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Abstract— Annoying compression artifacts exist in most of
lossy coded videos at low bit rates, which are caused by coarse
quantization of transform coefficients or motion compensation
from distorted frames. In this paper, we propose a compression
artifact reduction approach that utilizes both the spatial and
the temporal correlation to form multi-hypothesis predictions
from spatio-temporal similar blocks. For each transform block,
three predictions with their reliabilities are estimated, respec-
tively. The first prediction is constructed by inversely quantizing
transform coefficients directly, and its reliability is determined
by the variance of quantization noise. The second prediction is
derived by representing each transform block with a temporal
auto-regressive (TAR) model along its motion trajectory, and
its corresponding reliability is estimated from local prediction
errors of the TAR model. The last prediction infers the original
coefficients from similar blocks in non-local regions, and its
reliability is estimated based on the distribution of coefficients
in these similar blocks. Finally, all the predictions are adaptively
fused according to their reliabilities to restore high-quality videos.
The experimental results show that the proposed method can
efficiently reduce most of the compression artifacts and improve
both subjective and objective quality of block transform coded
videos.

Index Terms— Compression artifacts, block transform coding,
auto-regressive, non-local estimation, multiple hypotheses.

I. INTRODUCTION

ALTHOUGH the state-of-the-art video coding standards,
e.g., H.264/AVC and HEVC, have improved the effi-

ciency of image and video compression significantly, they
still produce annoying compression artifacts at low bit rates,
e.g., blocking artifacts and ringing artifacts. These artifacts
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not only deteriorate the perceptual quality of video frames
remarkably, but also affect the performance of some video
applications, such as object detection and recognition [1].
In real-world video service systems, such as YouTube, the
video contents are usually compressed at low bit rates due
to limited bandwidth and will suffer from annoying artifacts
when the videos contain rich textures or complex motions.
This leads to poor user experience. Compression artifacts are
mainly caused by two sources. Firstly, the coarse quantization
applied to each block independently will turn some transform
coefficients into zeros and causes discontinuity across block
boundaries. Secondly, the motion compensation in inter-frame
coding, which copies blocks from a previously reconstructed
frames, is likely to propagate the coding artifacts from one
frame to another. The block discontinuity within a frame may
be even aggravated when two adjacent blocks are predicted
from different locations or different reference frames.

Many compression artifact reduction methods have been
proposed in the literatures. These methods can be classified
into two categories, i.e., in-loop methods and post-processing
methods. The in-loop filtering methods process a compressed
frame within the coding loop, and the resulting frame can
be utilized as reference to provide prediction for the coding
of future frames. Examples of this category include the
deblocking filter in H.264/AVC [2], Sample Adaptive
Offset (SAO) [3] in HEVC, and the widely discussed adaptive
loop filter (ALF) [4], [5] in HEVC development. These
methods mainly take advantage of the local smoothness in
image and adjust the filtering strength according to coding
information, such as coding modes, quantization parame-
ters (QP) and rate-distortion cost [6], to achieve a good
reconstruction quality. These in-loop filtering methods require
a standard compliant decoder to do the same filtering operation
in order to synchronize with the encoder.

Besides in-loop filters, post-processing methods also pro-
duce promising results by reducing the compression artifacts
of a decoded frame outside of coding loop, without specific
requirement for being compatible with different video coding
standards. The post-processing methods can be easily plugged
into a video application system, right after the decoders, to
improve the quality of reconstructed videos. This actually
helps to reduce the required bandwidth for video transmission.
Many post-processing methods are also proposed both in spa-
tial domain and transform domain. Reeve and Lim [7] applied
a 3×3 Gaussian filter to the pixels around block boundaries to
smooth out the blocking artifacts. Ramamurthi and Gersho [8]
utilized nonlinear space-variant filters based on edge-oriented
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classifiers to smooth out blocking artifacts. Buades et al. [9]
proposed the non-local means (NLM) filter to predict each
pixel by a weighted average of its surrounding pixels, where
the weights are determined by the similarity of the cor-
responding image patches located at the source and target
coordinates. Takeda et al. [10] proposed a signal-dependent
steering kernel regression (SKR) framework for denoising.
However, the above methods only considered the smoothness
or the regularity in pixel intensities, which may smooth out the
true edges or texture details, and in some worse cases, further
deteriorating the quality of decoded videos. To avoid these
problems, Zhai et al. [11], [12] utilized the quantization table
in compressed stream and standard deviation of image blocks
to decide the filtering strength, and employ the quantization
intervals to constrain the filtered coefficients.

