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ABSTRACT 
 
In compressive sensing (CS), the seeking of a fair domain is 
of essentially significance to achieve a high enough degree of 
signal sparsity. Most methods in the literature, however, use 
a fixed transform domain or prior information that cannot 
exhibit enough sparsity for various images. Superiorly, we 
propose an algorithm to explore the structured Laplacian 
sparsity of DCT coefficients, which can adapt to the non-
stationarity of natural images. Better sparsity is achieved by 
utilizing the nonlocal similarity of natural images and 
constructing structured image patch groups. Meanwhile, 
multiple hypotheses for each pixel could be obtained owing 
to the overlapping of the structured groups and similar 
patches. Additionally, for solving the optimization problem 
formulated from the techniques above, we design an efficient 
iterative method based on split Bregman iteration (SBI) 
algorithm. Experimental results demonstrate that the 
proposed algorithm outperforms the other state-of-the-art 
methods in both objective and subjective recovery quality. 
 

Index Terms—Compressive sensing, image recovery, 
structured Laplacian sparsity, multi-hypothesis 
 

1. INTRODUCTION 
 
Compressive Sensing (CS) has attracted tremendous interest 
in recent years, which provides the possibility of recovering 
a signal at sub-Nyquist rate [1]-[5]. It declares that a signal 
with sparse representations under some domain can be 
reconstructed with high probability from very few 
measurements, which are obtained via linearly projecting the 
original signal onto a random basis. CS theory depicts a new 
paradigm for signal acquisition, which conducts sampling 
and compression at the same time, rather than sequentially 
performing these two steps as the traditional methodology 
does. CS-based compression has an asymmetric design: 
simple encoder and complex decoder, which is quite 

conductive to some image processing applications where the 
data acquisition devices have to be simple (e.g. inexpensive 
resource-deprived sensors), or oversampling may harm the 
object being captured (e.g. X-ray imaging) [6].   

It is believed in CS theory that how much sparsity a 
signal exhibits is very crucial in how well the signal can be 
recovered. That is to say, the sparser the signal is in the 
specified domain, the higher recovery quality could be 
yielded. In different domains, the image signal exhibits 
different degree of sparsity, thus seeking a desirable domain 
becomes one of the main challenges with which the CS 
recovery research is confronted. Fixed domains or a set of 
fixed bases (e.g. discrete cosine transform, wavelet and 
contourlet, gradient domain) [7], [8] are lately explored in a 
lot of CS recovery methods. Although using these domains is 
intuitively comprehensible, the restoration results are far 
from satisfactory due to their insufficiency in individually or 
adaptively representing the signals. 

To deal with this problem, it is suggested incorporating 
additional prior knowledge (statistical dependencies, 
structure, etc.) into the CS recovery framework in the current 
literature. Typical works are Gaussian scale mixtures (GSM) 
models [8], tree-structured wavelet [9] and tree-structured 
DCT (TSDCT). Additionally, in [10], a projection-driven CS 
recovery coupled with block-based random image sampling 
is presented, aiming to encourage sparsity in the domain of 
directional transforms. Chen et al. [11] exploited multi-
hypothesis predictions to generate residuals in the domain of 
the CS random projections, where the residuals are distinctly 
more compressible than the original signal. In [12], Zhang et 
al. proposes a scheme called structural group sparse 
representation (SGSR), which employs the nonlocal self-
similarity of images by constructing groups of similar patches 
with individual dictionaries learned for each group. However, 
the inherent correlations among patches within each group 
are not considered and the sparsity lying in the group is not 
fully developed. 

In this paper, we develop an image CS recovery 
algorithm using the structural Laplacian sparsity in discrete 
cosine transform (DCT) domain associated with the multi-
hypothesis predictions. We have three major contributions. 
First, we achieve prominent Laplacian sparsity of DCT 
coefficients by structuring the image patch groups according 
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to the nonlocal similarity of natural images. The structural 
Laplacian sparsity could be casted into the CS framework and 
an ℓଵ optimization problem is formulated. Second, multiple 
hypotheses for each pixel are generated owing to the 
overlapped group construction and the superposition of 
similar patches. Hereby, we leverage the multi-hypothesis 
(MH) theory and are able to obtain a more accurate 
restoration result. Finally, for solving the optimization 
problem formulated from the techniques above, we design an 
efficient iterative method based on split Bregman iteration 
(SBI) algorithm. 

