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ABSTRACT 
 
Recent studies have shown that one of the main reasons in-
ducing visual discomfort is accommodation-vergence con-
flict. To evaluate visual discomfort induced by this conflict, 
this paper proposes a stereo visual comfort assessment 
(SVCA) metric based on the measurement of accommodation 
and vergence for stereoscopic image. Here, accommodation 
corresponds to the monocular focusing process which is mod-
eled by two-view images’ joint entropy; vergence corre-
sponds to binocular fusion which is modeled by two-view im-
ages’ mutual information. The joint entropy and mutual in-
formation are calculated by the visual primitives extracted 
from two-view images. In this paper, accommodation-ver-
gence conflict is expressed as the ratio of the mutual infor-
mation over joint entropy. To evaluate the proposed metric, a 
subjective experiment is conducted to construct a ground 
truth database. The experimental results show that the pro-
posed SVCA metric achieves a highly competitive perfor-
mance with some state-of-the-art SVCA models. 
 

Index Terms—Visual discomfort, stereoscopic visual 
comfort assessment, accommodation-vergence conflict, vis-
ual perceptual information, entropy of primitive. 
 

1. INTRODUCTION 
 
Stereoscopic visual comfort assessment (SVCA) becomes a 
completely novel problem for certain physiological symp-
toms, such as visual discomfort, eyestrain, headache, and diz-
ziness. These symptoms potentially hamper the popularity of 
3D applications. Similar with traditional 2D image quality as-
sessment, SVCA can be classified into subjective evaluation 
and objective metric.  

Subjective evaluation is a psychophysical method that 
tests whether subjects experience discomfort or fatigue symp-
toms such as eyestrain, double or blurred vision and headache 
when watching certain types of stereoscopic images or videos. 
Researchers have found that several factors may induce vis-
ual discomfort, including excessive screen disparity [1], ac-
commodation-vergence conflict [2][3], binocular asymmetry 
[4], vertical disparities [5], and crosstalk artifacts [6]. Be-
cause human eyes are the ultimate receiver of stereoscopic 
images, subjective experiment is regarded as the most reliable 

way to evaluate stereoscopic image quality. In this paper, a 
subjective experiment is conducted to construct a ground 
truth database. 

Compared with subjective evaluation, objective metric 
has lots of advantages, such as easy operation, inexpensive 
and good embedment in image processing algorithms. In ob-
jective metric, visual comfort is predicted by quantitative 
measurement, in which stereoscopic image analysis is usually 
performed to quantify comfort. Based on the research find-
ings in the subjective experiments [1-6], several objective 
SVCA metrics have considered the founded discomfort in-
duced factors. For excessive screen disparity factor, Yong et 
al. [7][8], Kim et al. [9] and Nojiri et al. [10] investigated the 
relationship between the disparity distribution and visual 
comfort for stereoscopic image or video. For accommoda-
tion-vergence conflict factor, Park et al. [11] proposed a 3D 
accommodation-vergence mismatch predictor algorithm us-
ing local 3D bandwidth. For binocular asymmetry factor, 
Yano et al. [12] detected visual discomfort image scenes 
based on the correlation of left and right images. For crosstalk 
artifact factor, Xing et al. [6] proposed an objective quality 
metric for predicting crosstalk perception by combining the 
structural similarity map and a filtered depth map. In addition, 
Jung et al. [13], Sohn et al. [14], Ide et al. [15] and Jones et 
al. [16] used their proposed SVCA metrics to lessen visual 
discomfort. Since the accommodation-vergence conflict is 
one of the main reasons inducing discomfort [2][3], this paper 
focuses on the prediction of stereoscopic visual discomfort 
induced by this conflict. 

As oculomotor cues, accommodation, a monocular cue, 
refers to the variation of the lens shape and thickness (and 
thus its focal length), which allows the eye to focus on an 
object at a certain distance. Vergence, a binocular cue, refers 
to the muscular rotation of the eyeballs, which is used to con-
verge both eyes on the same object [17]. Thus, accommoda-
tion corresponds to focusing process, which maintains clear 
image viewing; while vergence corresponds to fusion process, 
wherein the binocular retina images fuse into one perceptive 
image. In the proposed SVCA metric, accommodation is rep-
resented as the clarity of two-view images and is measured 
by their visual perceptual information which is modeled by 
joint entropy; vergence is represented as the fusion of visual 
perceptual information between two-view images which is 
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modeled by mutual information. The joint entropy and mu-
tual information are calculated by the visual primitives ex-
tracted from two-view images with a dictionary learning al-
gorithm. Then, we express accommodation-vergence conflict 
as the ratio of the mutual information over joint entropy. To 
evaluate the proposed metric, a subjective experiment is con-
ducted to construct a ground truth database. 

