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ABSTRACT

Low latency query delivery over wireless network is a key prob-
lem for mobile visual search. Extracting compact descriptors direct-
ly on the mobile device is computational expensive, an alternate ap-
proach is to send highly compressed JPEG query images. As JPEG
baseline optimizes the rate-distortion from a perceptual perspective
rather than maintaining search performance, recent work proposed
to learn a feature-preserving JPEG quantization table for improved
search accuracy. However, this method is data-dependent and the
quantization table cannot adapt to image blocks. To address these is-
sues, we propose to jointly optimize the JPEG quantization table and
coefficient thresholding. The matching score between uncompressed
image and its compressed JPEG image is employed as the distortion
measure to avoid time consuming image labeling, and coefficient
thresholding eliminates the redundant coefficients. Extensive exper-
iments on benchmark datasets show that our approach obtains supe-
rior performance than state-of-the-art at low bitrates, meanwhile, it
consumes lower cost including processing time, memory and battery
on mobile device.

Index Terms— JPEG Compression, Mobile Visual Search,
Quantization Table, Coefficient Thresholding, Optimization

1. INTRODUCTION

Camera equipped mobile devices have shown great potentials in mo-
bile visual search [1] applications like Google Goggles. In general, a
query is sent from the mobile client to the server via a wireless link,
then visual search is performed to identify the relevant images from
a reference image database hosted at the server end. In wireless
environment, the upstream of a visual query is subject to network
constraint of unstable or limited bandwidth. To reduce latency for
better user experience, the upstream query data is expected to be as
small as possible.

Recent works have proposed to extract compact visual descrip-
tors of query images directly on the mobile device, and send such
descriptors over a wireless link at low bitrates (See Fig.1 (b)). In
particular, this topic relates to an ongoing MPEG standardization,
namely, Compact Descriptors for Visual Search (CDVS) [2][3][4].
Existing compact descriptors mainly build upon local invariant fea-
tures (e.g., SIFT [5], SURF [6]), which are subsequently compressed
into compact codes without incurring considerable loss of discrim-
inative power. For instance, Chandrasekhar et al. [7] proposed a
Compressed Histogram of Gradient (CHoG), which adopts Huff-
man Tree coding to compress each local feature into approximate
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Fig. 1. Framework of low bitrate mobile visual search: (a) Trans-
mitting highly compressed JPEG query images, and subsequent de-
scriptors extraction and matching (retrieval) are performed on the
server (Top), and (b) Extracting and compressing visual descriptors
directly on the mobile client, and sending compact descriptors over
a wireless link (Bottom).

60 bits. Other examples of compact descriptors are Vector of Local-
ly Aggregated Descriptors (VLAD) [8], Compressed Fisher Vector
(CFV) [9][10][11] and Residual Enhanced Visual Vector (REVV)
[12]. However, the heavy feature extraction complexity poses a chal-
lenge to work with the mobile device with limited computation and
memory resources. For example, a less optimized feature extraction
process may cost over 2 seconds and 20MB RAM to extract SIFT
features from a VGA image (640x480) on iPhone 4S.

An alternate approach is to perform fast JPEG compression [13]
with low memory footprint on the mobile client, then transmit the
JPEG compressed image as a query to the server (See Fig.1 (a)). The
JPEG-like compression first partitions the image into 8 × 8 blocks,
converts each block to frequency domain using discrete cosine trans-
form (DCT), then quantizes the resulting DCT coefficients using a
8 × 8 quantization table, followed by entropy coding. JPEG coder
largely reduces image size, however, it also degrades feature detec-
tion and description due to the compression artifacts, resulting in
decreased search performance. Previous works [14][15] mainly aim
to minimize the rate-constrained pixel-wise information loss from a
perceptual perspective based on the human visual system, but possi-
bly not optimal for visual search.

To improve search accuracy, the image compression scheme is
required to preserve informative visual features. Makar et al. [16]
employed the location information of detected features to determine
the corresponding image patch for subsequent patch compression.
Chao et al. [17] proposed a rate-distortion optimization method
to preserve the blocks containing SIFT features, while allocating
fewer bits to encode blocks without features. As previously men-
tioned, these methods involve resource consuming feature detection
and description, which are not suitable for implementation on the



Fig. 2. The proposed image compression pipeline based on JPEG
baseline. The optimized quantization table and thresholdings lead
to compressing image deeply by eliminating redundant coefficients,
which are suitable for low bitrate mobile visual search.

mobile device. To address this issue, Duan et al. [18] adopted pair-
wise matching precision as the distortion measure to optimize the
JPEG quantization table for preserving informative features implic-
itly. However, this approach still has some drawbacks: (1) the JPEG
quantization table is learned in a supervised manner, i.e., it requires
manually labeled match/non-match image pairs; (2) the optimized
quantization table is uniformly applied to all image blocks, which
cannot adapt to individual blocks.