The remainder of this paper is organized as follows. 
Section 2 is an overview of related background, providing a 
basic idea of the compressive sensing theory. Section 3 gives 
a detailed description of the proposed structured Laplacian 
sparsity based image recovery algorithm and the solution to 
the formulated optimization problem. Simulation results are 
provided in Section 4 and conclusions are drawn in Section 5. 
 

2. BACKGROUND 
 
The compressive sensing states that the signal can be 
recovered from very few samples, if it is sufficiently sparse 
in some domain 	શ . Concretely, suppose x is the original 
signal of length N, y is the measurement of length M<<N after 
sampling and the two of them satisfy	࢟ ൌ  in which A is ,࢞࡭	
the random projection matrix. If the coefficients of	ࢻ ൌ શ࢞ࢀ 
are mostly zeroes or very close to zeroes, where શ	 is a 
transform basis, x could be restored through the following 
optimization problem 

min , s.t.T

p
.

x
x y Ax              (1) 

In this formula, the subscript p is usually set to 0 or 1 to 
characterize the sparsity of the vector	શ்࢞. When p is 0, the 
objective becomes an ℓ଴	 norm ‖∗‖଴ , which counts the 
number of non-zero coefficients of *; when p is 1, the 
objective is an ℓଵ	norm	‖∗‖ଵ , which adds up the absolute 
values of all coefficients of *.    

In practice, Eq. (1) is usually converted into an 
unconstrained problem by introducing a penalty parameter λ 

2

2

1
min ,

2
T

p


x
y - Ax x              (2) 

which can be regarded as a regularization-based framework 
for CS recovery. Hereinto, the first term is referred to as the 
data fidelity term and the second one is the regularization 
term. 

The goal of CS research is mostly to find a decent domain 
Ψ in which the signal x exhibits adequate sparsity. 
Conventionally, Ψ is made to be a set of fixed transform bases, 
such as the DCT matrix or the wavelet transform, to 
characterize the image sparsity in these domains. A constant 
basis for all images or all image blocks, however, cannot 
describe the non-stationarity of natural images, resulting in its 
incapability to adaptively recover various image contents. 
Therefore, the intrinsic nature of images should be taken into 

consideration so that better prior information could be 
exploited to fit into the formula defined by Eq. (2) in the place 
of the regularization term. The nonlocal similarity of images, 
which depicts the consistency of image patches in the 
neighboring regions, is verified to be an extraordinarily 
effective characteristic. 
 

3. PROPOSED METHOD 
 
As is widely known in the image processing area, the DCT 
coefficients of image blocks are proved to follow the 
Laplacian distribution [17], [18], which indicates the 
closeness of corresponding coefficients. Fig. 1 (a) depicts an 
example of the coefficient distribution in one frequency band.  

Conventional CS methods based on this feature of 
images are mostly considering the statistic characteristics of 
all the transformed blocks for the entire image, i.e. Laplacian 
modelling in terms of the image. This cannot achieve an 
accurate model for different images and even for one image 
desirable sparsity cannot be obtained due to contents varying 
from regions to regions. Comparatively, we base our 
algorithm on the non-local similarity of images and construct 
groups containing patches similar in structure, as shown in 
Fig. 1 (b). Each patch is modeled with the Laplacian 
distribution specific to its group, which yields more accurate 
and robust sparse representation. Hereby, this characteristic 
is referred to as structured Laplacian sparsity. 