The remaining parts of the paper are organized as follows. 
Section 2 describes the framework of the proposed visual per-
ceptual information-based SVCA metric. Section 3 describes 
the subject experiment. Section 4 provides the experimental 
results and Section 5 concludes the paper. 
 

2. VISUAL PERCEPTUAL INFORMATION-BASED 
SVCA METRIC 

 
The framework of the proposed visual perceptual infor-
mation-based SVCA metric is shown in Fig. 1. For a given 
stereoscopic image, the visual primitives are extracted from 
two-view images. Then, to measure the accommodation and 
vergence of the stereoscopic image, the visual primitives are 
used to calculate the joint entropy and mutual information. 
Finally, the comfort score is computed by the ratio of the mu-
tual information over joint entropy. 

 

Stereoscopic image

Compute Comfort Score

Comfort Score

Visual Primitive Extraction

Visual Primitive
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Measurement

Joint Entropy

Accommodation 
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Fig. 1.  Framework of the proposed SVCA metric. 

 
2.1. Visual Primitive Extraction 
 
Sparse representation is usually used to obtain a compact rep-
resentation from the observed signal. The compact represen-
tation of an image can efficiently describe the perceived sig-
nal information. In this subsection, we employ a dictionary 
learning algorithm to extract visual primitives from two-view 
images. 

In sparse representation, for a given image, the basic unit 
of sparse representation is the patch. The vector representa-
tions of the original image and an image patch of size 

s sB B×  at location , 1, 2, ...,i  i n,= are mathematically de-

noted by NX ∈ and sB
i ∈x , where N  is the number of 

the image vectors, sB  is size of each patch vector, and n  is 
the number of patches in an image [18]. Then, we have 

,=i iR Xx                (1) 
where sB N

iR ×∈  is a matrix operator that extracts patch ix  
from X . Note that patches are usually overlapped, and such 
patch-based representation is highly redundant. Therefore, 
the recovery of X  from { }ix  becomes an over-determined 
system, from which it is straightforward to obtain by the 
least-square solution [19], 

( ) ( ),-1

1 1
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i i ii

n nX R R R
= =

= ∑ ∑i i
x

  
(2) 

which is nothing but an abstraction strategy of averaging all 
the overlapped patches. 

Given patches { }ix , the purpose of dictionary learning is 
to search the best possible dictionary to sparsely represent 
{ }ix . The dictionary learning process is formulated as: 

{ }
{ }

2

2 0,
, ,= argmin  s.t. 

i
i i i

i
T− <∑ i

D a
D a x Da a     (3)  

where sB MD ×∈  is an over-complete dictionary matrix that 
contains M  visual primitives of an image as columns. Here, 
M is set to 256. The vector M

i ∈a contains the representa-
tion coefficients for each patch. 

0ia  is the 0  norm, which 
counts the nonzero entries of the vector ia , and T  is the con-
straint of the non-zero number of ia  and is set to 3. 

Generally, Eq. (3) can be solved by the K-SVD algorithm 
[20]. 
 
2.2. Measurement of Accommodation and Vergence 
 
Although the two views’ image are highly similar in natural 
viewing, our eyes can still perceive their slight differences 
and fuse them into a ‘cyclopean’ 3D image with accommo-
dation and vergence. Inspired by the concept of entropy of 
primitive [29], we quantify the visual information for stereo-
scopic image which is used to represent the measurement of 
accommodation and vergence. 

The extracted visual primitives are the basic visual 
perceptual elements of an image. A set of visual primitives 
(D ) approximates the stereoscopic image I  as following: 

( ) ( ),T T
i i ii

n nI R R R
= =

= ∑ ∑
-1

1 1i i
Da

            
(4) 

where ia  denotes the i-th column of A , A  is the coeffi-
cient matrix of D . n  is the number of patches in I . 
Assume kd  is the k-th visual primitive of D , 1, , ,k M=   
M  is the number of visual primitives in D . The total num-
ber of times that kd  is used to reconstruct the patches in both 
views is calculated by: 
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,

k

k=nz
d

a    (5) 

where ka  is the coefficient vector of kd . Note that ka  de-
notes the k-th row of coefficients matrix A . The total num-
ber of times that kd  is used to reconstruct the patches in LI  
is calculated by: 

0
,

k

k
Ll =nz

d
a     (6) 

where k
La  is the coefficient vector of kd  corresponding to LI . 