In this paper, we propose to jointly optimize the JPEG quantiza-
tion table and coefficient thresholding for low bitrate mobile visual
search. Firstly, the matching score between uncompressed image
and its compressed JPEG image is employed as the distortion mea-
sure to avoid time consuming match/non-match image labeling. Sec-
ondly, we take into account the location information of image block-
s to select informative DCT coefficients for block-adaptive coding,
considering the hypothesis of informative visual information relat-
ing to the distance from the image center [19][20]. The joint op-
timization approach (see Fig.2) is able to eliminate the redundant
coefficients for effective feature preserving. In addition, the out-
put bitstream of our approach is compatible with the stream format
of JPEG standard, ensuring a better interoperability for mobile vi-
sual search applications. Extensive experiments on MPEG CDVS
benchmark datasets combined with 1 million distractor images [4]
have shown the consistent superior search accuracy of the proposed
approach over the state-of-the-art at low bitrates. Compared with
extracting local features directly on the mobile phone, our approach
provides prominent advantages in terms of time cost, memory cost
and battery consumption.

2. PROBLEM FORMULATION

The objective is to simultaneously optimize the JPEG quantization
table and coefficient thresholding for better preserving informative
local features for effective and efficient mobile visual search. The
quantization table Q used in this work follows the definition of the
JPEG standard. Thus, each 8×8 block (64 pixels) is transformed by
DCT and compressed by the 8× 8 quantization table Q:

Q =

 Q00 . . . Q70

...
. . .

...
Q70 · · · Q77

 , 1 ≤ Qij ≤ 255 (1)

The quantized DCT coefficients Cn = {Ci
n}, i = 0, ..., 63 (in

zigzag order) are further encoded by adaptively selecting the most
important elements, where Ci

n is the ith quantized DCT coefficient
of the nth image block. Specifically, we employ the thresholding

mask Tn = {T i
n}, T i

n ∈ {0, 1}, i = 0, ..., 63 for the nth image
block to perform the coefficient selection:

T i
n =

{
1 if Ci

n selected
0 otherwise

(2)

Algorithm 1 Joint optimization of Q and T

1: Input: images Ii, i = 1, ...,M
2: Initialized Q0 and T0 with rate constraint Rc
3: repeat
4: Qt = minQ{J = D(Qt−1, Tt−1) + λR(Qt−1, Tt−1)}
5: Tt = minT {J = D(Qt, Tt−1) + λR(Qt, Tt−1)}
6: until J converged
7: Output: Qt, Tt

If T i
n = 1, the corresponding coefficient Ci

n is included in the
subsequent entropy coding, otherwise, Ci

n is discarded. We denote
T = {Tn}Nn=1 the coefficient thresholdings for all N blocks of an
image. It should be noticed that coefficient thresholding Tn varies
across image blocks.

To achieve this goal, we formulate the image compression as a
rate-distortion optimized problem of finding out quantization table
Q and thresholding T for each quantized DCT coefficient:

min{D(Q,T )} s.t. R(Q,T ) ≤ Rc (3)

R(Q,T ) and D(Q,T ) denote the coding bitrate and distortion, re-
spectively.

The distortion D(Q,T ) is defined as the matching score be-
tween uncompressed image and its JPEG compressed image:

D(Q,T ) = 1− 2×#correctMatches

#originalFeats+#compressedFeats
(4)

#correctMatches measures the number of SIFT matching pairs
between the uncompressed image and its JPEG compressed image,
#originalFeats and #compressedFeats denote the number of
detected SIFT features from the uncompressed image and its JPEG
compressed image, respectively. Obviously, the choice of Q and T
determines the matching score. Unlike traditional human perception
oriented distortion measure, this criterion implicitly evaluates the a-
bility of preserving SIFT features. Considering the state-of-the-art
visual search approaches work on the SIFT features, this criterion is
dealt with as an indicator of search accuracy.

We use Lagrange multiplier method to converts this rate-
constrained problem into:

min{J = D(Q,T ) + λR(Q,T )} (5)

The Lagrange multiplier λ is a fixed constant that controls the rate-
distortion trade-off, and J is the Lagrange cost.