 

 
 (a)                       (b) 

Fig. 1. Structured Laplacian sparsity of image groups in DCT 
domain: (a) Laplacian distribution of DCT coefficients; (b) 
patches in a group exhibit more Laplacian sparsity due to 
their similarity 

 
3.1. Image Nonlocal Similarity and Structured Group 
Construction 

Fig. 2. Example of the nonlocal self-similarity of images 
 
Nonlocal similarity first proposed for image denoising [14] is 
a significant property of natural images. It characterizes the 
repetitiveness of the textures or structures embodied by 
natural images within the nonlocal area as shown in Fig. 2 

-30 -20 -10 0 10 20 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
(e

)

e

The squares of the same color 
indicate patches repetitively 
occurring in the nonlocal areas 
of the image, which 
demonstrates the nonlocal 
similarity characteristic. 



and can be used for retaining the sharpness and edges 
effectually to maintain image nonlocal consistency [14]-[16]. 
We first present the construction of structured groups by 
exploiting the non-local similarity and the process is 
described as follows.  

We partition the image ࢞  with size of N into D 
overlapped patches and for each patch search for patches 
alike in its neighborhood to form a patch group. As illustrated 
in Fig. 3 (a), the red solid square represents a patch of size	ܵଶ, 
which we denote as	࢞௞, 1 ൑ ݇ ൑  In the surrounding area .ܦ
of the patch ௞࢞	 , we define a search window of size ܮଶ 
marked by the dashed blue square, within which the most 
similar C patches ࢞௞,௜, ሺ1 ൑ ݅ ൑  are selected to construct	ሻܥ
a group denoted by	࢞ࡳೖ ൌ ൛࢞௞,ଵ, ,௞,ଶ࢞ … ,  ,௞,஼ൟ. In Fig. 3 (b)࢞
the red solid square is the central patch 	࢞௞ in Fig. 3 (a) and 
it along with all the blue solid squares, which signifies its 
similar patches, makes up the group	࢞ࡳೖ. 

To formulate this process mathematically, without 
confusion the notation 	௞,௜࢞	 is used to represent the vector 
containing all pixels in the patch as well as the patch itself. 
Specifically, we fetch all the pixels in each patch in raster 
scan order and place them in turn in a column vector denoted 
by	࢞௞,௜. Accordingly, the notation 	࢞ࡳೖ	is also defined as the 
matrix with all the column vector ,௞,௜࢞	 ሺ1 ൑ ݅ ൑
ೖ࢞ࡳ	concatenated together, namely	ሻܥ ൌ 	 ,௞,ଵ࢞ൣ ,௞,ଶ࢞ … ,  .௞,஼൧࢞
Which of these two concepts the notations are referring to will 
be specified in the context in the following sections. 
 
 

 
 
 
 
 
 

 
(a)                   (b)                 (c) 

Fig. 3. Illustration of image patch group construction 
 
3.2. Structured Laplacian Sparsity Prior in DCT Domain 
 
This subsection is elaborating the formulation of the 
structured Laplacian sparsity in each constructed group.  

As stated in Section 3.1, to exploit the nonlocal similarity 
of natural images, we construct groups containing resembled 
patches, which are evidently supposed to better exhibit the 
Laplacian sparsity in the DCT domain. Here, we make ઴ 
denote the DCT transform bases and define 
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which is a matrix containing the transform coefficients ,k ix of 

each patch in the group
kxG . In Fig. 3 (c), 

k


xG also denotes 

the group after DCT transform and each square block ,k i
x

consists of all the coefficients of the corresponding patch in 
Fig 3 (b). For the sake of brevity, we call the block containing 
the transform coefficients ,k i

x the DCT patch for short in 

later reference  
Thereupon, the Laplacian distribution of the DCT patch

k
x could be formulated as  
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In Eq. (4), ,k iw  represents the weight measuring the 

similarity between ,k ix and k
x , ( )k t and 2 ( )k t are the 

expectation and variance of the t-th coefficient in the DCT 
patch kx respectively. Then, Eq. (4) is equivalent to the 

following expression 
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Based on the assumption that the similar patches in one group 
are i.i.d., ࣆ௞	 and ࣌௞

ଶ	are shared by all the DCT patches 

 , , 1k i i C x in this group. So we get  
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where ܵଶ	is the patch size, 1
k k

  , and   stands  for  

the  element-wise product of two vectors. Hence, by 

maximizing probabilities ( ),1
k

k D 
xP G of all the groups, 

the structured Laplacian sparsity prior for the entire image 
could be achieved as follows 

, 1
1 1

mi ,(n )k k
k D i

k i
C   

  
x

x          (7) 

where D is the total number of groups and C is the number 
of patches in each group. 

