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Abstract One of the most striking properties of natural image statistics is the scale
invariance. Some earlier studies have assumed that the kurtosis of marginal band pass
filter response to be constant throughout scales for a natural image. In our study, this
assumption is loosened by adaptively estimating an optimal filter computation whose
response distributions through scales have the least Kullback–Leibler divergence. The
adaptive filter and its responses characterize the scale-invariance property more accu-
rately and effectively and are further utilized to model the statistics scale-invariance
prior in this paper. Extensive experiments on image super-resolution and de-noising
manifest that the explored natural images scale-invariance prior model achieves sig-
nificant performance improvements over the current state-of-the-art schemes.
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6 F. Jiang et al.

1 Introduction

One core task for computer vision is to interpret, model, and learn from the highly
specialized image data [1,2]. It is also plausible that our brains have learned an approx-
imation to this probabilistic model, allowing for efficient representations and effective
solutions of many difficult computational problems [3,4]. The processing of vision
information in the human brain depends not only on the characters of the vision infor-
mation, but also on the prior knowledge, i.e. the general regulations of the natural
images generalized and memorized by the human brain. Natural images adding prior
knowledge gives us perception. Aspects of vision ranging from the responses of indi-
vidual neurons to gestalt perceptual rules would be seen not as artifacts of the brain’s
circuitry, but rather as matched to the statistical structure of the physical world [5,6].
In recent years, how to capture the prior of natural images and provide precise mathe-
matical model of the structure in the visual world have become a prevalent and critical
problem [7,8]. Such models have pivotal role in many low-vision tasks which would
provide a rigorous basis for practical algorithms in image coding, processing, and
recognition [9,10].

In this view, aspects of vision ranging from the responses of individual neurons to
gestalt perceptual rules would be seen not as artifacts of the brain’s circuitry, but rather
as matched to the statistical structure of the physical world [5,11–13]. One of the most
notable properties of natural image statistics is scale invariance; it is exhibited as:

Q[ϕ(x)] = Q
[
αvφ(αx)

]
, (1)

where Q[φ(αx)] is any ensemble statistic of φ(x) of scale α and v is a universal expo-
nent [14,15]. In particular, Field observed that the spatial patterns of image intensity
from natural environments have power spectra that approximate SI ∝ 1/k2, which is
consistent with the hypothesis of scale-invariance and simple dimensional analysis,
and he suggested a direct connection to the distribution of receptive field parameters
across neurons in the visual cortex [16]. The intuition that scale invariance is a strong
constraint on the form of the probability distribution comes from statistical mechan-
ics. Scale invariance is researched at many aspects. Natural images exhibit a highly
non-Gaussian and heavy-tailed distribution when derivative-like filters are applied to
them [17] and scale-invariance states that natural images exhibit similar heavy-tailed
distributions at different scales in one image [18].

Some earlier studies have assumed the kurtosis of marginal band pass filter
response distributions to be constant throughout scales. Lam’s paper [19] shows
that the kurtosis is constant at different scales for DCT filters’ marginal distribu-
tions. In Bethge’s work [20], it is reported that the kurtosis value is lower for high-
frequency filters than for lower ones. Also, the scaling of power spectrum, local his-
tograms, and pixel information can exhibit that natural scenes possess scale invariance
[15].

Intuitively, a natural image always contains the same contents of different scales
and dually the same contents of the same scale exist throughout scales of the image.
This paper concentrates on the essence andmodeling of natural image scale-invariance
character. The main contributions are manifested at two aspects:
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Scale-invariance generation of natural images 7

• Earlier studies have reported the kurtosis of marginal band pass filter response
distributions to be constant throughout scales, which is a strong assumption. We
loosened this assumption by estimating an optimal derivative-like filter, whose
response distribution throughout scales best match each other compared with the
general derivate-like filters. Such a filter satisfies the inner essence of the scale-
invariance character of the natural image.

• Utilizing the scale-invariance optimal filter and its statics, we develop a novel
scale-invariance prior model, which is applied to image super-resolution, where
the response of the optimal filter throughout scales remaining the same is exploited
as an effective constraint.