Besides the image prior of local smoothness in spatial
domain, the image prior of sparsity in transform domain
is also widely utilized in image processing and related
fields [13]–[24]. Wu et al. [13] proposed a deblocking
algorithm by transforming the decoded image into wavelet
domain and adaptively shrinking the wavelet coefficients
based on the difference of coefficients in neighboring blocks.
Zhai et al. [14] proposed an AC regularization method in
DCT domain to suppress the blocking artifacts in monotone
areas. Foi et al. [15] utilized a point wise shape adap-
tive discrete cosine transform (SA-DCT) to represent image
with sparse coefficients and reduce noise by thresholding
coefficients. In order to adapt to different image structures,
Elad and Aharon [16] proposed to learn an over-complete
dictionary via KSVD to get sparser image representation.
The famous denoising method, BM3D [17], explores the
image self-similarity to cluster non-local similar patches and
performing collaborative filtering in a 3D transform domain.
Zhang et al. [18], [19] estimate original coefficients by
combining non-local similar blocks and decoded coefficients
adaptively. Dong et al. improves the denoising performance
by utilizing PCA to clustered similar patches in CSR [20] and
LPG-PCA [21]. When there are not enough similar patches,
the performance of these methods may deteriorate since the
assumed image prior becomes no longer valid. Therefore, one
image prior model can be more efficient than others only under
certain conditions, and it may become unsuitable when the
conditions are no longer satisfied.

In this paper, we propose a new approach to reduce video
compression artifacts by adaptively fusing different coefficient
predictions based on the multiple hypotheses in transform
domain. This is achieved by estimating original DCT coeffi-
cients in all the transform blocks located at any pixel position.
For each transform block, three predictions are generated
and adaptively fused based on their reliabilities. The first
prediction is the coefficients directly decoded from compressed
video stream by inverse quantization, and its reliability is
determined by quantization steps. The second prediction is
acquired by representing each transform block with temporal
neighboring blocks along its motion trajectory based on a tem-
poral auto-regressive (TAR) model. Its reliability is estimated
from the distribution of local prediction errors of the TAR
model. The last predictor infers the original coefficients from

non-local similar blocks in the current frame and the
neighboring ones. For each block, K -nearest neighbors are
collected based on L2 norm of the difference of coefficients
in transform blocks, and they are weighted and averaged
to generate the prediction according to their similarity with
the target block. The reliability of the last prediction is
estimated according to the distribution of non-local transform-
block coefficients and the quantization noise. In addition, in
order to avoid smoothing out textures excessively, we take
quantization steps to constrain the estimated coefficients to the
same quantization interval as the original coefficients. Since
the approach is built on multi-hypothesis estimation based on
multiple image prior models, it can adapt to different video
content better than the existing methods and can produce
reconstructed video with better quality.

The remainder of this paper is organized as follows.
In Section II, we first review the basic scheme of video coding
and the characteristic of compression noise. Section III formu-
lates the proposed compression artifact reduction framework
with multiple hypotheses, and then describes every hypothesis
and its reliability in detail. Section IV gives the numerical
solution of the proposed method. Experimental results are
reported in Section V and Section VI concludes the paper.

II. ANALYSIS OF VIDEO COMPRESSION NOISE

In this section, we firstly briefly review a few concepts
and notations relevant to block-transform video coding for
the convenience of later discussion of this paper. Then some
distribution characteristics of compression noise are analyzed.

A. Basic Concepts and Notations

Suppose we have a video sequence {xt} and xt is the
t th frame with size of H × W , where xt (i, j) denotes a pixel
with vertical and horizontal coordinates i and j , respectively.
In block-transform video coding, the input video frame, xt , is
divided into a group of non-overlapped blocks (i.e., coding
unit, CU) with different sizes. These blocks, denoted as xB,
are coded in raster scanning order. The data in each block
is predicted from the previous coded frames via motion
estimation or the neighboring coded pixels in current frame
(e.g., left and upper pixels) along different directions. The
prediction residuals in each block are transformed, quantized
and entropy coded into the compressed bitstream [25], [26].
We use xB and XB to represent the data (i.e., pixel intensity)
and the transform coefficients of a block B, respectively. They
are related by the block-DCT (or Discrete Sine Transform,
DST) T , XB = T (xB), (inverse transform xB = T -1(XB)).
The decoded video frames are reconstructed by inverse trans-
formation and quantization. The reconstructed coefficients are,

YB(u, v) =
[

XB(u, v) − Xp
B(u, v)

Q(u, v)

]
Q(u, v) + Xp

B(u, v),

(1)

where [x] is the operation that rounds the variable x to
the nearest integer and Q(u, v) is the quantization step and
Xp
B(u, v) is the prediction of block B in transform domain.

For some special prediction modes, e.g., skip mode and direct
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Fig. 1. Characteristic of compression noise. (a) Compressed video frame by
HEVC, BlowingBubbles, (b) compression noise, (c) the correlation coefficients
of compression noise in 8 × 8 blocks of spatial domain, (d) the correlation
coefficients of compression noise in DCT domain.

mode [26], the reconstructed blocks directly copy the previous
reconstructed blocks, which not only retain the artifacts in
copied blocks but also causes the block discontinuities when
two neighboring blocks are predicted from blocks in different
frames or nonadjacent positions.

