be
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Fig. 4. Smart branch tr1mm1ng (a) The input ‘1mae (b) User 1nteractron to spec1fy a branch to be removed () Inferred Junctron types and
the extracted branch. (d)-(e) The inpainting results after removing branches one by one. The inpainting results for the mask in (f) by using

the example-based method[11], and that of the PDE-based method[12] are shown in (g) and (h) respectively.

G P~
Fig. 5. Stroke extraction of a sketch image (a). Results of ours and
the traditional edge-tracing are shown in (b), (c) respectively.

seen that the example-based methods intend to recover the
erased branch using the similar branch examples remaining
in the image; the PDE-based method is hard to recover the
broken branches.(Fig. 4.(f)-(h).)

Applications of parallel/radial curve patterns. In Fig.3,5,
we first extract the patterned curves and then the remaining
free curves. We can see that the over-dense strokes can be sep-
arated nicely. While using the traditional curve tracing meth-
ods such as edge linking/tracing, there are wrongly linked
spurious curves and missing ones. Based on the extracted
stokes, each one is zoomed out separately as a vectorized
stroke (Fig.3.(g)). It leads to aliasing distortions by directly
image down-sampling, whereas blurring by smoothing the
image before down-sampling (Fig.3.(h)). In Fig.6, we utilize
the extracted curve groups (on the assumption that each group
lines are equally spaced and parallel in real scenes) to calcu-
late the vanishing lines by [13]. The scene planes are recon-
structed with the mapped textures. We can see that the Canny
edge detection and Hough line detection find few lines in the
low contrast areas and return cluttered results on the texture
regions. The parameters are sete.g. A\ = A3 = 0.2, \s = 0.6
for Fig. 3,5, and \; = A3 = 0.4, Ay = 0.2 for Fig.6. Notice
that each term is normalized to the range of [0,1].

5. CONCLUSION AND FUTURE WORK

In this paper we have introduced the curve processes based on
a comprehensive curve model. We propose solutions to ex-
tracting curves from the interlaced, over-dense or faint curve
groups. The interesting applications demonstrate the com-
petence of our models and methods. In the future, we shall
enrich the curve model, especially to augment the topological
model library and curve statistical features. In addition we
shall develop automatic methods to learn the free parameters.

Fig. 6. 3D reconstruction based on curve group patterns. (a) The
input image. (b) Two groups of patterned lines extracted (details in
(c)). (d) The reconstructed planes in 3D. (e) Canny edges (in black)
and Hough lines (in red).
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