The remainder of the paper is organized as follows. Related works are overviewed in
Sect. 2. Section 3 elaborates the filter response analysis and the estimation of optimal
filter for scale invariance and the image super-resolution based on the optimal filter.
Extensive experimental results are reported in Sect. 4.

2 Related work

Computer vision can be considered a highly specialized data collection and data analy-
sis problem. We need to understand the special properties of image data to construct
statistical models for representing the wide variety of image patterns. One special
property of vision that distinguishes itself from other sensory data such as speech data
is that the distance or scale plays a profound role in image data [14]. More specifically,
visual objects and patterns can appear at a wide range of distances or scales, and the
same visual pattern appearing at different distances or scales produces different image
data with different statistical properties, and thus entails different regimes of statistical
models.

2.1 Scale-invariance character of natural images statistics

One of the most striking properties of natural image statistics is their scale invariance
[21]. The most notable scale-invariant property is the power-law spectrum [22]. This
property is very robust and holds across different images and scenes. Various other
properties of natural images have been shown to be scale invariant as described in [21,
23]. Natural images, in addition to having scale-invariant statistics, are also extremely
non-Gaussian. The distributions of the different Fourier coefficients, for example,
have very large peaks, heavy tails, and are highly kurtotic. These distributions can
be generally well fitted with a generalized Gaussian distribution, which captures this
distinctive shape [20]. The kurtosis of a generalized Gaussian distribution is directly
dependent on its shape parameter α. Assuming x is generalized Gaussian distributed
such that x ∼ GG(μ, σ 2, α) where μ is the mean, σ 2 the variance, and α is the shape
parameter, the kurtosis of x is:
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8 F. Jiang et al.

κx (α) = �( 1
α
)�( 5

α
)

�( 3
α
)2

, (2)

where � is the standard gamma function [24]. As can be seen, the kurtosis is inversely
related to the shape parameter α. For natural images, α is usually rather small, having
values of between 0.5 and 1 [22]. In light of this, one would expect to see some sort
of scale invariance in the kurtosis of marginal coefficient distributions; specifically, a
reasonable assumptionwould be that the kurtosis should be constant throughout scales.
This, however, is not always the case. There are inconclusive evidence on whether the
kurtosis values change with the scale of the measured filter response distribution. In
[19] it has been reported that the kurtosis is constant throughout scales for DCT filters
marginal distributions, whereas in [20] it has been reported that the kurtosis changes
with scale. Specifically, in [20] it is reported that for higher frequencies, the kurtosis
values are lower than for the low frequencies.

With the exploration of scale-invariance character,more andmore applications have
emerged. In Hou’s algorithm [25], multi-resolution sparse prior was proposed; it is
computed throughout scales, and then a minimization problem with the prior is solved
by a strategy of multi-stage convex relaxation. Zoran’s paper [14] proposed a noise
estimation method according to the assumption that different scale filter distributions’
kurtosis values shouldnot changewith scale and that addednoise can cause these values
to change. Gluckman [26] showed a representation which separates scale variant and
invariant information. To solve the problem of contour completion and extraction, Ren
[27] proposed a multi-scale Bayesian approach.

Many proposed scale-invariance priormodels base on the assumption that the kurto-
sis values of thefilter distributions remain the same. In fact, it is an exaggerated assump-
tion as analyzed in this paper. In our proposed method, we loosened this assumption
by estimating an optimal derivative-like filter adaptively, whose response distribution
of different scales is expected to be the same. With this loosening assumption, our
proposed method is more effective and robust in the scale-invariance prior expression.

2.2 Image super-resolution

Image super-resolution, which is the art of rescaling a low-resolution (LR) image to
a high-resolution (HR) version, has become a very active area of research in image
processing. The interest in image super-resolution is born not only in the great prac-
tical importance of enhancing resolution of images, such as in the fields of digital
photography, computer vision, computer graphics, medical imaging, satellite remote
sensing, and consumer electronics, but also the important theoretical value of using
image super-resolution to understand the validity of different image models in inverse
problems. In the last several years, there has been a great deal of work on image super-
resolution. In general, image super-resolution techniques can be categorized into three
families: interpolation-basedmethods [28–31], reconstruction-basedmethods [32,33],
and learning-based methods [34,35].