Incorporating Eq. (7) as the regularization term into the 
optimization framework formulated by Eq. (2), we can 
rewrite it as  

2
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3.3. Optimization Problem Solver Design 
 
Having achieved the model to represent the Laplacian 
sparsity of the image group, the next step is to solve the 
optimization problem depicted by Eq. (8).  
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In this paper, we adopt the framework of split Bregman 
iteration to solve Eq. (8). The basic idea of SBI is to convert 
the unconstrained minimization problem into a constrained 
one by introducing the variable splitting technique and then 
invoke the Bregman iteration to solve the constrained 
minimization problem [19]. Numerical simulations show that 
it converges fast and only uses a small memory footprint, 
which makes it very attractive for large-scale problems [20]. 

First, by introducing a variable z, we can transform Eq. 
(8) into an equivalent constrained expression, i.e., 

,

2

2 1
1 1
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2min )  s( . .t.k ik k

k D i C


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y - Az x - xz    (9) 

Then, applying Bregman algorithm [20] to Eq. (9) leads 
to the following three iterative steps: 
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( 1) ( ) ( 1) ( 1)( ).j j j j   b b z - x                   (12) 

It is obvious to see that the optimization of Eq. (9) is split 
into two sub-problems, i.e., z and x sub-problems. 

Given x, the z sub-problem denoted by Eq. (10) is a 
minimization of a strictly convex quadratic function. Here, to 
avoid computing the matrix inverse, the steepest descent 
method is exploited to solve this equation by iteratively 
applying 

( 1) ( ) ( ) ,j j j  z z d              (13) 

where  represents the optimal step, and ( )jd is the gradient 

of Eq. (10) and calculated by 
( ) ( ) ( ) ( ) ( )( ) ( ).j T j j j j  d A Az y z - x - b

    
 (14) 

Given z, the x sub-problem denoted by Eq. (11) is 
rewritten as  
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where ( ) ( 1) ( )j j jr z - b . 
So now, the key to solving Eq. (8) is to find an efficient 

way to solve Eq. (15). To make it tractable, as in [12] we 
assume that each element of ( )jx - r  is i.i.d. with zero mean 
and the same variance. According to Theorem 1 proposed by 

[12], 
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and
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equation with a very large probability 
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where 2K D C S   .  
Due to the orthogonality of DCT, the energies in the 

space domain and the frequency domain should be conserved. 
Then we have the equation below 
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Combining Eq. (16) and Eq. (17) with Eq. (15), we get 

 

2( )
, 12

1 1 1 1

2( )
, 12

1

,

,
1

,

,

1
2

1
2

min )

min

(

( ) ,

j
k i k k

k D i C k D i C

j
k i k k

k i k i

k i k i
k D i C

N
K

K
N







       

   



 

   

 

  

  

x

x

x - r x -

x - r x -

 

 
 (18) 

which can be decomposed into D C 	 sub-problems as 
follows 
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Obviously, Eq. (19) can be equivalently solved in an 
element-wise manner, i.e., 
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where 21 St  and ( ) ( )k kt K t N   . 

By means of the soft thresholding algorithm of Lemma 2 
in [13], we can arrive at a closed-form solution for Eq. (20) 
and accordingly, Eq. (19) can be solved and the solution is 
stated below  
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Therefore, the corresponding patch in the space domain is  
( 1) ( 1)

, , .
j j

k i k i

 
 x x                 (22) 

This process is applied for all the patches in each group. 
 
