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ABSTRACT 
An auto-regressive (AR) based side information (SI) 
generation is proposed in this paper for block based 
chessboard pattern Wyner-Ziv (WZ) coding, where each 
WZ frame is split into two sets at encoder and then encoded 
separately. At the decoder, one set of the WZ frame will be 
firstly reconstructed, and then proposed AR model is used 
to generate the SI of the other set, where each pixel is 
generated as a linear weighted summation of pixels within 
two square windows in the previous and following 
reconstructed WZ/key frames along the motion trajectory. 
To obtain high quality SI for the second set, reconstructed 
pixels in the four neighboring blocks of the first set are 
employed to derive accurate AR coefficients. Several 
experimental results demonstrate that the proposed AR 
model is able to improve the quality of the SI for the second 
set of the WZ frame, which leads to the improvement of the 
rate-distortion performance of the WZ coding. 
 

Index Terms— auto-regressive, side information, 
chessboard splitting, wyner-ziv 
 

1. INTRODUCTION 
 

Distributed video coding (DVC) has emerged as a 
complementary of hybrid video coding due to its desirable 
properties for some applications such as wireless low power 
video surveillance, video compression and sensor networks. 
DVC is based on the principles stated by Slepian-Wolf [1] 
for lossless case and Wyner-Ziv (WZ) [2] for lossy scenario. 
Slepian and Wolf proved that although two statistical 
sources X and Y are independently encoded, similar 
performance can be achieved as long as joint decoding of 
them is allowed for lossless coding. Wyner and Ziv theory 
extended the theory to lossy coding with side information 
(SI) generated at decoder.  

One of the most critical aspects in enhancing the 
compression efficiency of DVC is improving SI quality. 
According to the Slepian-Wolf theorem [1], the less the 
conditional entropy ( )|H X Y  is, the fewer the bits to 
reconstruct X  are required, under the condition that Y  can 

be perfectly reconstructed at the decoder. Intuitively, in 
practical system, where SI is generated at the decoder side, 
better SI will result in better performance for the WZ frames.  

Currently, many pioneering works have been done to 
improve the quality of the SI. In A. Aaron’s scheme, motion 
extrapolation or interpolation is applied to generate SI [3], 
and hash words are also used to aid the motion 
compensation [4] to further improve the SI quality. A.B.B. 
Adikari exploits sequential motion estimation to refine SI 
[5]. J. Ascenso presented a motion compensation method 
which employed spatial motion smoothing to refine SI [6], 
and he also presented a motion compensated refinement 
method [7] to improve SI. In addition, M. Tagliasacchi 
proposed a novel WZ frame coding approach, where the 
WZ frames are split into two sets A and B pixel by pixel 
based on quincunx sampling [8]. Furthermore, H. Liu 
proposed a block based checkerboard pattern splitting 
algorithm [9]. All these methods resort to conventional 
motion estimation to extract motion information from the 
reconstructed WZ/Key frames at the decoder side. However, 
the motion estimation method does not always achieve good 
results, especially for the video sequences with high motion.  

To further improve the quality of SI, we propose an 
auto-regressive (AR) based SI generation in block based 
checkboard pattern DVC in this paper. In the proposed AR 
model, the SI of each pixel in the second set of the WZ 
frame is generated as a linear weighted summation of pixels 
within two square windows along the motion trajectory in 
the previous and following reconstructed WZ/Key frames. 
To obtain high quality SI, the pixels within the four 
neighboring reconstructed blocks in the first set of the WZ 
frame are exploited to derive accurate AR coefficients by 
the maximum likelihood least method. This allows gains up 
to 1.5dB for the SI of the second set of the WZ frame. 