Considering the underlying imagemodels during interpolation,most of image super
resolution algorithms can be categorized as global or local ones. A global algorithm
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Scale-invariance generation of natural images 9

trains the interpolationmodel using thewhole image sample set,while a local algorithm
aims to train the model by using only useful local information. The representative
globalmethods are those based on classical data-invariant linear filters, such as bilinear
and bicubic [36]. These methods have a relatively low complexity, but suffer from the
inability to adapt to varyingpixel structures,which result in blurred edges and annoying
artifacts. The local algorithms usually result in better empirical results, since it is hard
to find a unified model with a good predictability for the whole image sample set. In
the literature, some local learning methods have been proposed with great success. Li
and Orchard [33] propose adapting the interpolation based on the geometric duality
between the LR and the HR covariance. Zhang and Wu [37] propose partitioning the
local neighborhood of each missing sample into two oriented subsets in orthogonal
directions, and then fuse the directional interpolation results byminimummean square-
error estimation. Takeda et al. propose using kernel regression as an effective tool
for interpolation in image processing [34]. Recently, Zhang and Wu [38] propose
the named SAI algorithm, which learns and adapts varying scene structures using a
locally linear regression model and interpolates the missing pixels in a group by a
soft-decision method.

From amachine learning perspective, the available LR image pixels can be regarded
as labeled samples and the missing HR image pixels as unlabeled ones. What image
super-resolution does is to learn latent models of the image sample set in a supervised
manner. In all local methods mentioned above, interpolation models are learned only
according to the labeled samples in a local neighborhood and then mapped to the
missing HR samples to perform inference. During this procedure, unlabeled samples
are left out and the information hidden are not sufficiently explored. Image super-
resolution is an ill-posed problem.

To cope with the ill-posed nature of inverse problems, one type of scheme in lit-
erature employs image prior knowledge for regularizing the solution to the following
minimization problem:

argminu
1

2
‖Hu − y‖22 + λ · 	(u), (3)

where 1
2 ‖Hu − y‖22 is the 
2 data-fidelity term, 	(u) denotes image prior named

the regularization term, and λ is the regularization parameter. In fact, the above
regularization-based framework (2) can be strictly derived from Bayesian inference
with prior knowledge as some image prior possibility models. Many optimization
approaches for regularization-based image inverse problems have been developed.
The key lies in employing effective prior knowledge for regularizing to cope with the
ill-posed nature.

3 Multi-scale image filter response analysis

From the viewpoint of natural image prior modeling, natural images have an intrin-
sic statistics property of their gradient magnitudes: the heavy-tailed distribution. It
generates sparse regularization in the objective function and, therefore, makes it non-
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10 F. Jiang et al.

Fig. 1 a Original image; b different additive Gaussian filtering statistical noise response in case of distri-
bution and performance (color figure online)

Fig. 2 Multi-scale image filter response. a Images at different scales and b derivative-like statistics of the
three images at different scales (color figure online)

convex. In observations, similar highly non-Gaussian and heavy-tailed distributions
are obtained when applying derivative-like filters throughout scales of a natural image.
For image in a certain scale, the image quality will affect the final statistical response
distribution. We conducted a simple experiment. For the image in Fig. 2, Gaussian
noise σ = 15, 25, 35 are added to the image, respectively.

In Fig. 1, red dots indicate the response distribution of the original image, green
black and blue dots indicate the response distribution of the original image on adding
white Gaussian noise σ = 15, 25, 35, respectively. It can be seen that with the increase
of the noise, the responsedistributiondrifts farther away from that of the original image.

The response distribution of derivate-like filters provides crucial cues about the
quality of the image. The relationships between response distributions of different
scales further demonstrate the essences. As shown in Fig. 1, a 3×3 derivative-like
filter is applied to an image at different scales and the response distributions are
illustrated with different colors in Fig. 2.

