
From Data to Knowledge: Deep Learning Model Compression,
Transmission and Communication

Ziqian Chen1, Shiqi Wang2, Dapeng Oliver Wu3, Tiejun Huang1, Ling-Yu Duan1∗
National Engineering Lab for Video Technology, Peking University, Beijing, China1
Department of Computer Science, City University of Hong Kong, Hong Kong, China2

Department of Electrical and Computer Engineering, University of Florida, Gainesville, USA3

{wzziqian,tjhuang,lingyu}@pku.edu.cn,shiqwang@cityu.edu.hk,dpwu@ieee.org

ABSTRACT
With the advances of arti�cial intelligence, recent years have wit-
nessed a gradual transition from the big data to the big knowledge.
Based on the knowledge-powered deep learning models, the big
data such as the vast text, images and videos can be e�ciently
analyzed. As such, in addition to data, the communication of knowl-
edge implied in the deep learning models is also strongly desired.
As a speci�c example regarding the concept of knowledge creation
and communication in the context of Knowledge Centric Network-
ing (KCN), we investigate the deep learning model compression
and demonstrate its promise use through a set of experiments. In
particular, towards future KCN, we introduce e�cient transmission
of deep learning models in terms of both single model compression
and multiple model prediction. The necessity, importance and open
problems regarding the standardization of deep learning models,
which enables the interoperability with the standardized compact
model representation bitstream syntax, are also discussed.
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1 INTRODUCTION
Over the past decade, the big data is spurring on tremendous growth
in the information technologies, especially with the wide deploy-
ment of the Internet of Things (IoT ) [5] which is constantly gen-
erating data from edge devices for better sensing the real world.
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However, the data-centric processing is creating many issues as
obtaining the data only is not the ultimate objective. The big data
should be converted to descriptive knowledge for e�ective utiliza-
tion. As such, an innovative concept of the Knowledge Centric
Networking (KCN), which creates a dramatic paradigm shift from
big data to big knowledge in communication, was proposed in [50].
In KCN, the knowledge creation, composition and distribution are
three vital components.

Recently, the deep learning based algorithms, which can be
regarded as the speci�c techniques in creating knowledge, have
shown great potentials in dealing with various tasks in a data-
driven manner. With the increase of computational capability and
enormous volume of data, numerous powerful deep neural network
models have been learned. Moreover, the learned models can be fur-
ther� netuned to tackle domain-speci�c problems. Therefore, from
the perspective of knowledge extraction, the deep learning models
learned from data are creating and conveying valuable knowledge.
As such, in additional to the compact feature representation which
treats feature descriptors as the special modality of knowledge, the
deep learning model communication serves as an indispensable
component in KCN as well. However, when the knowledge infor-
mation is frequently exchanged in terms of deep learning models,
there exist unprecedented challenges for e�ectively representing
the large scale deep neural networks, especially in those scenarios
where minimal knowledge degradation is expected.

Di�erent from traditional deep learning model compression
which aims to produce a lightweight deep neural network, the
motivation, application scope as well as the methodology of deep
learning model compression should be further extended in the
context of knowledge communication, and more important and
practical issues regarding deep learning model communication are
raised accordingly. Moreover, regarding transmission and communi-
cation, there is also an increasing demand towards standardization
and interoperability of deep learning model compression. Based
on the existing standards of raw data and features, how the in-
teroperability towards compact deep model representation under
frequent knowledge exchange environment is enabled should be
further investigated.

In this work, motivated from substantially di�erent principles,
we investigate the compression, transmission and communication
of deep learning models from the perspective of knowledge trans-
mission and communication. The main contributions of this paper
are summarized as follows:
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• We propose to reformulate the deep model compression,
transmission and communication framework in the context
of KCN, such that the transmission of knowledge in terms
of deep learning model is enabled.

• The inter model prediction from the perspective of commu-
nication and transmission is investigated in the scenario of
multiple deep model compression, such that better coding
e�ciency can be ensured.

• The interoperability of the deep model compression is dis-
cussed and future standardization towards deep model com-
pression is envisioned.