This paper is organized as follows. Section 2 presents 
the architecture of the proposed WZ coding system and 
gives the description of the proposed AR model. In Section 
3, the maximum likelihood least square algorithm is 
described to obtain accurate AR coefficients. Experimental 
results are presented and discussed in Section 4. Finally, 
section 5 concludes this paper. 
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Fig. 1 The architecture of the proposed AR based WZ codec
 

2. PROPOSED FRAMEWORK AND AR MODEL 
DESCRIPTION 

In this section, we will first give the codec architecture 
and then the model description will be presented. 
2.1. Proposed codec architecture 

The codec architecture of the proposed AR model 
based WZ coding is depicted in Fig. 1. The input sequences 
are first divided into key (K) frames and WZ frames, which 
are encoded by H. 264 and Turbo encoder, respectively. 
Each WZ frame tX  is split into two sets (set 1 and set 2) 
based on checkerboard pattern, which is depicted in Fig. 2. 
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Fig. 2 Block based checkboard splitting 
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tX  is transformed and quantized first, and then encoded by 

a Turbo codec. At the decoder side, the reconstruction 1ˆ
tX  

of the pixels in the first set within tX  is obtained by Turbo 

decoder. Together with 1ˆ
tX , the SI 2

tY  of 2
tX  is 

interpolated by the proposed AR model. Similar to the first 
set, 2ˆ

tX  is decoded by Turbo decoder. Finally, 1ˆ
tX  and 2ˆ

tX  
are integrated into one frame and generate the ultimate WZ 
frame ˆ

tX . 
2.2. Proposed AR model 

In the proposed AR model, the SI of each pixel within 
set 2 is generated as a linear weighted summation of 
corresponding pixels within two square windows along the 
motion trajectory in the previous and following 
reconstructed WZ/K frames, which is shown in Fig. 3. With 
the help of reconstructed neighboring pixels within set 1, 

the integer-pixel accuracy motion vectors of each block in 
set 2 are first found by boundary match. Then the SI 
generation is performed along the motion trajectory, which 
can be expressed as 
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where ( )2 ,tY m n  represents the SI located at ( ),m n  in set 2, 

1
ˆ

tX −  and 1
ˆ

tX +  represent the previous and following 

reconstructed WZ/K frames, ( ),p pm n% %  and  ( ),f fm n% %  

represent the corresponding pixel location pointed by the 
forward and backward motion vectors, ( ),pw i j  and 

( ),fw i j  represent the weighting coefficients corresponding 

to 1
ˆ

tX −  and 1
ˆ

tX + , and ( ),tn m n  represents the white 
Gaussian noise. Here the variable r  in Eq. (2) is defined to 
be the order of the AR model. Thus according to Eq. (2), the 
SI of each pixel can be generated as the weighted 
summation of ( ) ( )2 1 2 1r r+ × +  corresponding pixels in the 

previous reconstructed frame and ( ) ( )2 1 2 1r r+ × +  
corresponding pixels in the following reconstructed frame. 
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Fig. 3 Proposed AR model 
Obviously, the AR coefficients will play a critical role 

for the quality of the SI. To derive accurate coefficients, we 
will give a maximum likelihood least square algorithm in 
the next section to obtain accurate coefficients. 
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Fig. 4 Pixels involved during the AR coefficient derivation 

process for the block B  in set 2 
Since the actual pixels within set 2 are not available at 

the decoder side, the reconstructed pixels within the 
neighboring blocks in set 1 are utilized to train the AR 
coefficients of each block within set 2.  As shown in Fig. 4, 
for each block B  of set 2 in the current WZ frame t, we 
first find its best matched blocks ( pB  and fB ) by 
performing  boundary match in the previous and following 
reconstructed frames 1

ˆ
tX −  and 1

ˆ
tX + . Next, we use the AR 

model to approximate the pixels in the reconstructed 
neighboring blocks of set 1.  

According to Eq. (2), we can rewrite the SI of each 
pixel within the current block B  in set 2 as 

  ( ),y f ε= +x w ,                                   (3) 

where ( ),f x w  is a deterministic function about the pixel 
vector, corresponding to the square windows in the previous 
and following reconstructed WZ/K frames, and the 
coefficient vector w . Here ε  is a zero mean Gaussian 
random variable with prevision (inverse variance) β .  Thus 
we can write (3) as 

( ) ( )( )1| , , | , ,p y N y fβ β −=x w x w .                   (4)  