In Fig. 2, the response distributions of original higher-resolution image,
intermediate-scale image and lower-resolution scale are indicated with red, green and
blue dots, respectively. From the responses it can be seen that distributions of different
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Scale-invariance generation of natural images 11

scale responses are very close. Although this property provides exciting cues for image
prior modeling and pursuing, it is not precise enough for most of the image inverse
problems. Two inspirations can be drawn from the observation. For a natural image,
response to different scales are not independent, but they have similar kurtosis. In fact,
this is a week constraint. The response distributions are not the same precisely, which
is more effective to constrain in the image inverse problem. For the different derivative
filters, if the response distribution of a filter is more similar to those at different scales,
the filter can better keep scale-invariant features. An optimal filter is expected to get
exactly the same response in all scales and such a filter best meets the scale-invariant
feature. If such optimalilty is obtained, whose corresponding response distributions
are the same throughout the scales, it will be able to provide more information for
image inverse problem.

3.1 Optimal filter estimation based on response specification

Natural image scale invariance demonstrates that different scale images exhibit similar
heavy-tailed filter response distributionwhen derivative-like filters are applied to them.
If we can find the filter whose responses to the multi-scale images have the least
difference, such a filter will inflect the inner essence of the scale-invariance character
of the natural image. In this paper, we estimate the optimal filter from themulti-scale of
the images and adopt a recursive procedure based on response histogram specification.
In each iteration, the response specification is utilized until the algorithm converges
(Fig. 3).

More specifically, consider two different scales of the same image Io and Il , where
Io is large scale with a size of M × N and Il is small scale with a scale M

2 × N
2 .

Assuming the size of the image block to be bs , divide Io and Il into overlapping
blocks of size bs and reorganize each block into one row of So and Sl , which can be
expressed as

So = ϕ(Io)
Sl = ϕ(Il)

. (4)

For each pixel in Io and Il , its bs neighborhoods are reorganized into one row in So
and Sl . Accordingly, S1 and S2 contain M × N and M

2 × N
2 rows, respectively.

Denote the filter as f ; then the filter response can be represented in the matrix

Filter response 
histogram 

specification

Large_scale_imageO
riginal Im

age

Small_scale_image

Filter f

Filter f

Large_scale_response

Large_scale_response

Response_specification

Response_specification

Fig. 3 Optimal filter estimation based on response histogram regulation
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12 F. Jiang et al.

form. Define that Ro and Rl are the filter responses, corresponding to the large-scale
response and small-scale response, respectively. Ro = [

Ro⊗1, Ro⊗2, . . . , Ro⊗MN
]T

and Rl =
[
Ro⊗1, Ro⊗2, . . . , Ro⊗ MN

4

]T
, which can be simplified into the following

two expressions:
Ro = So × f
Rl = Sl × f

. (5)

Histogram specification is adopted to make a histogram of the filter response in a
certain scale closer to the reference histogram distribution. Given two responses Ro

and Rl , the filter response specification processing provides the estimation of the
expected filter response to one scale image, given that of the other scale image, which
can be expressed as Eq. 6. The detailed procedure is provided in Algorithm 1:

R′
o = hist_spe (Ro, Rl). (6)

The Algorithm 1 aims at making one scale filter response as reference and estimating
the filter response of the other scales to meet the gap of the inconformity between the
response of different scales. The response histogram specification provides an effective
basis of the optimal filter estimation. In the procedure of the estimation of optimal
filter, firstly the initialized filter is utilized to obtain the response of different scales and
a recursive one is adopted. In each interaction, the response of one scale is fixed and
utilized to estimate the responses of the other scales. One the responses of the other
scales is obtained, and the filter is updated.With the recursive process and the updating

123



Scale-invariance generation of natural images 13

filter, the response distributions throughout the scales became identical gradually. The
finally estimated optimal filtermakes the response distributions of different scales have
the least distribution distance and the whole procedure is provided in Algorithm 2.

3.2 Image super-resolution based on the optimal filter

The natural image scale-invariance prior is adopted in this paper as a constraint in the
image super-resolution task. By incorporating the proposed prior modeling (18) into
the regularization-based framework (2), a new formulation for image restoration can
be expressed as follows:

argminu
1
2 ‖Hu − y‖22 + τ · ∥∥Resp(u) − Resp(u′)

∥∥2
2 , (7)

where τ is the control parameter. Note that the first term of Eq. 7 actually represents the
observation constraint and the second term represents the image prior scale-invariance
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14 F. Jiang et al.