3.4. Multi-Hypothesis Prediction and Summary 

 
The way we reconstruct the image with all the achieved 
groups of patches is voting for each image pixel based on the 
multi-hypothesis theory. The following equation tells the 
reconstruction of each pixel ࢞ሺ௝ାଵሻሺݔ, ሻݕ  with each 
prediction produced from any patch of any group that covers 
the pixel location (x, y) 
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Here, B(x, y) is the total number of possible predictions for 
the current pixel, which indicates how many patches have 
overlapped this position. l is an index for the current 
prediction and ( ) ( , )l x y denotes its weight, which is set to a 

constant value 1 in the current implementation. 
In light of all derivations above, the complete description 

of image CS recovery using structured Laplacian sparsity in 
DCT domain and multi-hypothesis prediction (SLS-MH) is 
given below:  

Table 1.  Image CS recovery using SLS-MH 
Input: The observed measurement y, the measurement 
matrix A and parameter λ;  

Initialization: set initial estimate (0)x ;  
for Iteration number j = 0, 1, 2, … , Max_iter 

Get ( 1)jz by iteratively computing Eq. (13);   



Construct structured groups ( ) ,1j

k

k D 
r

G by 

searching for similar patches in ( )jr ;    
for Each group ( )j

k
r

G  

Calculate k and k in Eq. (4); 

Obtain
( 1)

,

j

k i


x by computing Eq. (22);  

end for  

Get  1jx through multi-hypothesis prediction for 
each image pixel as in Eq. (23);  
Update ( 1)jb by computing Eq. (12); 

end for  
Output: Final recovered image x̂ . 

 
4. EXPERIMENTAL RESULTS 

 
In this section, experimental results are presented to evaluate 
the performance of the proposed image CS recovery 
algorithm using SLS-MH. Five standard gray images are 
tested, which are ‘Cameraman’, ‘Foreman’, ‘House’, ‘Lena’ 
and ‘Vessels’. In our experiments, the CS measurements are 
obtained by applying a Gaussian random projection matrix to 
the original image signal at block level, i.e., block-based CS 
with block size of 32×32 [17]. SLS-MH is compared with six 
representative CS recovery methods in literature, total 
variation (TV) method [7], CS recovery in traditional DCT 
domain (DCT for short), wavelet method (DWT), 
collaborative sparsity (CoS) method [13], multi-hypothesis 
(MH) method [11]and SGSR [12]. It is worth emphasizing 
that SGSR is known as the state-of-the-art algorithm for 
image CS recovery.   

In our implementation, all the parameters of SLS-MH are 
set empirically for all test images. Concretely, the size of each 
patch	ܵଶ	is set to be 8×8, the size of training window for 
searching matched patches ܮଶ is set to be 20×20, the number 
of selected similar patches C = 10 for each group, and λ is 

5.0e-4. It is necessary to stress that the choice for all the 
parameters can be generalized to other natural images, which 
has been verified in our experiments. In this paper, we exploit 
the results of MH as initialization of the proposed SLS-MH 
for image CS recovery. The PSNR comparisons for all the 
test images in the cases of 20% through 40% measurements 
are provided in Table 2. SLS-MH provides quite promising 
results, achieving the highest PSNR among the seven 
comparative algorithms over all the cases, which can improve 
4.98 dB, 6.64 dB, 3.50 dB, 2.43 dB, 2.78 dB and 0.90 dB on 
average, compared with TV, DCT, DWT, CoS, MH and 
SGSR, respectively.   

Some visual results of the recovered images by these 
algorithms are presented in Fig. 4 and Fig. 5. Obviously, TV, 
DCT and DWT generate the worst perceptual results. The CS 
recovered images by CoS and MH possess much better visual 
quality, but still suffer from some undesirable artifacts, such 
as ringing effects and lost details. Although, the most recent 
SGSR method provides relatively pleasant results, it over 
smoothens the images and loses a lot of detailed textures. Our 
proposed SLS-MH algorithm not only yields the highest 
objective score in PSNR, but also preserves the fine details in 
the images and shows much clearer and better visual results 
than the other competing methods. The high performance of 
SLS-MH is attributed to the structured Laplacian sparsity 
based on the non-local similarity, which offers a powerful 
mechanism of characterizing the structured sparsity of natural 
image signals. Also, the multi-hypothesis contributes to the 
final results. Seen from Table 2, SLS represents our proposed 
algorithm without the MH predictions. It beats all the other 
methods except for SGSR, and can be improved a lot when 
MH is utilized. 