3. JOINT OPTIMIZATION OF Q AND T

Since joint optimization of the quantization table Q and coefficient
thresholding T is intractable, we propose to iteratively minimize 5,
i.e., solving Q (or T ) given that T (or Q) is fixed, as shown in Al-
gorithm 1. The Lagrange cost J is non-increasing with each step,
convergence is guaranteed.

Optimizing Q. With the coefficient thresholding T fixed, the
optimal quantization table Q still entails too much computational
complexity. Similar to [18], genetic algorithm is chosen to learn the



Fig. 3. The iterative optimization process of the quantization table Q and coefficient thresholding T .

suboptimal Q based on an initialized quantization table Q0. Observ-
ing that informative visual features are mainly correlated to low fre-
quency DCT coefficients of the uncompressed image, a set of quanti-
zation tables discarding high frequency information are employed as
initial population of genetic algorithm, i.e., the low frequency com-
ponents of each table are set to a small random integer between 1
and 64. With this initialization, the solution space of quantization
table is largely reduced, meanwhile, the low frequency information
are preserved with high probability.

The pipeline of genetic algorithm is inheritance with crossover
and mutation, and evaluation. The crossover swaps the Q step from
{Qxy|x, y ∈ {0, 2}} of two tables to form a new individual table,
with a probability P1. Subsequently, the mutation randomly selects
the Q step from {Qxy|0 ≤ x, y ≤ 3} and changes it to another pos-
sible value for that gene, with a probability P2. The evaluation uses
the Lagrange cost J as fitness function to choose the better individ-
uals for next iteration. We use the same parameters as [18] in the
quantization table optimization process, i.e., λ = 10, P1 = 0.5 and
P2 = 0.1. The initial quantization table Q0, optimization process
and the optimized table Q is illustrated in Fig.3.

Optimizing T . With the quantization table Q fixed, our goal
is to find out the optimal coefficient thresholdings T = {Tn} for all
blocks of an image. Actually, the coefficient thresholdings play a key
role to further eliminate the irrelevant low frequency information.
Since optimizing the thresholding for all N blocks is difficult, we
propose to optimize each block independently. Observing that the
energy of quantized DCT coefficients for image reconstruction is
decreasing in zigzag ordering and this rule is empirically applied to
image compression for visual search, we choose to evaluate the 1
DC coefficient and 15 non-zero low frequency AC coefficients in the
first 24 AC coefficients for preserving SIFT features. Particularly,
denoting Tnk as k consecutive thresholdings of nth image block,
we set

Tnk = {T 0
nk

, T 1
nk

, ..., T 63
nk

}, 1 ≤ k ≤ 24 (6)
where

T i
nk

=

{
0 if i ≥ k
1 if i < k

(7)

The DC coefficient is important for image reconstruction as well as
the feature extraction, so we always set T 0

n = 1. Then the problem
is simplified as how to choose k for each image block.

On the other hand, recent works [19][20] support the hypoth-
esis that the probability of correct matched feature depends on its
distance from the image center. The nearer the distance from im-
age center, the quantized DCT coefficients from that image block

are more important. In this paper, we take into account the local-
ization information of image block for guiding the optimization of
k in a heuristic manner. Specifically, we partition an image into m
non-overlapping windows around the image center, e.g., m = 4 in
Fig.3. The value k of image blocks located in outer windows should
be smaller than those blocks in inner windows. Denoting Tk,m the
union of all image blocks Tnk with windows m fixed, we enumerate
a set of values for k and m respectively, and find out the combina-
tion of k and m that maximize the difference of Lagrange cost Jk

between Tk,m and Tk−1,m:

∇Jk,m = J(Qfixed, Tk,m)− J(Qfixed, Tk−1,m) (8)

If ∇Jk,m reaches an extremum, the corresponding AC coefficients
from 1st to kth are more valuable for preserving SIFT features than
the rest AC coefficients with windows m fixed. The optimized co-
efficient thresholdings T is illustrated in Fig.3. Experimental results
show that the optimized coefficient thresholdings T significantly im-
proves the search performance. Furthermore, it brings about a bit ex-
tra computation cost in JPEG compression process, which is trivial
compared to other feature detection based compression methods.