LR LR_small_scale

Filter training

Resp_LR Resp_HR_0

HR_0

Histfml

Pixels Estimation

HR

f_opt f_opt

Fig. 4 Framework of image super-resolution based on optimal filter

constraints, respectively. Note that the second regulation term cannot compute the
derivation directly, and the proposed image super-resolution based on the optimal
filter is shown in Fig. 4. Firstly, the optimal filter is obtained based on the original low-
resolution images. Then the filter response to the high-resolution images is estimated
based on the response of low-resolution images; finally, the pixels of the estimated
high-resolution image are refined.

3.2.1 Estimation of the most likely response for high-resolution image

For an input images LR, a low-resolution image LR_small_scale is obtained by first
blurring with a blur kernel and then downsampled by a scaling factor. The low-
resolution images LR and image LR_small_scale is then used to estimate the optimal
filter fopt for the current imagewith histogram specification. By applying bicubic inter-
polation to low-resolution images LR we obtain an initialization of high-resolution
image HR_0 and then compute the response distributions of HR_0 and LR images
with the optimal filter as follows:
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Scale-invariance generation of natural images 15

ϕ(LR) × fopt = Resp_LR
ϕ(HR_0) × fopt = Resp_HR_0′ (8)

where Resp_LR and Resp_HR_0 denote optimal filter response distribution of LR
images and HR_0 image. Based on the scale invariance of the natural image, for
the optimal filter, the response distribution at different scales should be very close.
Accordingly, the optimal filter response distribution in the low-scale image is used to
predict that in the high-resolution image:

Resp_HR′ = histfml(Resp_HR_0,Resp_LR). (9)

In the formula 9, Resp_HR′ represents the most likely response of the high-resolution
image.

3.2.2 Pixel estimation

Nonlocal self-similarity is another significant property that characterizes the repeti-
tiveness of the textures or structures embodied by natural images within nonlocal area,
which can be used for retaining the sharpness and edges effectually to maintain image
nonlocal consistency.

In this study, we mathematically characterize the nonlocal self-similarity for nat-
ural images by means of the distributions of the transform coefficients, which are
achieved by transforming the three-dimensional group generated by stacking similar
image patches. More specifically, as illustrated in Fig. 3, firstly, we divide the image u
into many overlapped blocks, and for each block in red denoted by ui , we find a fixed
number of blocks that are most similar to it within the blue search window. For sim-
plicity, the criterion for calculating similarity between different blocks is Euclidean
distance. Then, these nine blocks are stacked into a three-dimensional array, which
we call a group (Fig. 5).

Having obtained Dυ , the similar image block group of the reference blockV _HR_0,
SVD decomposition is utilized to obtain the most likely direction of the reference
block.

Fig. 5 Nonlocal self-similar blocks in the natural image carve out different manifolds
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16 F. Jiang et al.

Fig. 6 Find the most likely
direction of change (color figure
online)

[Sv, Sλ] = SVD(Dv)

Dv = {vc,1 − vc, vc,2 − vc, . . . , vc,n − vc}, (10)

where Vc = ∑n
i=1 Vc,i , Sv and Sλ are the obtained eigenvectors and eigenvalues.

In Fig. 6, the red block points indicate the current image patch and the green points
indicate the n similar blocks in the bicubiced image. Based on the reference point of
the block to the point of similar blocks, the thick red line shows the approximate trend
of the reference block. The reference block direction vector can be approximated as:

Sv = {k1, k2, . . . , kn}
Sλ = {λ1, λ2, . . . , λn}
d = √

λ1k1 + √
λ2k2 + · · · + √

λnkn,
(11)

where d indicates the reference block μ and fopt describe the change along the refer-
ence block direction and the optimal filter respectively, the following equation can be
obtained:

μ · d · fopt = dis(Resp_HR(ω),Resp_HR′(ω)). (12)

In Eq. 12, Resp_HR(w) and Resp_HR′(w) are the response values of the optimal filter
to the current patch in the bicubiced image and the estimate response according to the
original image.

In Fig. 7,V_HR_0 represents the block image,V_HR is the block vector to estimate
ultimately, and V_c is a gap between the two vectors, which can be expressed as

V _c = μ · d. (13)

So, the estimated high-resolution vector can be solved as a block:

V _HR = V _HR_0 + V _c
V _c = μ · d
μ = dis(Resp_HR(ω),Resp_HR′(ω))

d· f _opt
. (14)
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Scale-invariance generation of natural images 17

m n

foptδ

Fig. 7 The image block update

These obtained image blocks are then combined to get the final high-resolution
image. The strict mathematical description on the proposed image super-resolution
method is provided in Algorithm 3.