The total number of visual primitives that are used to recon-
struct LI  is calculated by: 

1

.
k

M

L
k =

= ∑nz nzl
d

                             (7) 

The probability of visual primitive kd  for LI  is calculated by: 

.kL
k

L

=
d

p  
nzl

nz                                
(8) 

The probability of visual primitive kd  to reconstruct RI  can 
be calculated in the same way. 

According to Shannon theory, to represent the amount of 
information, entropy is a measure of the uncertainty of a sin-
gle random variable, while mutual information is a measure 
of one random variable contains about another [21]. Suppose 
stereoscopic image as random variable of visual primitives, 
the entropy of visual perceptual information of LI  is defined 
as: 

( )
1

( ) .- log
M

L L
L k k

k
H I p p

=

= ∑
                    

(9) 

The entropy of visual perceptual information of RI  can be 
calculated in the same way. 

The atom kd  is used to reconstruct the i-th patch in left 
view and the j-th patch in right view are calculated by: 

( , ) sgn [ ] sgn [ ] ,
k

i ji j k k= ⋅
d
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(10) 

where [ ], ( 1, , )
2i

nk i = a  is the coefficient of kd  in i-th 

patch of left view’s image, and 
1, [ ] 0

sgn [ ] .
0, [ ] 0
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i

i
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k
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=
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                    (11) 

Similarly, [ ], ( 1, , )
2j

nk j n= + a  is the coefficient of kd  in 

j-th patch of right view’s image. The total number of times 
that kd  is used to reconstruct the patches in both the left view 
and the right view is calculated by: 

/ 2
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                   (12) 

The total number of visual primitives that are used to recon-
struct the both views’ image I  is calculated by: 

1
.

k

M

I
k =

= ∑nz nz
d

              
(13) 

The probability of visual primitive kd  for I  is calculated by: 

.k

I

=kp  
nz

nz
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(14) 

The mutual information of visual perceptual information for 
LI  and RI  is defined as: 

1

( ; ) log .
M

k
L R k L R

k k k

p
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The joint entropy of visual perceptual information for LI  and 

RI  is defined as: 
( , ) ( ) ( ) ( ; ).L R L R L RH I I H I H I MI I I= + −

      
(16) 

 
2.3. Visual Comfort Calculation 
 
The human visual perception of stereoscopic images is a dy-
namic interaction of accommodation and vergence [22]. Ac-
commodation corresponds to the focusing process, while ver-
gence corresponds to the fusion process. Intuitively, both the 
focusing and fusion processes are driven by the visual infor-
mation in perceptual cognitive process. In the proposed 
SVCA metric, the focusing process and fusion process are 
modeled by joint entropy and mutual information, respec-
tively. In natural viewing, the focusing and fusion process can 
maintain a consistent adjustments with the changes of view-
ing distance. Whereas, in stereoscopic viewing, this consist-
ence is broken. The inaccurate accommodation or vergence 
will induce the rapid change in accommodation and vergence 
interaction and create the accommodation-vergence conflict, 
which cause more visual discomfort [23]. In this paper, ac-
commodation-vergence conflict is expressed as the ratio of 
the mutual information over joint entropy: 

( ; )
.

( , )
L R

AV
L R

MI I IR
H I I

=
    

        (17) 

Then, AVR  is the score of visual discomfort. A larger AVR  
means the better similarity between the two views’ image and 
a more comfortable experience of the stereoscopic image. 
 

3. SUBJECTIVE EXPERIMENT 
 
To evaluate the proposed SVCA metric, in line with the rec-
ommendation of ITU-R BT.500-11 [24], a subjective experi-
ment was conducted to construct the stereoscopic image da-
tabase. We choose sixteen subjects and a shutter 3D display 
system in the subjective experiment. All of the subjects had 
normal stereoacuity and passed the Titmus Stereo test [25]. 
The setup information of subjective test are listed in Table I. 
(Please visit our website [26] for more details). 