2 RELATEDWORK
2.1 Deep Learning Models
Recent years have witnessed a strong growth of interest and devel-
opment of the deep neural networks. Since Alexnet [30] won the
�rst place on ImageNet classi�cation challenges, fantastic progress
has been made to design advanced deep learning models, such as
VGG [44], Resnet [25], GoogleNet [47], DenseNet [27], which have
been successfully applied in various� elds. Moreover, other deep
neural networks such as Recurrent Neural Networks (RNN ) [8] and
Generative adversarial networks (GAN ) [20, 56] have also shown
great potentials to tackle speci�c problems using their unique net-
work structure. It is widely acknowledged that a deeper and wider
network can achieve better representation and gain more knowl-
edge. However, heavy burden is also imposed on the storage of both
training data and models, as well as the computational resources.

To address these issues, di�erent deep learning model com-
pression approaches have been proposed towards the speci�cally
designed lightweight deep neural networks for the correspond-
ingly given tasks. More speci�cally, model parameters pruning
[11, 23, 24], matrix factorization [52, 55], quantization [19, 32, 54],
�lter selection [3, 26, 36, 49] as well as knowledge transfer [33, 37]
with network redesign are the commonly adopted approaches. Re-
cently, the work in [34] paid attention to the gradient compression
during distribution training period. However, most of these works
focus on the knowledge creation, such that the model is compressed
or distilled to convey a smaller amount of knowledge. In the con-
text of knowledge transmission and communication, the scope of
deep neural compression can be further extended in several ways,
including the multiple model transmission and standardization.

2.2 Knowledge Centric Networking
The interest of knowledge creation, composition and distribution
[50] has been growing at an accelerated pace in the context of Inter-
net of Things (IoT ) [5], which aims at sensing every physical object
with large volume of the data created. Such enormous amount of
data inspires better communication modality arrangement , and
the innovative concept of KCN was proposed in [50]. In KCN, in-
stead of directly transmitting raw data or the content, the generated
knowledge from raw IoT sensing data is extracted and transmitted.
The digital object index (DOI) technology is applied on the content-
based KCN framework to enable search of knowledge [46]. As a
consequence, redundancy on the raw data can be largely removed
with knowledge extraction, making better utilization of the big
data from the perspective of� nal utility in the future smart society.

In the context of KCN, the deep learning models, which can be
regarded as a speci�c form of knowledge, are revisited from a novel
perspective in terms of compression, transmission and utilization.

2.3 Video Compression Standard
In contrast to knowledge, images and videos serve as the impor-
tant modalities of raw data, which also o�er a digital bridge from
real visual world to valuable knowledge. As such, the video com-
pression, transmission and communication have received su�cient
interest and a series of video coding standards have been developed,
including H.262/MPEG-2 [1], H.264/MPEG-4 AVC [2], H.265/HEVC
[45] as well as AVS2/IEEE 1857.4 [6] from ITU-T VCEG, ISO/IEC
MPEG, IEEE and AVS. Though the state-of-the-art video coding
standards such as H.265/HEVC have dramatically improved the
coding performances, such compression e�ciency still cannot meet
the requirement of the exponential increase of the data volume.
This also motivates the knowledge centric solution towards the
better utilization of the raw data.

2.4 Feature Based Knowledge Communication
Standard

The automatic image and video analysis relies on the extracted
features, such that conveying the powerful and discriminative fea-
tures becomes an alternative way towards future knowledge com-
munication. The analyze-then-compression framework was ana-
lyzed in [18, 43], where the advantages and technical challenges
were discussed. In [10], the authors focused on enhancing keypoint
encoding for improved feature extraction. In [16], the predictive
distributed visual analysis was presented. In [17], coordinating
distributed algorithms for feature extraction is taken into consider-
ation with limited signaling.

In the view of the importance of compact feature representa-
tion, the MPEG has� nalized the Compact Descriptors for Visual
Search (CDVS) [14]. In CDVS, the handcrafted features (i.e. SIFT)
are compactly represented and standardized. The features of CDVS
are highly e�cient and adaptive to the given bit budget, and su-
perior performance of visual search has been achieved based on
the combination of the local and global compact descriptors. With
the development towards deep learning based algorithms, deep
models show their great abilities of feature extraction. The Com-
pact Descriptors for Video Analysis (CDVA) [15] combines both
handcrafted features and deep learning based features. In [13], the
future standard towards AI oriented large-scale video management
for smart city is also discussed, targeting at utilizing the feature
knowledge with ensured interoperability.