In this paper, we assume ( )( )1| , ,N y f β −x w obeys the 

Gaussian distribution, which can be expressed as 
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Now consider a data set of inputs { }1,..., N=X x x with 
corresponding target values 1,..., Ny y . We group the target 
variables { }ny , which represents the pixels within the four 
reconstructed neighboring blocks of  set 1, into a column 
vector denoted by y . Assume these data points are drawn 
independently from the distribution (4), we obtain the 
following expression for the likelihood function, which is a 
function of adjustable parameters w  and β , in the form 
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Taking the logarithm of the likelihood function and making 
use of the standard form (Eq. 5) of univariate Gaussian, we 
have  
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where the sum-of-squares error function is defined by 
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The gradient of the log likelihood function (Eq. 7) takes the 
form 
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Setting this gradient to zero gives 
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Solving for w  we obtain  

( ) 1T T
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−
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which is known as the normal equation for the least square 
algorithm. Here Φ  is an N M×  matrix, whose elements 
are given as  
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Here N  represents the size of the four reconstructed 
neighboring blocks in set 1, and M  represents the number 
of pixels within the two square windows in the previous and 
following reconstructed WZ/K frames. Using the 
coefficients derived by Eq. (11), we can easily compute the 
SI for the current processing block B  according to Eq. (2). 
 

4. EXPERIMENTAL RESULTS  
 

In this section, we report our experimental results on 
Foreman, News, and Flower in CIF@30HZ, where the odd 
frames of the first 60 frames in each test sequence are 
encoded in H. 264 intra frame model, while the even frames 
are encoded as WZ frames. We compare the proposed AR 
model with the methods described in [3] and [9]. The 
parameter sets of the AR model within each test sequence 
are given in Table 1. The PSNRs of the SI, which are 
generated by the methods in [3], [9] and the proposed AR 
model for the pixels within set 2 are provided in Table 2. 
Table 1 Parameters of the AR model for each test sequence 

Sequence Block Size AR order
Foreman 8x8 2 

News 8x8 1 
Flower 16x16 1 



In Table 2, the QP represents the quantization 
parameters of the reconstructed key frames which are 
encoded by H.264/AVC reference software jm 98. As 
shown in Table 2, the proposed AR model has a 0.9~1.8 dB 
performance improvement than [3] and a 0.2~1.4 dB 
performance improvement than [9]. Especially for Flower, 
the PSNR gains of the SI generated by the proposed AR 
model over those generated by [3] and [9] are up to 1.4 dB, 
when the QP of the K frames are set to be 26 and 28, 
respectively. 

Table 2 PSNRs of the SI in Set 2 
QP=26 QP=28 QP=30 Sequence 

[3] [9] AR [3] [9] AR [3] [9] AR
Foreman 34.3 35.2 35.4 34.0 34.8 35.1 33.4 34.1 34.3

News 36.9 38.1 38.7 36.3 37.4 37.8 35.5 36.5 36.7
Flower 30.8 30.9 32.3 30.5 30.6 32.0 30.3 30.3 31.6
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Fig. 5 Rate distortion curves comparisons for Foreman, 

Flower and News 
Fig. 5 shows the average PSNR of the luminance 

component for both K frames and WZ frames versus the 
total bit-rate. We compare the proposed AR model with the 
approach in [3], shown as anchor 1 in Fig. 5, and the 
approach in [9], shown as anchor 2 in Fig. 5. It can be 
observed that [9] achieves better performance than [3] does 
for Foreman and News at higher bit rates. However, [9] has 
poor performance than [3] does for Flower. On the contrary, 
the proposed AR model achieves better performance than [3] 
and [9] for all the test sequences. 

5. CONCLUSION 
 

In this paper, a novel AR based SI generation method 
for block based checkboard pattern WZ coding is proposed. 
In the proposed method, the SI of each pixel in the second 
set is generated as the weighted summation of pixels within 
two square windows along the motion in the previous and 
following reconstructed WZ/K frames. To obtain accurate 
coefficients of the AR model for each block in set 2, the 
four neighboring reconstructed blocks in set 1 are employed 
to train the coefficients by a maximum likelihood least 
square algorithm. Experimental results show that the 
proposed AR model is able to achieve higher performance 
than traditional SI generation method. 
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