The experimental stimuli consist of 80 stereoscopic im-
ages (see Fig. 2 for example images) which are collected from 
the internet. All of them have the corresponding subjective 
scores.   
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Table I. Setup of the subjective test 
Test standard ITU-R BT.500-11 
Test method DSCQS 

subjects 16 
Age range 20-34 

Display ViewSonic VX2268wm 
Display Size 22 inch 

Display resolution 1680×1050 
Refresh Rate 120 Hz 

Response Time less than 2 ms 
Display Card NVIDIA GeForce GTS 450 

Display Card Interface DVI-D DualLink 
Glasses Nvidia® 3D Vision shutter stereo glasses 

Glasses Refresh Rate 60 Hz 
Crosstalk Levels 0.714% (left), 0.769% (right) 

 

 
Fig. 2 Examples of stereoscopic images used in the subject experiment. 

 

Because this paper only focuses on accommodation-ver-
gence conflict in stereoscopic images, other discomfort-in-
ducing factors (e.g., excessive disparity, viewing distance, 
and crosstalk) are eliminated as much as possible. Especially, 
to avoid the discomfort-induced by the excessive disparity, 
the crossed and uncrossed disparity ranges of the stereoscopic 
visual stimuli belong to (-1,+1) degree [27]. In our experi-
ment, the maximum disparity is set to less than 20 mm. All 
of the experimental stimuli have passed the artificial check. 
 

4. EXPERIMENTAL RESULTS 
 
For the nonlinear regression, we used the following mapping 
function as suggested by Wang et al. [28]: 

1 2
2

3

4

( ) ,
1 exp( )

AV
AV

f R
R

τ τ
τ

τ
τ

−
= +

−
+ −

                (18) 

where ,1 2 3,τ τ τ and 4τ  are the regression coefficients, and 
exp  is the exponential function. Three popular evaluation 
criteria are chosen to compare AVR  with MOS, including 
Pearson linear correlation coefficient (PLCC), Spearman 
rank order correlation coefficient (SROCC) and root mean 

square error (RMSE). A good objective method should have 
high PLCC and SROCC values but low RMS value. 
 

4.1. Selection of number of visual primitives 
 

According to the relationship between visual perceptual in-
formation and visual primitives, an image reconstructed with 
more visual primitives could provide more visual perceptual 
information. As indicated in [29], the number of visual prim-
itives is proportional to the quality of the reconstruction im-
age and the quality of a reconstructed image is good enough 
by 14 visual primitives in their experiment. To obtain the best 
number of the visual primitives, we use the method in [30]: 

1

max min

( , ) ( , )
{ } ,

( , ) ( , )
l L R l L R

L R L R

H I I H I I
t l

H I I H I I
ε−−

<
−

= argmin  s.t.     (19)  

where ε  is a threshold, and is set to 0.5, empirically. 
 

4.2. Comparison with the state-of-the-art SVCA metrics 
 

We attempted to develop two SVCA metrics for comparison. 
Table II shows the performance comparison results on our 
database. Yano et al. [12] metric measures visual fatigue 
based on the correlation of two-view images. Kim et al. [9] 
metric estimates the disparity of stereoscopic image to predict 
visual discomfort. Both the proposed and Kim et al.’s metrics 
achieve good performance. Highest PLCC value of Kim et 
al.’s metric indicates well prediction accuracy, while highest 
SROCC and lowest RMSE values of the proposed metric in-
dicate good prediction monotonicity and less prediction offset. 

Table II: Performance comparison on our database 
 PLCC SROCC RMSE 

Yano et al. [12] 0.5492 0.4643 0.3245 
Kim et al. [9] 0.7851 0.7156 0.2149 

Proposed method 0.7542 0.7468 0.1494 
 

 
5. CONCLUSIONS 

 
This paper proposes a SVCA metric based on perceptual in-
formation of stereoscopic images to evaluate visual discom-
fort induced by the accommodation-vergence conflict. In the 
proposed SVCA metric, accommodation and vergence are 
modeled by the two-view images’ joint entropy and their mu-
tual information, respectively. A subjective experiment is 
conducted to construct a ground truth database. The experi-
mental results show that the proposed SVCA metric has a 
competitive performance with two state-of-the-art SVCA 
models. Many other visual discomfort factors, such as exces-
sive screen disparity, binocular asymmetry and range of 
depth of focus, need to be investigate in the future work. 
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