3 KNOWLEDGE COMMUNICATION IN
TERMS OF DEEP LEARNING MODEL

In this section, we propose to reformulate deep learning model
compression, transmission and communication framework as the
speci�c forms of knowledge from the perspective of knowledge
creation, transmission and standardization. Instead of considering
single model transmission only, the feasibility of multiple model
transmission in a consecutive or simultaneous way is also involved.
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Figure 1: Illustration of knowledge transmissionwith deep learningmodel compression, where the decoding is also performed
to reconstruct the original model after compression and transmission.

3.1 Knowledge Creation
The improvement of hardware acquisition capabilities has enabled
big data to be collected from the real world. As a speci�c example,
the IP video tra�c will take up 82% of all consumer Internet tra�c
by 2021 [35], and the surveillance videos which are constantly gen-
erated in real-time have already become the biggest big data [28].
Without certain automatic tools, it is di�cult to rely on human
beings to analyze such amount of big data. Moreover, the raw big
data also imposes heavy burden on network transmission and stor-
age. The rapid development of machine learning, especially deep
learning, greatly facilitates the utilization of the big data for further
analysis and knowledge extraction. As such, KCN takes a further
step towards future multimedia networking, and the knowledge
rather than the directly acquired raw data becomes the centric
point, which can signi�cantly mitigate the hardware burden and
energy issues.

For image and videos, features are regarded as an important
modality of knowledge, as it conveys useful information regarding
the low-level attributes such as Scale Invariant Feature Transform
(SIFT), shape, color, etc., as well as the high level semantic meanings.
Hence, in the context of KCN, the feature extraction can be generally
treated as a procedure of knowledge creation. With the advances of
deep learning and computer vision, features evolve from hand-craft
based to deep-learning based in a data-driven manner, and more
powerful models as well as representations have been developed to
obtain the knowledge from raw data.

The scope of knowledge should not be limited to features only,
and themodel that is responsible for the extraction of features is also
becoming an essential modality of knowledge. The sophisticatedly
trained deep neural networks from the large-scale datasets for fea-
ture extraction are also conveying meaningful information regard-
ing the speci�c tasks. As such, methods have been developed for
the neural network visualization to investigate the information that
has been learned [51, 53]. In other words, these elaborately trained
deep neural network models are highly representative for these
training data with abundant knowledge information. In essence,

the deep neural network models also align with the concept of KCN,
as the model which also serves as the knowledge created from the
learning process can be ultimately delivered and distributed. The
di�erent levels of knowledge composition contribute to the di�er-
ent speci�c objectives, and given the model the network can be
further� netuned for self-adaption. Taking the models trained from
ImageNet as examples, these well-trained models are able to tackle
many classi�cation tasks with an ordinary� ne-tuning or even with-
out any� ne-tuning, as abundant knowledge has been absorbed
from the labeled ImageNet data. Nowadays, there is a signi�cant
increase on the numbers and varieties of such well-trained or half-
trained models in the Internet, which are subsequently subjected
to further transmission and communication.

With the advances of computational capabilities of various facil-
ities, the model can be trained at the server or even the front end,
leading to more frequent exchange of models in di�erent granular-
ity levels. Generally speaking, the transmission of one model only
cannot fully satisfy the knowledge transfer purpose. For example,
multiple models need to be transmitted simultaneously, and the
update of the models with new training data or training strategy
is also regularly encountered. Moreover, to enable interoperability,
the standardization of model compression becomes an emerging
important topic.

3.2 Standardization of Knowledge
Compression

In this subsection, we discuss the potentials and necessities for the
standardization of deep model compression. First, we discuss the
standardization for raw data and features, where the video texture
and visual features serve as two speci�c examples. Subsequently,
we envision the future deep learning model compression standard.