B. Video Compression Noise

Video compression noise is quite different from the some
common noise, e.g., Gaussian noise arising during image
acquisition or salt-and-pepper noise arising during image
transmission, which can be regarded as independent in spatial
domain. However, compression noise is correlated in spa-
tial domain due to the similar operations applied to each
block with approximate quantization steps. Fig.1(a) illustrates
an example of compression noise in sequence Blowing-
Bubbles compressed by HEVC intra coding with QP=42.
Fig.1(b) directly shows compression noises in spatial domain.
From the two figures, we can see that the compression
noises are obvious around block boundaries and image edges.
In Fig.1(c), we illustrate the absolute values of correlation
coefficients of compression noise in 8 × 8 blocks, which
also shows that compression noises are highly correlated in
spatial domain as observed in Fig.1(a) and Fig.1(b). Therefore,
compression noise is difficult to be reduced while preserving
image texture well in spatial domain with traditional
low-pass filtering methods, which usually assume noise being
uncorrelated or even independent.

Considering the decorrelation property of DCT, we trans-
form compression noise from spatial domain into frequency
domain with 8 × 8 DCT and calculate the correlation coeffi-
cients of transformed compression noise. Fig.1(d) shows the
absolute values of correlation coefficients among different
bands in DCT blocks. We can see that the correlation coeffi-
cients among different bands are very small, which shows that
compression noise is almost uncorrelated in transform domain.
Based on the good statistical characteristic of compression
noise in transform domain, we design the compression noise
reduction method in DCT domain and estimated original
coefficients independently for each band.

Fig. 2. Framework of the proposed compression artifact reduction method.

III. THE PROPOSED FRAMEWORK

A. Spatial-Temporal Multi-Hypothesis Prediction

In a standard decoder, coded image is reconstructed simply
by inversely transforming the quantized coefficients for each
coding block. To tackle the compression noises generated
from coarse quantization and motion compensation, in this
paper, we not only take the reconstructed coefficients from
the decoded image as an estimation of the original coefficients,
but also utilize the non-local similar transform blocks and the
temporal local smoothness to generate another two predictions
to restore high quality videos. The final estimated coefficients
are determined jointly by the three predictions according to
their reliabilities. Here, the reliability of prediction reflects
its statistical accuracy for the original coefficients. In order
to further reduce compression noises, overlapping blocks are
weighted and aggregated to generate high quality videos.
The framework of the proposed compression noise reduction
method is illustrated in Fig.2.

By introducing three distance metrics, D1, D2 and D3, the
proposed method is formulated as the following optimization
problem,

X̂t = argmin
Xt

∑
Bt∈�

D1

(
XBt , YBt

)

+
∑
Bt∈�

D2

(
XBt , {YBk }Bk∈M(Bt )

)

+
∑
Bt∈�

D3

(
XBt , {YBk }Bk∈N (Bt )

)
. (2)

Here, M(Bt) is a block set composed of the blocks along
motion trajectory of Bt , and N (Bt ) is another block set
composed of non-local similar blocks in current frame and
neighboring frames. � is the block set composed of all
the blocks in the t th frame. The first term, D1, directly
measures the distance between original coefficients and the
corresponding decoded coefficients reconstructed directly by
inverse transform and quantization, which can be regarded as
a data fidelity constraint. The second term, D2, constrains
the similarity between original coefficients and their pre-
dictions acquired from a temporal smooth model, temporal
auto-regressive (TAR) model used in this paper, which is
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Fig. 3. Compression noise distribution in 4 × 4 blocks in spatial domain
and DCT domain. (a) The histogram of compression noise in spatial domain,
(b) the histogram of compression noise in DCT domain, (c) the variance of
compression noise in spatial domain, (d) the variance of compression noise
in DCT domain.

regarded as a video temporal prior model. The third term, D3,
measures the conformance between original coefficients and
the weighted average of non-local similar blocks, which are
acquired from both current frame and neighboring frames.
Due to the variation of video content, only one image prior
mode is difficult to describe image contents with different sta-
tistical characteristics. The estimation from multiple hypothe-
ses may achieve better results when assigning higher weights
to the model, which describes target image structure more
accurate. Therefore, the three distance metrics are normalized
by their estimation reliabilities. In the following subsections,
each of the estimations and its corresponding reliability are
introduced in detail.