4 Experimental results

In this section, extensive experimental results are presented to evaluate the performance
of the proposed algorithm, which is compared with the state-of-the-art methods. We
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18 F. Jiang et al.

Fig. 8 Test images: bird, building, butterfly in Berkeley Segmentation Dataset, whose size is 481× 321
or 321× 481

evaluate the capability of optimal filter describing the scale-invariance prior with
Berkeley Segmentation Dataset [39]. We apply our algorithm to the application of
image super-resolution and image restoration.

4.1 Scale-invariance performance with the optimal filter

To evaluate the capability of the optimal filter satisfying the scale invariance, we
select ten grayscale images from the Berkeley Segmentation Dataset [39]. The original
size of images are 481×321 or 321×481, as shown in figure. The adopted image
block size is 3×3, and we use Kullback–Leibler divergence to measure the difference
between the responses distribution of different scales. We compared the optimal filter
with the one-ring and two-ring derivate filters. The results are reported in the table
(Fig. 8).

Here, we will respond to the x-direction differential filter located in the distance and
the obtained optimal filter response distribution between different scales compared,
as shown in Table 1.

Compared with general derivate filters, the proposed optimal filter obtains the least
response distribution distance between different scales.

Table 1 of thismethod shows that the difference between the proceeds of the optimal
filter reduces the filter response at different scales; using the kind of optimal filter to
image processing can better meet the scale invariance.
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Scale-invariance generation of natural images 19

Table 1 The response
distribution comparison between
the proposed optimal filter and
general derivate filters
(KL-divergence)

Images The proposed
optimal filter

1-Ring derivative
filter

2-Ring derivative
filter

1 0.00290 0.00732 0.00732

2 0.00703 0.00902 0.00902

3 0.01105 0.01324 0.01324

4 0.00284 0.00967 0.00978

5 0.00200 0.00506 0.00546

6 0.00996 0.01096 0.01109

7 0.00144 0.00380 0.00191

8 0.00588 0.00731 0.00751

9 0.01615 0.01878 0.01912

10 0.01294 0.02604 0.02508

4.2 Image super-resolution based on optimal filter

In this section, the experimental results are presented to demonstrate the performance
of the proposed algorithm. For thoroughness and fairness of our comparison study, we
exploit some widely used images as test ones. Our algorithm is compared with some
representativework in the literature.More specifically, fivemethods are included in our
comparative study: (1) bicubic interpolation [36]; (2) image interpolation by adaptive
2-D autoregressive modeling and soft decision estimation denoted as SAI [38]; (3)
edge-directed interpolation [33].

In our experiments, the observed low-resolution (LR) image is obtained by first
blurring with a blur kernel and then downsampling by a scaling factor, from which
the original HR images are reconstructed by the proposed and competing methods.
A 6×6 Gaussian filter with standard deviation of 1.5 is used for blurring and then
downsampling the blurred image in both horizontal and vertical directions. Since the
original HR images are known in the simulation, we can compare the interpolated
results with the true images and measure the objective and subjective quality of those
interpolated images. In the practical experiments, we initialize the HR image × using
the result of bicubic interpolation (Fig. 9).

Given the fact that the human visual system (HVS) is the ultimate receiver of the
restored images,we also show the subjective comparison results. Both the superior sub-
jective and objective qualities on test images convincingly demonstrate the potential
of the proposed hierarchical and collaborative sparse coding scheme on image super-
resolution. Table 2 shows the quantitative quality comparison with respect to PSNR
and SSIM of the five compared methods. It can be observed that for all instances the
proposed algorithm consistently works better on PSNR and SSIM than other methods.
Compared with interpolation-based methods, such as bicubic, the proposed method
can significantly improve the objective quality of generated HR images. Compared
with the NEDI and SAI method, the proposed method works better and the average
PSNR gain can be improved by 0.14 and 0.13dB. With respect to SSIM, it can be
seen that the proposed HCSR method achieves the highest SSIM scores among all
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20 F. Jiang et al.