From the standpoint of raw data compression, video coding
becomes a speci�c and noticeable example. Recent years have wit-
nessed a series of video coding standards. It is worth mentioning
that most techniques adopted in present video coding standards
aim to improve the video compression performance in terms of
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Figure 2: (a) The parameter distributions of di�erent deep
learning models. (b) The comparisons between the original
model among di�erent versions of� netuned VGG and DoM
parameter distributions. Analogously, the x axis is divided
with equal space 0.002, and only weights within the range of
[-0.5 0.5] in (a) and weights within the range of [-0.1, 0.1] in
(b) are displayed.

bit rate and video quality. In spite of the di�erent motivations of
video coding and deep learning model compression, the design
philosophy in video coding can still bene�t to the deep model com-
pression. For example, the common strategy of both video and
model compression is to remove the redundant information. The
principles of inter-prediction and transform-relevant techniques,
which serve as the key modules in video coding, can also promote
the performance of deep learning model compression by further
exploiting the statistical information of model parameters.

Regarding knowledge transmission in terms of features, the rapid
development of deep learning also imposes great challenges to the
standardization, as the compact feature representation involves
both feature extraction and compression. The recent developments
of deep learning have also advanced the compact feature represen-
tation [7, 48]. The CDVA [15], during the development of which
much more attention has been paid to the combination of deep
feature and handcraft feature, has received increasing interest re-
cently. However, the feature extraction models are expected to
evolve over the coming years, such that there arise challenging
issues along with the explosion of the deep learning models for the
standardization.

It is apparent that the compression and standardization of deep
learning models possess favorable properties in KCN. Neverthe-
less, the explosion of the deep learning structures is also bringing
challenges. Currently, most of the well-designed deep learning mod-
els are organized by di�erent numbers of layers in di�erent types.
Taking Convolutional Neural Network (CNN) as an example, it is
mostly constituted of convolutional layers, pooling layers, fully con-
nected layers or other self-designed layers. The activation functions
such as Relu and Sigmoid are used to introduce the nonlinearities.
As such, how to standardize these modules in the bitstream syn-
tax should be carefully considered. Moreover, for video coding the
structure of source visual signals is well established in terms of the
pixel values. By contrast, the emerging deep learning models may
pose new challenges. For example, when a new activation function
or type of layer is developed, it may be di�cult to accommodate
this modi�ed network structure to the existing standard. As such,

the extension ability of the model compression standard should
also be investigated.

Moreover, for the deep learning model compression standard, the
scalability and generalization ability should also be well considered
due to the varying requirements and bandwidth conditions. For ex-
ample, the deep learning models could be compressed ranging from
lossless to lossy compression. As illustrated in Figure 1, the pipeline
of deep model compression and transmission is demonstrated.

3.3 Deep Learning Model Compression
In this subsection, we will investigate the deep learning model
compression to e�ectively convey knowledge in terms of both
single and multiple models. In particular, in the scenario of multiple
model compression, the inter model prediction is further studied
based on knowledge center.

3.3.1 Single model compression. Let us� rst analyze deep neural
network model compression for the single model case, which serves
as the foundation of the multiple model compression. In particular,
in the scenario where a brand-new model is required to be com-
pressed and transmitted, the intrinsic structure and statistics of
the parameters play important roles. As pointed out by numerous
works, the parameters occupy the majority of the storage space.
As such, deep learning model compression can be exploited by the
model parameter statistics.

From the perspective of parameter distributions, we investigate
several state-of-the-art deep learning models trained on ImageNet,
including Alexnet, Googlenet, VGG-16, Resnet-50, Resnet-101. The
parameter distributions are shown in Figure 2 (a). We can observe
that the peak locates at zero with limited ranges of values. This
provides an useful evidence that the parameters can be further
compressed, which has been well validated [11, 23, 24]. Moreover,
the parameter precision should also be taken into consideration as
most of the models are designed with single-precision(�oat32). As
indicated in the recent research [12], the� nal loss of whole model
output is bounded by the weighted accumulated of layer-wise loss.

Here we perform a straightforward compression in generating
the baseline for single model. It is worth mentioning that we are not
attempting to adopt advanced solution such as trained quantization
with k-means clustering [19, 24], as the performance of the naive
compression strategy is also expected to provide the baseline for
further investigation. Generally speaking, the limited decimal pre-
cision loss in a certain range will barely introduce the performance
degradation [34, 42]. Therefore, we adopt the received parameter
decimal precision to control the compression ratio, and the rep-
resented decimal precision is termed as Representation Precision
(RP). Suppose the decimal precision of parameters w is limited
to p, which indicates that the parameters w are converted to the
corresponding integers by multiplying 10p in the encoding pro-
cess. Subsequently,� x-point followed by binarization and lossless
encoding are performed.