B. Data Fidelity Constraint

In the proposed method, we utilize the reconstructed coef-
ficients, YBt (u, v), in every N × N block directly derived
from the decoded image as data fidelity constraint, and call
these coefficients decoded prediction. Since the errors of
decoded prediction are mainly caused by quantization, we
take the variance of quantization noise to reflect its reliability.
Therefore, the first distance term is formulated as follows,

D1(XBt , YBt ) =
N∑

u,v=0

(XBt (u, v) − YBt (u, v))2

σ 2
QP(u, v)

, (3)

where σ 2
QP(u, v) is the variance of the compression noise for

band (u, v), and its reciprocal is utilized as the reliability of
decoded prediction.

In Eqn.(3), the distance is measured in DCT domain rather
than in spatial domain mainly based on two reasons. Firstly,
the compression noises in spatial domain are correlated and
dominant by DC components. This makes it difficult to esti-
mate the original coefficients in other bands, which represent
image structures, e.g., edges or textures. Fig.3(a) and Fig.3(c)
illustrate the histogram and variance of compression noise in

Fig. 4. Relationship between the variance of compression noise and QP,
(a) band (0, 0), (b) band (0, 1).

4 × 4 blocks of spatial domain. For different positions in
spatial domain, compression noise almost follows the same
distribution with approximate noise variances. However, in
transform domain, compression noise shows quite different
distributions in different bands, e.g., in Fig.3(c) and Fig.3(d).
The noise variance decreases from low frequency bands to
high frequency bands obviously. The good statistical charac-
teristic of compression noise in transform domain is useful to
distinguish reliability of decoded prediction.

In addition, since compression noise is mainly caused by
quantization of coefficients, its variance is easy to estimate
in transform domain. Based on statistical results, we take
exponential function, y = aebx , to fit the variance of compres-
sion noise with QP, which can be derived from compression
stream directly. Here, y represents the noise variance and
x represents QP. Fig. 4 shows two examples of the rela-
tionship between the variance of compression noise and QP
for bands (0, 0) and (0, 1), where the exponential functions
well fit variation between the variance of compression noise
and QP. Therefore, we can easily learned exponential function
parameters (a, b) for compression noise in all the bands of
transform-block.

C. Temporal Auto-Regressive Estimation

Auto-regressive model is widely used to represent image
local structures for images or videos. In [27] and [28], the
researchers employ the AR model to interpolate high resolu-
tion image. In [29], the authors utilize AR model to represent
the temporal relationship of neighboring video frames in frame
rate up conversion. However, these methods apply AR model
in pixel domain as follows.

yt =
P∑

i=0

ai xt−i + εt , (4)

where ai is the model parameter and εt is the model error.
These parameters can be derived via least square methods.
In our proposed method, we take the temporal auto-
regressive (TAR) model in transform domain to represent
the relationship of blocks in different frames along their
trajectories. Based on the statistical results in TABLE I, the
temporal correlations among temporal blocks dominate by
DC component, which makes only one AR model difficult
to well represent the content in blocks. Therefore, in this
paper, we take two TAR models to represent the relationship
of DC and AC components among temporal transform blocks,
respectively.
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TABLE I

TEMPORAL CORRELATION COEFFICIENTS (CC) IN 4 × 4 BLOCKS
ALONG TRAJECTORIES IN DIFFERENT DOMAIN

Fig. 5. TAR model parameter estimation from neighboring transform blocks
along trajectories.

For one block Bt in Fig.5, we first find its corresponding
blocks from forward and backward frames along its trajectory.
Then, the prediction generated by {YBk } with TAR in Eqn.(5)
is called temporal prediction, and formulated as,

YAR(Bt )(u, v) =
p∑

i=−p
i �=0

αi YBt+i (u, v) (5)

The model parameters, {αi }, are estimated from neighboring
transform blocks in a cube regions, i.e., blocks in the gray area
in Fig.5, by solving optimization problem in Eqn.(6).

α = argmin
α

‖ Ym
Bt

−
p∑

i=−p
i �=0

αi YBt+i ‖2
2 (6)

where m represents DC and AC respectively, and α is the
vector composed of {αi }. Ym

Bt
is a vector composed of DC/AC

component(s) of transform blocks in a neighborhood L(Bt ) of
t th frame.

Obviously, for different regions and times, videos show
different temporal correlations, which leads to the TAR pre-
dictions in Eqn.(5) with different reliabilities. In this paper, we
take variance of the local prediction errors to reflect prediction
reliability of TAR. The prediction errors for the local area,
L(Bt ), is,

eB′
t
= YB′

t
−

p∑
i=−p
i �=0

αi YB′
t+i

, B′
t ∈ L(Bt ) (7)

And its variance is calculated with the following equations,

μe(u, v) = 1

M

∑
B′

t ∈L(Bt )

eB′
t
(u, v) (8)

σ 2
e (u, v) = 1

M

∑
B′

t ∈L(Bt )

(
eB′

t
(u, v) − μe(u, v)

)2

, B′
t ∈ L(Bt )

(9)

where M = |Bt | represents the number of the blocks in the
neighborhood L(Bt ). Here, σ 2

e (u, v) is the variance of TAR
model errors in band (u, v) to predict block Bt . Due to the
TAR parameters derived based on decoded frames, which are
distorted by quantization noise, we add a scaled variance of
compressed noise to reflect the prediction reliability of TAR
model to predict the original coefficients.