Fig. 9 Visual quality comparison of the interpolation with different methods

of the competing methods for all test images. This demonstrates that our method can
reconstruct the structures of images better.

4.3 Image restoration for noise removal

To test the robustness of the proposed algorithm, we further consider a practical prob-
lem, namely, image restoration formixedGaussian plus salt-and-pepper noise removal
[40], which is an extension of image restoration from partial random samples with
Gaussian noise. In the simulations, images will be corrupted by Gaussian noise with
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Scale-invariance generation of natural images 21

Table 2 Comparison of the proposed optimal filter-based super-resolution and other popular methods

Images Bicubic NEDI [33] SAI [38] Proposed

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

1 31.08 0.83 31.25 0.86 31.20 0.92 31.40 0.93

2 30.34 0.75 30.39 0.72 30.36 0.79 30.52 0.80

3 30.70 0.83 30.72 0.79 30.71 0.85 30.89 0.86

4 28.51 0.78 28.69 0.81 28.64 0.86 28.77 0.86

5 28.57 0.69 28.66 0.85 28.71 0.91 28.80 0.91

6 28.64 0.81 28.60 0.71 28.79 0.75 28.77 0.76

7 33.81 0.84 33.82 0.80 33.74 0.85 33.97 0.85

8 27.43 0.71 27.51 0.80 27.56 0.83 27.66 0.84

9 29.40 0.78 29.38 0.79 29.36 0.79 29.53 0.80

10 26.27 0.76 26.38 0.78 26.40 0.81 26.52 0.84

Average 29.47 0.78 29.54 0.79 29.55 0.81 29.68 0.84

Bold values indicate the best performance compared with the other methods

Table 3 Comparisons of various methods for Gaussian plus salt-and-pepper noise removal

Image Barbara House Boat Avg.

r 40% 50% 40% 50% 40% 50%

Noisy 9.36/0.4153 8.39/0.3815 9.46/0.3499 8.50/0.3170 9.42/0.5579 8.46/0.5230 8.93/0.4241

TV [41] 26.18/0.8899 25.40/0.8728 31.10/0.9156 30.36/0.9050 28.53/0.9405 27.66/0.9259 28.21/0.9083

IFASDA [42] 28.59/0.9252 27.45/0.9129 32.26/0.9263 31.69/0.9181 30.28/0.9614 29.50/0.9556 29.96/0.9333

Proposed 29.77/0.9271 28.04/0.9183 32.73/0.9280 31.77/0.9194 30.42/0.9617 29.72/0.9593 30.41/0.9356

The left of the slash denotes PSNR (dB) and the right of the slash denotes FSIM
Bold values indicate the best performance compared with the other methods

standard deviation σ and salt-and-pepper noise density level r, where σ is assumed
to be known before and r is unknown. Two state-of-the-art algorithms compared with
our proposed method are: TV [41] and IFASDA [42]. Experiments are carried out on
four benchmark gray images in Fig. 7, where the standard variance σ of Gaussian
noise equals 10 and the noise density level varies from 40 to 50%. To handle this case,
we first apply adaptive median filter (AMF [43]) to the noisy image to identify the
mask H , that is, change the problem of mixed Gaussian-impulse noise removal into
the problem of image restoration from partial random samples with Gaussian noise,
and then run the proposed algorithm according to Table 3.

Table 3 presents the PSNR/FSIM results of the three comparative denoising algo-
rithms on all test images for Gaussian plus salt-and-pepper impulse noise removal.
Obviously, the proposedmethod considerably outperforms the other methods in all the
cases, with the highest PSNR and FSIM, achieving average PSNR and FSIM improve-
ments over the second best method (i.e., IFASDA), 1.8dB and 0.01, separately.
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5 Conclusion

In this paper, we estimate the optimal filter whose response distributions have the least
KLdivergence throughout the scales. The adaptively obtained optimal filter reflects the
unique scale-invariance character of the current image and, accordingly, a novel scale-
invariance natural image prior model is proposed. Extensive experiments on image
super-resolution and de-noisingmanifest that the natural images scale-invariance prior
model proposed in this paper achieves significant performance improvements over the
current state-of-the-art schemes.
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