More speci�cally, given the learned model and speci�ed RP, we
convert all the parameters to the integer with w 0 = int64(w ⇤
10p ), which are then binarized as w 0

T = Binar�(w 0) and encoded
into the bitstream w 0

compress = Encodin�entrop� (w 0
T ). The lzma

algorithm [41] is chosen as the coding method due to its promising
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performance [31]. In the receiver side, the� nal parameters can be
obtained byw 0

r ecei�er = f loat32(w 0/10p ).
As such, when the RP is large enough to ensure the decimal

precision, the di�erences between the decoded parameters and
original parameters �w = |w �w 0

r ecei�er | << w can be ignorable.
Suppose the parameters lie on the convolutional layer, and Y and
X are the input and output of the layer, respectively, the output
can be calculated by Y = w ⇤ X + b. As a consequence, the loss
in one layer can be calculated by �Y = �w ⇤ X + b << Y , which
can also be ignored. Therefore, it provides a basic and generalized
near-lossless solution to the single model compression, serving as
the foundation of the multiple model prediction.

3.3.2 Multiple model compression. The knowledge communica-
tion further extends the scope of deep learning model compression
from a single model to multiple models, especially when consid-
ering the frequent model communication scenarios. In particular,
with the rapid advances on computational capability for knowl-
edge creation in the intelligent front ends, the� ow of the delicate
deep models is more frequent than ever before. With the gradually
generated data, the updated models will become more general-
ized and representative as more knowledge will be absorbed. As
such, there is a strong desire to transmit these updated models.
However, frequently transmitting these models without any in-
ter prediction between di�erent models may waste tremendous
resources as strong redundancy exists between existing and the
to-be-transmitted models. In other words, given the existing knowl-
edge at the receiver side, the updated knowledge will become light
weight such that only certain modi�cations need to be conveyed.
Another commonly encountered scenario is that multiple models
which may be trained for multiple tasks need to be simultaneously
transmitted. However, due to the similarities between di�erent
tasks (e.g., object recognition and visual search), there may exist
high correlations between the learned models, such that e�ective
model prediction is also necessary to further improve the coding
e�ciency.

The straightforward solution of the multiple model compression
is extracting the di�erences between the former and current deep
learning models, and only the di�erences are signaled in the bit-
stream. However, if there is a mismatch between the existing model
at the receiver end and the one used for prediction in the encoding
process, error drifting will be introduced. Therefore, we introduce
the concept of knowledge center, which stores multiple models in
the cloud for deep learning model distribution. To exchange knowl-
edge between the edge node and the center, the standardization is
also required to ensure the interoperability.

Under such circumstance, the best prediction model in the center
as well as the encoder side should be� rstly identi�ed. An alternative
strategy is that the prediction model can be generated by several
commonly shared models with clustering techniques. Di�erences
of Models (DoM) between the to-be-compressed model and the
prediction model is extracted, compressed and transmitted to the
center side. Given the DoM, the new model can be generated based
on the existing prediction model in the center. Moreover, the newly
generated model can be delivered to the receiver side using the
identi�ed prediction model in both the center and the receiver.

To encode the DoM parameters, we also investigate the parame-
ter distribution, as shown in Figure 2 (b), fromwhichwe can observe
that the DoM has a narrower range such that the coe�cient energy
is consequently greatly reduced. In this manner, signi�cant bit rate
savings can be achieved. Moreover, better single model compres-
sion method can be applied upon the DoM strategy as well and
more adaptive representation and compression algorithms need to
be developed in the future to better utilize the narrower parameter
distribution.

In Figure 3, a motivating example is provided when transmitting
model-V3 to the receiver side using DoM. In particular, as model-
V2 remains in the sender side while model-V1 is in the receiver
side, directly transmitting the DoM between model-V2 and model-
V3 may cause signi�cant errors. Our strategy is to transmit the
DoM between model-V2 and model-V3 to the knowledge center,
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and distribute the DoM between model-V1 and model-V3 to the
receiver, which can successfully avoid such problem.