σ 2
AR (u, v) = σ 2

e (u, v) + s1σ
2
QP(u, v) (10)

where s1 is a scale parameter.
Therefore, the second distance metric, D2, in Eqn.(2) is

defined as follows,

D2

(
XBt ,

{
YBk

})
=

N∑
u,v=0

(
XBt (u, v) − YAR(Bt )(u, v)

)2

σ 2
AR(Bt )

(u, v)
,

(11)

Here 1/σ 2
AR(Bt )

(u, v) is utilized as the temporal prediction
reliability of band (u, v) for block Bt .

D. Spatio-Temporal Non-Local Estimation

Considering the complexity of video contents, which are
difficult to represent only with the TAR model, e.g., occlusion
areas and fast motion objects, we further utilize non-local
similar blocks to estimate original coefficients in this paper.
For one block, Bt , we select K-nearest neighbors from current
frame and neighboring frames based on L2 norm of difference
of transform blocks, and take the weighted average of these
blocks as non-local prediction in Eqn.(12).

YN (Bt )(u, v) = ωi YBi (u, v), Bi ∈ N (Bt ) (12)

ωi = 1

Z
exp

(
− di

h

)
(13)

di =
N∑

u,v=0

(
YBi (u, v) − YBt (u, v)

)2

(14)

Here h is a smoothness parameter, Z is the normalization
factor and N (Bt ) is the set of non-local similar blocks.

Since the non-local prediction is based on image self-
similarity with the assumption that these similar neighbors
following the identical distribution, when the selected
K-nearest neighbors are more similar with the target one,
the non-local prediction is more accurate. On the contrary, if
the K-nearest neighbors are not similar with the target one, the
non-local prediction may generate large errors. The variance of
coefficients in K-nearest neighbors can reflect their similarity
to the target one, and further to describe the reliability of the
non-local prediction. The variance of non-local coefficients is
estimated based on the decoded frames as follows,

σ 2
NY (Bt )

(u, v) =
K∑

i=1

ωi

(
YBi (u, v) − YN (Bt )(u, v)

)2

(15)

Considering the existence of compression noise, we revise
the variance by adding the scaled variance of compression



ZHANG et al.: VIDEO COMPRESSION ARTIFACT REDUCTION 6053

noise to make it better reflect the reliability of non-local
prediction for the original coefficients.

σ 2
N (Bt )

(u, v) = σ 2
NY (Bt )

(u, v) + s2σ
2
QP(u, v) (16)

Based on the non-local prediction, the third distance metric,
D3, is defined as,

D3

(
XBt ,

{
YBk

})
=

N∑
u,v=0

(
XBt (u, v) − YN (Bt )(u, v)

)2

σ 2
N (Bt )

(u, v)

(17)

IV. OPTIMIZATION SOLUTION

In Eqn.(2), the optimization problem is related to all the pos-
sible blocks in an image, which are overlapped and dependent.
In order to solve the problems, we divide these overlapped
blocks in set � into several subsets �sub

i, j , where the blocks
are non-overlapped.

� =
{
Bm,n|0 ≤ m ≤ H − N, 0 ≤ n ≤ W − N

}
(18)

�sub
i, j =

{
Bi, j |(i mod N) ≡ 0, ( j mod N) ≡ 0

}
(19)

where Bm,n is a block in frame xt with its top-left pixel being
xt(m, n). There are a total of N × N subsets, where N is
the transform size (N = 8 in our experiments). Each subset
forms a complete coverage of target frame, xt , with non-
overlapped blocks except at image boundaries. Therefore, the
solution to the optimization problem in Eqn.(2) is derived by
solving N ×N sub-optimization problems to minimize Eqn.(2)
w.r.t the variable XBt in a block subset �sub

i, j while keeping
the estimated XBt in other block subsets temporarily constant
and irrelevant. By setting the deviation of Eqn.(2) to zero, the
solution for each band is derived as follows,

X̂Bt (u, v) = c1YBt (u, v)+ c2YAR(Bt )(u, v) + c3YN (Bt )(u, v)

(20)⎧⎪⎪⎨
⎪⎪⎩

η1 = σ 2
QP(u, v)σ 2

AR(Bt )
(u, v)

η2 = σ 2
QP(u, v)σ 2

N (Bt )
(u, v)

η3 = σ 2
AR(Bt )

(u, v)σ 2
N (Bt )

(u, v)

(21)

ci = ηi/

3∑
i=1

ηi (22)

Due to the fact that the blocks are overlapped, every pixel
has multiple estimations from different blocks. We aggregate
all these estimations adaptively to generate the final high qual-
ity videos. For every block, we take the weighted average of
its prediction variance, {σ 2

QP, σ 2
AR(Bt )

, σ 2
N (Bt )

}, to calculate its
weight used in overlapped block fusion, which is formulated
as follows,

ωBt
= 1∑N

u,v=0
∑3

i=1 ciσ
2
i (u, v)

(23)

where ci is calculated according to Eqn.(22) and σ 2
QP, σ 2

AR(Bt )

and σ 2
N (Bt )

are denoted as σ 2
1 , σ 2

2 and σ 2
3 , respectively.