The complexity of SLS-MH is provided as follows. 
Assume that the number of image pixels is N, and that the 
average time to search similar patches for each reference 
patch is	 ௦ܶ. The DCT operation of each patch ࢞௞	with size of 
ܵଶ is	ܱሺܵଶlog	ሺܵሻሻ. Hence, the total complexity of SLS-MH 

Table 2.  PSNR comparisons with different image CS recovery methods (dB) 

Ratio Images\Algorithms TV DCT DWT RCoS MH SGSR SLS SLS-MH

20%

Cameraman 25.29 23.95 25.70 27.78 26.05 26.66 26.47 27.19

Foreman 32.31 29.36 33.88 34.29 34.61 36.08 36.17 37.18

House 31.51 29.63 33.11 33.33 33.87 35.75 35.83 36.87

Lena 30.65 30.47 32.73 32.48 33.08 34.05 33.26 34.12

Vessels 22.08 20.38 24.98 25.98 26.09 30.61 27.12 31.31

Average 28.37 26.76 30.08 30.77 30.74 32.63 31.77 33.33

30%

Cameraman 27.61 26.06 27.89 29.87 28.03 28.64 28.57 29.16

Foreman 35.06 33.01 36.14 36.05 36.34 37.86 38.30 39.26

House 33.64 31.99 35.25 35.57 35.81 37.51 37.65 38.70

Lena 32.53 32.50 34.71 34.17 35.04 35.98 35.03 36.10

Vessels 24.97 23.18 27.49 30.98 29.90 34.53 30.58 35.61

Average 30.76 29.35 32.29 33.33 33.02 34.90 34.03 35.76

40%

Cameraman 29.86 27.95 29.87 31.40 30.05 30.48 30.49 31.09 

Foreman 37.33 33.22 38.16 38.64 38.16 39.45 40.19 41.24 

House 35.52 33.94 36.70 37.59 37.24 39.06 39.24 40.30 

Lena 34.16 34.19 36.14 36.16 36.22 37.58 36.53 37.68 

Vessels 27.77 25.68 29.87 34.23 32.93 37.36 33.54 39.26 

Average 32.93 31.00 34.15 35.61 34.92 36.78 36.00 37.91 



Fig. 5. Visual comparison of CS recovered results for Vessels by 
different methods (ratio = 20%) and relevant PSNR 
values are shown in brackets.  

(h) SLS-MH (31.31 dB)(g) SGSR (30.61 dB) (f) MH (26.09 dB) 

(a)Original image (b) TV (22.08 dB) (c) DCT (20.38 dB) (d) DWT (24.98 dB)

(e) CoS (25.98 dB) 

is	ܱሺܰሺܵଶlog	ሺܵሻ ൅ ௦ܶሻ. For a 256×256 image, the proposed 
CS recovery algorithm requires about 4~5 minutes for on an 
Intel Core2 Duo 2.96G PC under Matlab R2011a 
environment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

5. CONCLUSIONS 
 
In this paper, we design an algorithm for image CS recovery 
by the structured Laplacian sparsity in the DCT domain. The 
nonlocal similarity of natural images is exploited during 
structuring the image and superior sparsity could be achieved 
in this way. This prior information is incorporated into the CS 
framework and an ℓଵ optimization problem is formulated. 
By modeling the sparse representation in overlapped groups 
instead of blocks and selecting multiple similar patches in 
each group, multiple predictions for each pixel could be 
achieved so that the MH theory is employed to recover the 
original image. Experimental results prove that the proposed 
algorithm can beat the other methods with very high objective 
gain as well as generating better visual pictures. 
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Fig. 4. Visual comparison of CS recovered results for Foreman 
by different methods (ratio = 20%) and relevant PSNR 
values are shown in brackets. 

(a) Original image (b) TV (32.31 dB) (c) DCT (29.36 dB) (d) DWT (33.88 dB)

(e) CoS (34.29 dB) (f) MH (34.61 dB) (g) SRSG (36.08 dB) (h) SLS-MH (37.18 dB)