3.4 Comparisons with Traditional Deep
Learning Model Compression

Recently, the deep model compression has been widely studied in
an e�ort to obtain the lightweight deep neural networks. Most of
these works focus on removing potential redundancy in models
for a speci�c task. Here, we aim to extend the scope of deep model
compression and take the future transmission and communication
into consideration, such that more attention has been paid towards
the redundancy removal between di�erent models with identical
network structures. Moreover, from the perspective of the ultimate
utility, not only the� nal analysis performance is desired to be
maintained, but also the knowledge conveyed in the deep learning
model should be preserved in the compression process. In the future,
the knowledge itself or the missing knowledge from one end to
another can be carried with the presented concept of deep learning
model compression. As such, the existing deep learning model
compression methods, as well as newly motivated methods, should
be thoroughly studied for the potential standardization of deep
learning model compression.

Recently, MPEG is taking further steps towards the compact
representation of deep neural networks [9], aiming at facilitating
deep learningmodel transmission and communicationwith ensured
interoperability. In particular, di�erent use cases have been per-
ceived, ranging from di�erent transmission frequencies, bandwidth
requirements as well as network models. Typical use cases include
camera applications with object recognition, translation, public
surveillance, etc. It is anticipated that the deep learning model com-
pression and standardization can greatly bene�t the future deep
learning model communication, and play important roles in the
establishment of the basic infrastructure of KCN.

4 VALIDATIONS
4.1 Experimental setup
We use image retrieval as the speci�c example to demonstrate the
proposed strategies. Compared with classi�cation and other general

Table 1: The descriptions of the models and the correspond-
ing retrieval accuracy in terms of mAP.

Model name Holidays Oxford5K Paris6K

VGG-16 0.78066 0.51699 0.65799
VGG-retrain-epoch15 0.78192 0.68107 0.69101
VGG-retrain-epoch20 0.77720 0.69614 0.69929

Resnet-50 0.84925 0.44315 0.64789
Resnet-retrain 0.88957 0.687493 0.79061

tasks with deep learning models, for image retrieval, slight changes
on the deep neural networks will impact on the accuracy. Moreover,
as image retrieval serves as the foundation for many visual analysis
applications, here we investigate this speci�c task for performance
validations. Landmark datasets such asHolidays [29],Oxford5K [38]
and Paris6K [39] which have been widely accepted to evaluate
the performances of image retrieval are used, and multiple deep
learning models which have become the state-of-the-art feature
extractors are adopted. In particular, we compare the performance
with di�erent RPs , to investigate the trade-o� between compression
ratio and the knowledge utility in terms of retrieval accuracy.

For deep learning models, we choose pretrained VGG-16 and
Resnet-50 deep neural network models as the base models along
with di�erent� ne-tuned versions. The descriptions are shown in
Table 1. The performances without Principal Component Analysis
(PCA) in terms of mean average precision (mAP) are illustrated.
It is also worth noting that we retrain the VGG-16 and Resnet-50
models to obtain the three updated models, including VGG-retrain-
epoch15, VGG-retrain-epoch20 and Resnet-retrain. In particular, for
Resnet-retrainwe only retrain Resnet-50 for the last four convolution
blocks such that certain parts of the model remain the same. During
the model training, we use 3D-Landmark dataset as the training
dataset [40] and choose triplet loss [4, 21, 22] as the loss function
which has been widely adopted in image retrieval tasks. Following
the work in [40], similar sampling approach is applied and each
training tuple contains 1 query, 1 positive and 5 negative images.
We set triplet margin to 0.1, learning rate to 0.001, moment with
0.9 and epoch with 20.

4.2 Performance of Single Model Compression
First, we investigate the relationship between the RPs and the com-
pression ratio, which is obtained by the ratio between the original
model size and the compressed model size. The relationship is
shown in Figure 4, from which we can observe that there is a mono-
tonically decreasing relationship between the compression ratios
and the RP. Moreover, the compression ratios increase dramatically
when the RP is reduced to be lower than 3, as much less information
needs to be encoded. It is also obvious that the relationship is not
in�uenced by the� ne-tuning process.