Algorithm 1 The Proposed Algorithm

Therefore, different predictions are weighted and averaged to
generate reconstruction frame, x̂ ′.

x̂ ′(i, j) =
∑

B′∈Si, j
ωB′ x̂B′ (i, j)∑

B′∈Si, j
ωB′

(24)

Si, j = {B|x(i, j) ∈ B} (25)

where x̂B′ (i, j) is the estimated pixel value in block B′.
Considering the original transform coefficients being in[

YBt (u, v) − Q/2, YBt (u, v) + Q/2
]

(Q is the quantization
step), we further divided the reconstructed frames into blocks
the same as transform unit (TU) division in coding process,
which can be derived from the compression stream, and then
utilize a projection onto convex set operation, x ′ = PQ(x, y),
to constrain coefficients into quantization intervals. This oper-
ation in Eqn.(26) is denoted as quantization constraint (QC)
in this paper.

X̂′′
Bt

(u, v) =

⎧⎪⎪⎨
⎪⎪⎩

YBt (u, v)+ Q
2 , i f X̂′

Bt
(u, v)>YBt (u, v)+ Q

2

YBt (u, v)− Q
2 , i f X̂′

Bt
(u, v)<YBt (u, v)− Q

2

X̂′
Bt

(u, v), others

(26)

Therefore, based on the above discussion, our proposed
algorithm is described in Algorithm 1.

There are some significant differences between our proposed
method and that in [19]. First of all, we take advantage of
transform domain TAR model to describe the relationship
of video signals along their trajectories, and utilize different
parameters to model DC and AC components respectively,
which is different from traditional AR model in spatial domain.
Based on the following experimental results, the temporal
extension with TAR model is very efficient for video quality
improvement. Second, in non-local similar block estimation,
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we select the K -nearest neighbors instead of all the non-local
blocks to construct prediction, which excludes some outliers
directly. Third, in overlapped aggregation stage illustrated in
Eqn.(23) and Eqn.(24), we take the weighted average of every
pixel based on their prediction reliabilities instead of average
in [19]. In addition, we also modify the variance estimation
of non-local estimation with scaled compression noise, i.e.,
Eqn.(16), which makes it more reasonable theoretically.

V. EXPERIMENTAL RESULTS

In this paper, we evaluate the proposed method based
on HEVC compressed videos, and compare its performance
with state-of-the-art compression artifact reduction algo-
rithms and denoising algorithms, including in-loop filter of
HEVC (deblocking filter and SAO) [3], [30], KSVD [16],
BM3D [17], CSR [21], LPG-PCA [20], the non-local means
filter (NLM) [9], FoE method [31], and Zhang’s method [19].
The HEVC reference software is HM12.0. For the compared
methods, we try out many parameters with some test images
to find the reasonable ones under different compression ratios.

The parameters used in our proposed method are configured
as follows. First, we set the block size N = 8 and the number
of nearest neighbors K = 50, which are empirical values.
For the compression noise variance, it should be adaptive
according to QP and coding modes (intra coding and inter
coding). We first find σ 2

Q P (u, v) from HEVC compressed
video sequences, BassketballPass and BlowingBubbles, with
QP from 0 to 51 for intra coding and inter coding modes
respectively. Then, exponential functions are utilized to model
the relationship between σ 2

Q P(u, v) and QP just as that in
Fig.4. The parameter, p, is the temporal radius for TAR model,
which may cause higher computation complexity and larger
delay for real time applications. We set p = 2 in our exper-
iments for all the videos as a trade-off between complexity,
delay and performance. Fig.6 illustrates the performance vari-
ation with p, and the performance of our method can achieve
more improvements when using more temporal frames. Based
on the assumption that the compression noises in different
blocks are independent in transform domain, then the variance
of compression noise in weighted average blocks should be
divided by the number of blocks, i.e., s1 = 1/2 p (p is
the temporal radius in Eqn.(7)) and s2 = 1/K . Fortunately,
although they may not be the optimal values, the performance
of our method is not sensitive to the two parameters s1 and s2.
Finally, smoothness factor, h, in Eqn.(13) should be related
with compression noise as suggested in [9], which is difficult
to determine. In our method, we find its suitable values
according to the reconstruction performance for compressed
video sequences, BassketballPass and BlowingBubbles, with
different QPs and coding modes. In this paper, we take h = 5
and h = 30 when QP is equal to 27 for intra and inter
coding modes, respectively. Although these parameters are
derived according to the reconstruction performance of the
proposed method from a few compressed video sequences with
different QPs and coding modes, they are useful for most of
the compressed videos based on the experimental results.