4. EXPERIMENTS

Datasets and Evaluation Protocols. We evaluate the retrieval per-
fomance of the proposed compression approach over the MPEG CD-
VS benchmark datasets [4][21][22][23][24][25]. The dataset con-
sists of 8313 query images and 18440 reference images from five
categories (mixed text+graphics , paintings, video frames, landmark-
s, common objects). A FLICKR1M dataset containing 1 million im-
ages is use as distracters, merging with the reference datasets to eval-
uate the scalability in dealing with large-scale image search. Our ex-
periment follows the Test Model of MPEG CDVS evaluation frame-
work [4]. SIFT descriptor is adopted as the local feature, mean Av-
erage Precision (mAP) is used to evaluate retrieval performance.

Baselines. We compare five baselines: (1) Default JPEG: Com-
press query images with JPEG baseline; (2) Visual Search-oriented
Quantization Table (VSQT): Compress query images with the op-
timized quantization table mentioned in [18]; (3) Q: The proposed
approach using only the optimized quantization table Q to com-
press query images. (4) Q+T: The proposed approach using both
the optimized quantization table Q and coefficient thresholding T to
compress query images. Besides baselines, we also extract MPEG
CDVS standard compact descriptors at the operating point of 16KB



(a) Mixed text+graphics (b) Paintings (c) Video frames (d) Landmarks (e) Common objects

Fig. 4. Query size vs. retrieval performance in terms of mAP over the various types of datasets, combined with the distractor set FLICKR1M.

Fig. 5. Comparison of pairwise matching results using query image
compressed with default JPEG and the proposed approach, respec-
tively.

[4] from uncompressed query images and transmit them to the serv-
er (see Fig.1 (a)), named as Compact Descriptors of Uncompressed
Image (CDUI), in order to provide an anchor result of the state-of-
the-art benchmark retrieval pipeline [4][26].

Rate Distortion Analysis. We perform retrieval experiments
over MPEG CDVS benchmark datasets plus 1 million FLICKR1M
dataset. Fig.4 compares the mAP of baselines at varied query size
over different benchmark datasets. All color images are converted to
gray images and query size is controlled by adjusting the scale factor
in JPEG codec. Our approach obtains better retrieval performance
than VSQT and default JPEG. For example, the proposed method
Q achieves +5% gain vs. default JPEG and +1% gain vs. VSQT.
In addition, the proposed approach Q+T further improves the mAP
with additional 1% for the same query size, verifying the effective-
ness of the coefficient thresholding. Particularly, the results show
that our approach has achieved superior performance at much lower
bitrates from 5kB to 10kB, especially for the paintings dataset con-
taining lots of low scale features. Experiments in [17] shows that
low scale features are more vulnerable by JPEG compression. In a
sense, our approach is robust for preserving vulnerable features. At
the higher bitrates (e.g., 16kB), the mAP of our approach is com-
parable to the CDUI method adopted in MPEG CDVS evaluation
framework. Fig.5 gives an example on the comparison of pairwise
matching, using query image compressed with default JPEG and the
proposed approach. This example shows that our approach obtains
more matching pairs, which demonstrates the superior capability of
preserving retrieval performance than the default JPEG compression.

Complexity Analysis. Fig.6 compares the time cost, memory
cost and battery consumption between our approach and the CDUI

(a) Time cost

(b) Memory cost (c) Battery cost

Fig. 6. Comparison of time cost, memory cost and battery consump-
tion between our approach and the CDUI method on smart phone
HTC T328 by averaging from 1000 query images of 640x480. (a)
Time cost, including the image processing on mobile client, network
transmission and image search on the server end. (b) Memory cost
on the mobile device. (c) Battery cost on the mobile device.

method within MPEG CDVS standard on a smart phone HTC T328.
Our approach compresses the query image to 16KB and CDUI ex-
tract compact descriptor in 16KB. The results show that directly
sending a JPEG compressed query image provides prominent advan-
tages in terms of time cost, memory cost and battery consumption,
compared to local feature extraction on the mobile phone (CDUI).

5. CONCLUSION

In this paper, we propose to deeply compress query images by jointly
optimizing of JPEG quantization table and coefficient thresholding
for low bitrate mobile visual search. Instead of maintaining image
quality from a perceptual perspective, the proposed approach is to
preserve the informative visual features for improved search perfor-
mance. In addition, the proposed method is compatible with the
JPEG standard. The results show that our approach obtains superi-
or performance than state-of-the-art at lower bitrates, meanwhile, it
consumes low cost including processing time, memory and battery.
Extension of the proposed method to other compression schemes
(e.g. JPEG2000) will be addressed in future work.
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