Subsequently, the relationships between mAP and RP in the
adopted three datasets are shown in Figure 5, from which we can
observe that the retrieval accuracy remains strictly constant when
the RP is lower than 6. Besides, the� rst changes in performances
mostly appear in the RP of 5 when the mAP variation threshold is
set to be 0.00001. The RPs and corresponding compression ratio of

Session: FF-5 MM’18, October 22-26, 2018, Seoul, Republic of Korea

1630



Figure 5: The relationships between the RP and the retrieval performance of three datasets (Holidays, Oxford5K, Paris6K) in
terms of mAP.

Table 2: The corresponding compression ratio when the RP
is 6, which is derived based on the threshold of performance
variation.

Model RP Compression Ratio

VGG-16 6 1.9759
VGG-retrain-epoch20 6 1.9759

Resnet-50 6 1.8582
Resnet-retrain 6 1.8582
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Figure 6: Relationship between the RP and compression ra-
tio.

single model compression without retrieval accuracy degradation
is illustrated in Table 2, from which it is obvious that signi�cant
compression performance can be even obtained with the naive
compression strategy. Moreover, though signi�cant compression
ratio is achieved when the RP is lower than 3, from Figure 5 we can
observe that the retrieval performance is also greatly degraded in
this scenario.

4.3 Multiple Deep Model Compression
In this subsection, we investigate the performance ofmultiplemodel
compression based on the concept of DoM. In particular, di�erent
versions of the samemodel structure are involved in the comparison,
and three di�erent scenarios are considered.

First, we compress the DoM between the original VGG-16 and
VGG-retrain-epoch20, which is denoted by VGG-DoM1. Secondly,
the DoM between VGG-retrain-epoch15 and VGG-retrain-epoch20,
which is denoted by VGG-DoM2, is further compressed based on the
assumptions that the models are frequently updated within a short
period of time. Thirdly, we also investigate the model compression
when partial parameters of the models are updated. The DoM be-
tween Resnet-50 and Resnet-retrain is denoted by Resnet-DoM. In
Figure 6, the compression ratios in terms of di�erent RPs are plotted.
Compared to the original single model compression strategy, the
DoM based scheme can achieve signi�cantly better performance
with higher compression ratios under the same RP requirement.

In Table 3, the compression performance and retrieval accuracy
for di�erent RPs are provided to compare the performance of the
updated model and DoM compression strategy. As there exist signif-
icant di�erences between VGG-retrain-epoch20 and the VGG-16, the
VGG-DOM1 cannot achieve signi�cant compression performance
improvement compared to VGG-DoM2. However, the VGG-DoM1
still achieves much better compression performance compared to
the direct model compression strategy when the retrieval accuracy
is very close. Moreover, VGG-DoM-2 achieves more than twice of
the compression ratios when the RP is 4. It is also very interest-
ing to see that less performance drop is observed for VGG-DoM-2
with more than 10 times compression ratio achieved compared to
directly transmitting VGG-retrain-epoch20. When the additional
information (or DoM) between VGG-retrain-epoch15 and VGG-
retrain-epoch20 is barely preserved, extremely high compression
ratio (28740) with signi�cant performance loss is observed.

It is also intuitive that when the model is partially updated, less
updated information is required to convey. One speci�c example is
the Resnet-DoM in Table 3, from which it is obvious that though
signi�cant performance di�erence lies between the original Resnet
and Resnet-retrained, as illustrated in Table 1, Resnet-DoM achieves
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Table 3: Performance comparisons in terms of compression ratios and retrieval accuracy for di�erent RPs. The �mAP is
obtained based on the maximal di�erences between the mAP with the corresponding RP and the mAP when the RP is 6 of the
target model (VGG-retrain-epoch20 and Resnet-retrain) for the three datasets (Holidays, Oxford5K and Paris6k).