We take some common test sequences with CIF and
WQVGA formats, which are widely used in video coding.

Fig. 6. The PSNR results of our method with different temporal radius p
for the 8th frame in sequences, CITY, compressed by HEVC (AI) at QP=27.

These sequences are first compressed by HEVC with two
coding configurations, i.e., all intra (AI) coding and low delay
P coding (LDP). Then different compression artifact reduction
methods are applied to the luminance component of these
compressed sequences without in-loop filter to restore high
quality videos. The average PSNR results of the reconstructed
10 frames in each sequence are listed in TABLE II and IV.
Herein, TABLE II show the results for compressed sequences
with AI configuration, and TABLE IV shows the results for
compressed sequences with LDP configuration. The quality
of HEVC reconstruction without in-loop filter is denoted
as HEVC-N, and the quality of HEVC reconstruction with
in-loop filter is denoted as HEVC-I. Based on the results, our
proposed scheme outperforms all of the other methods and
achieves up to 1.14 dB gain over HEVC decoder without
in-loop filters on average for AI configuration. Compared
with other artifact reduction methods, our proposed method
also achieves about 0.76∼1.19 dB on average at QP=27
with AI configuration. Especially, our method achieves up to
1.50 dB gains over HEVC-N for sequences Flowervase.
Compared with our previous work, Zhang’s method [19],
the proposed method also achieves significant gain especially
for AI coding configuration, which verifies the efficiency of
our proposed TAR model and weighted aggregation. Since
the PSNR quality metric is not well consistent with percep-
tual quality, we also take the widely used quality metric,
Structural Similarity Index Metric (SSIM) [33], to further
verify the performance of our proposed method. TABLE III
and V list the corresponding SSIM results for reconstructed
videos from compressed ones with AI and LDP configurations,
respectively. Based on SSIM results, our proposed method
also outperforms the comparison methods, and achieves about
0.005∼0.008 and 0.004∼0.001 SSIM improvement on average
for AI and LDP configurations, respectively. Fig.7 shows
the overall performance for all the sequences compressed
at QP=27. Fig.8 shows the performance of different recon-
struction methods for every frame in sequences Students and
Flowervase, and our method achieves significant improvement
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TABLE II

THE AVERAGE PSNR RESULTS WITH DIFFERENT METHODS, SEQUENCES COMPRESSED BY HEVC AI CODING AT QP=27 (UNIT: dB)

TABLE III

THE AVERAGE SSIM RESULTS WITH DIFFERENT METHODS, SEQUENCES COMPRESSED BY HEVC AI CODING AT QP=27

for every frame. Fig.9 shows the reconstruction quality of
different methods in a large QP range, which corresponds to
a large bitrate range. We can see that our proposed scheme
works well over a wide bitrate range and achieves better
quality than other methods in different QPs. Especially, for
middle and high bitrate, the performance of our proposed
method also achieves obvious improvement than that of others
due to the decoded coefficients with higher reliability and
quantization constraint, which prevent from smoothing image
textures excessively. For LDP configuration, the gain of our
method is not so significant as that for AI configuration. This is
because the high correlation of compression noise in temporal
domain makes the performance of the TAR model degraded.

Fig.10 and Fig.11 illustrate the subjective quality of the
reconstructed images which are compressed at QP=37. From
the subjective quality comparison, we can see that the com-
pression artifacts are obvious in the images reconstructed
by the standard HEVC decoder without in-loop filters. The
compared methods are able to reduce the compression artifacts
partially, but also make the image blurring around edges. Our
proposed method produces more pleasing visual quality than
that of other methods. It does not only reduce most of the
compression artifacts significantly, but also preserves image
edges very well.

The computation required by the proposed algorithm mainly
resides in the derivation process for temporal prediction and
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TABLE IV

THE AVERAGE PSNR RESULTS WITH DIFFERENT METHODS, SEQUENCES COMPRESSED BY HEVC LDP CODING AT QP=27 (UNIT: dB)

TABLE V

THE AVERAGE SSIM RESULTS WITH DIFFERENT METHODS, SEQUENCES COMPRESSED BY HEVC LDP CODING AT QP=27

non-local prediction. In the process to generate temporal
prediction, motion estimation and temporal auto-
regressive (TAR) model estimation are two main modules
that require intensive computation. In our implementation,
exhaustive full search is employed to find the best motion
vector for every N × N block in a R× R search range of every
reference frame. It needs about 2pN2 R2 subtractions and
additions, and log(2 pR2) comparisons for every block, where
2 p is the number of reference frames. In the process to solve
the TAR model parameters via least square optimization,
the computation cost mainly comes from three matrix
multiplication operations and one matrix inversion operation.
This needs about {(2 p)2 N2+2 pN2+C(2 p)3} multiplications,

where C is a constant. In the process to generate non-local
prediction, the computation mainly comes from the retrieval
of K -nearest neighbours. For every block, a naive brute force
search needs about 2 pN2 R2 subtractions and additions, and
Klog(2 pR2) comparisons with Heap’s algorithm to find the
K -nearest neighbours. These computations are also required
by other non-local based methods, such as NLM, BM3D,
CSR and LPG-PCA, etc. Since the amount of computation
for each block is a constant in our algorithm, the overall
complexity increases with the image dimension only linearly,
i.e., the order of overall complexity is O(k H W ), where
k is a constant, W and H are image width and height
respectively.
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Fig. 7. Average PSNR comparison for all the sequences compressed by
HEVC (AI) at QP=27.

Fig. 8. Performance of different reconstruction methods for every frame of
sequence compressed by HEVC (AI). (a) Students. (b) Flowervase.

At present, our algorithm is implemented with MATLAB
and C++ without parallel optimization. In order to give
readers an intuitive impression of complexity and efficiency
of the proposed method, we test the running time of dif-
ferent methods with MATLAB 2012, Intel (R) Core (TM)
i5-4570@3.20GHz, and 64bit Window 7 operating system.

Fig. 9. Average quality of the reconstructed video sequences with different
methods at different bitrates. (a) News. (b) Mobile.

Since our method need to solve different non-overlapped
block sets, its complexity is dependent on the number of
processed block sets. Fig.12 shows the relationship between
complexity and performance of our algorithm, where the
horizontal axis represents both running time and number of
processed block sets, and the vertical axis represents the
PSNR values of reconstructed frames in sequence, Students.
The computation complexity increases with the amount of
subsets of blocks in Eqn.(19), while the performance is
also improved further. There are about 0.2dB improvement
compared with non-overlapped process. In practice, users can
also adjust the number of processed block sets according their
requirement for computation complexity. In our experiments,
we reconstruct high quality videos by processing 16 block sets
as a trade-off between complexity and efficiency. Fig.13 shows
the average running time for these methods, most of which
are also implemented with MATLAB and C++, except
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Fig. 10. Reconstructed frames with different methods. The test video sequence, Stefan, is compressed by HEVC (AI) at QP=37. (a) HEVC-N. (b) HEVC-I.
(c) SKR. (d) NLM. (e) SKR. (f) SA-DCT. (g) BM3D. (h) FoE. (i) CSR. (j) LPG-PCA. (k) Zhang’s. (l) Proposed.

for SKR, FoE, CSR and LPG-PCA. The methods,
SA-DCT and BM3D, are very fast because they are
implemented with well optimized codes. Although our
method needs about 13s for a CIF/WQVAG frame on

average, it has the closed-form solution for every block as
formulated in Eqn.(20), which means that it could be further
speed up by implementing in parallel, e.g. using GPU, and
possible to satisfy the requirements of real-time applications.
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Fig. 11. Reconstructed frames with different methods. The test video sequence, BQSquare, is compressed by HEVC (AI) at QP=37. (a) HEVC-N.
(b) HEVC-I. (c) SKR. (d) NLM. (e) SKR. (f) SA-DCT. (g) BM3D. (h) FoE. (i) CSR. (j) LPG-PCA. (k) Zhang’s. (l) Proposed.

The proposed method takes advantage of temporal
information, which will cause a delay of p frames (in our
experiments p = 2) for real-time applications. Since most

videos are of frame rate higher than 30fps, the delay incurred
by our method is smaller than 0.06s, which is acceptable for
most video applications.
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Fig. 12. PSNR performance vs. number of processed block sets and running
time.

Fig. 13. Average running time of different methods for video sequences with
CIF and WQVGA formats.

VI. CONCLUSION

In this paper, we propose a video compression artifact
reduction method by adaptively fusing multiple hypotheses
based on their reliabilities. The temporal AR model and non-
local similar blocks are utilized in DCT domain to estimate
the original coefficients. Finally, overlapped estimations
are weighted and aggregated adaptively to generate high
quality videos. Experimental results demonstrate that our pro-
posed method can remarkably improve both the subjective and
the objective quality of the compressed video sequences. The
proposed method can be plugged into many video application
systems after decoder module. For example, it can be plugged
into video players to directly improve the video quality and
user experience, and it also may be used as a preprocessing
tool in transcoding application, which may help saving bits
for the transcoded video streaming due to noise reduction.
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