Model �mAP Compression �mAP Compression �mAP Compression �mAP Compression
RP=6 Ratio RP=5 Ratio RP=4 Ratio RP=3 Ratio

VGG-retrain-epoch20 0.00000 1.9759 -0.00004 2.5419 -0.00033 3.5311 -0.00100 6.1535
VGG-DoM1 0.00000 2.3156 -0.00004 3.1417 -0.00004 4.8506 -0.00174 12.5584
VGG-DoM2 0.00000 3.7322 0.00000 6.9128 -0.00018 33.9115 -0.01214 28740

Resnet-retrain 0.00000 1.8582 -0.0002 2.3645 -0.00069 3.2119 -0.00135 4.9974
Resnet-DoM 0.00000 2.8239 0.00000 3.9300 0.00000 7.1607 -0.00157 45.2715

Table 4: Comparisons between the updated model and the
DoM. The RP is obtained when the retrieval performance is
not varied.

Model RP Compression Ratio

VGG-retrain-epoch20 6 1.9759
VGG-DoM1 6 2.3156
VGG-DoM2 5 6.9128
Resnet-retrain 6 1.8582
Resnet-DoM 4 7.1607

Table 5: Comparisons of DoM compression e�ciency be-
tween the corrupted prediction and the original prediction
(RP=6). The �mAP is obtained as the maximal di�erences
between the mAP with RP equaling to 4 and the mAP when
the RP equals to 6 of the target model (Resnet-retrain) for
the three datasets (Holidays, Oxford5K and Paris6k).

Model �mAP Compression Ratio

Resnet-retrain -0.00069 3.2119
Resnet-DoM-U -0.00051 6.4760
Resnet-DoM 0.00000 7.1607

much higher compression ratio with similar performance. In par-
ticular, the RP and corresponding compression ratios comparisons
are shown in Figure 4, and less RP is needed when no performance
degradation is observed for the DoM strategy.

Moreover, we investigate the scenario when the predictionmodel
for the DoM calculation is corrupted. Here, we take the partially
updated model (Resnet-retrain) as an example. Supposing that the
reconstructed Resnet-50 with RP equaling to 3 is used as the pre-
diction model, such that to faithfully obtain the updated model
with higher RP based on the DoM strategy, more bits are required
to represent the information of di�erences. Here, assume that the
DoM between the Resnet-50 and Resnet-retrain with RP equaling
to 3 is denoted to be Resnet-DoM-U. In Resnet-DoM-U, the missing
information in the unupdated layer should also be transmitted due
to the corrupted prediction. The comparison results when� xing the
RP to be 4 are shown in Table 5, from which it is obvious that the
performance of compression ratio of Resnet-DoM-U lies between
Resnet-DoM and Resnet-retrainwhen the retrieval accuracy remains

to be very close. Moreover, it is also observed that the compression
ratio of Resnet-DoM-U is closer to Resnet-DoM, as only a minor
proportion of the original model is required to be transmitted. The
results further provide us the evidence that even if the prediction
model contains signi�cant distortion, the DoM strategy may still
be e�ective as the knowledge is preserved in the prediction model.
As such, the corrupted prediction model should be examined for
potential utilization before it is discarded.

5 DISCUSSIONS
In this paper, we have discussed the traditional approaches for deep
model compression, and have enumerated its limitations in the
context of KCN. The application scope and methodology of deep
learning model compression have been extended as an alternative
motivating example for knowledge transmission. To demonstrate
the proposed concept, both single and multiple model compression
methods are validated through extensive experiments. In the future,
it is anticipated that the deep model compression and the relevant
standards can play important roles in the communication of knowl-
edge, and bring further impacts to the new KCN infrastructure.

There are also a number of issues that are worth investigation
with regard to the deep model compression and standardization.
First, the optimal compression strategy for single model needs to
be further investigated based on the principle of knowledge preser-
vation. Here, we adopt the very basic approach to investigate the
single deep model compression. Moreover, how to develop the cor-
responding quantization and entropy coding methods based on the
parameter statistics and knowledge preservation task need to be
intensively studied. Second, more advanced methods are required
to be developed for e�cient model prediction in multiple model
compression. In particular, how to select or generate the best pre-
diction model should be particularly paid attention to, as it may
greatly in�uence the DoM energy and coding e�ciency. Finally,
there are still several open issues need to be addressed regarding
the standardization of deep model compression, especially in the
area when the deep learning algorithms evolve rapidly.
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