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ABSTRACT

The Random forest classifier comes to be the working horse
for visual recognition community. It predicts the class label
of an input data by aggregating the votes of multiple tree clas-
sifiers. However, the classification performances of these tree
classifiers are different. The random forest classifier ignores
the difference by simply assigning them equal weights in vot-
ing for the final classification decision. Also, the random for-
est classifier only casts votes from individual tree classifiers
without considering their compositions which would be more
accurate. In this paper, we propose to tackle the two points
by discovering weighted decision rules from the tree classi-
fiers’ output sets on training data. By treating the outputs of
the tree classifiers on each data as a digital itemset, we want
to find discriminative patterns (either containing the output
of a single tree classifier or a set of tree classifiers) from the
itemsets of training data. We employ an efficient data mining
algorithm, the Emerging Pattern (EP) Mining, to search such
discriminative patterns and weight them according to their
discriminative powers. A set of decision rules are built from
these discovered patterns and the final outputs of the Random
Forest are made using these decision rules. We call the pro-
posed classifier Emerging Pattern (EP) Random Forest. Ex-
perimental results on action categorization problems confirm
that the proposed method really improve the performance of
the traditional Random Forest classifier.

Index Terms— Random forest, Emerging pattern mining,
Action recognition

1. INTRODUCTION

In recent years, random forest classifier is hot in computer
vision community due to its excellent classification perfor-
mance and the efficiency in training and testing. It has been
widely used in object categorization [1], image labeling [2],
etc. The Random Forest classifier predicts the class label of
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an input data by aggregating the predictions made by a set of
tree classifiers. Each tree classifier divides the feature space
into a number of partitions and its output for an input data is
determined according to the partition the data lying in. As a
result, the classification accuracy of a tree classifier strongly
depends on the data class purity of its partitions (i.e. whether
each partition contains purely one class of data or is filled with
multiple classes of data). For example, for a three-class clas-
sification problem, the partition containing the portions of the
three classes of training data as class1: 60%, class2: 20%,
class3: 20% and the partition with the portions as class1:
40%, class2: 30%, class3: 30% should both assign the data
lies in them with the class label 1. However, the classification
accuracy of the two partitions are different. Random Forest
ignores this difference and weights them equally to vote for
the final classification decision. Moreover, it has been proved
that the compositions of weak classifiers perform better than
individual weak classifiers [3].

In this paper, we propose a new methodology to combine
the outputs of the tree classifiers to produce the final deci-
sion of the Random Forest. Instead of producing the clas-
sification decision through voting the individual tree classi-
fiers’ outputs, we learn a set of decision rules from the tree
classifiers’ outputs on the training data set. A decision rule
predicts the class label of an input data by checking the out-
put(s) of a single or a composition of tree classifier(s). The
decision rules are weighted according to their discriminative
power and the final decision of the Random Forest classifier
is made by aggregating the votes of these decision rules, and
these votes are weighted using the corresponding classifiers’
weight. To discover decision rules from the outputs of the tree
classifiers on the training data, we employ a efficient contrast
pattern mining method, the Emerging Pattern (EP) mining al-
gorithm. The resulted classifier is called EP Random Forest
since it combine the two approaches in a single framework.

The remaining of the paper is organized as follows. The
algorithm to learn the contextual Random Forest classifier is
presented in Section 2. Experimental results are shown in
Section 3 and we conclude in Section 4.



Fig. 1. Illustration of the method to assign index to each par-
tition of a randomized tree. Each partition is associated with
a leaf node of the randomized tree.

2. EMERGING PATTERN RANDOM FOREST

In this section, we introduce the basic concept and implemen-
tation details of the proposed EP Random Forest classifier.

2.1. Mining decision rules from the outputs of the weak
classifiers

A random forest classifier is a collection of a set of tree clas-
sifiers, denoted as H = {hj}Mj=1, where M is the number of
tree classifiers. For an input data, each tree classifier casts a
vote for the final decision of the random forest and the class
label of the input data is determined to be the one with the
maximum number of votes.

Each tree classifier divides the feature space into a number
of partitions. The output ρj of a tree classifier hj for an input
data x is assigned according to the partition x lies in. Thus,
by passing x to the random forest classifier, the index set of
the partitions it falling in is T (x) = {ρ1, ρ2, . . . , ρM}. The
method to index the partitions of tree classifiers are illustrated
in Fig. 1. Instead of making classification decision for x di-
rectly from individual weak classifiers’ outputs, we propose
to discover discriminative patterns from the index sets of all
the training data and make classification decision according
to these discriminative patterns. Here, a pattern is in the form
of a partition index set.

To mine discriminative patterns, we adopt the emerging
pattern mining algorithm proposed in [4]. Intuitively, EP min-
ing finds the patterns whose support ratios are significantly
different from one dataset to the other. We use the notation
in [4] to introduce the mathematical definition of EP mining.
Let I = {i1, i2, ..., iN} be a set of N items. A transaction
is a subset T of I . A data set D is a set of transactions. A
subset S is called a k-itemset if k = ‖S‖. If S ⊆ T , we say
the transaction T contains the itemset S. The support of S in
a data set D is defined as ρDS = countD(S)

‖D‖ , where countD(S)

is the number of transactions in D containing S. Given an

itemset S and a pair of data sets D1 and D2, the growth rate
of an itemset S from D1 to D2 is computed as

τD1→D2

S =


0, if ρD1

S = 0and ρD2

S = 0

∞, if ρD1

S = 0and ρD2

S 6= 0

ρD2

S /ρD1

S , otherwise

A pattern is said to be a η-emerging pattern from D1 to D2 if
τD1→D2

S > η.
According to the terminology of EP mining, we call the

index set associated with each training data the transaction of
the data. Then, a set of emerging patterns are mined for each
data class. To mine the EPs for data class y, we use the trans-
actions of class y’s training data as the positive dataset, and
the transactions of the rest training data are treated as the neg-
ative dataset. Then the EP set of data class y are obtained by
perform EP mining from the negative dataset to the positive
one, denoted as Py = {pyj}

ny

j=1. We specify two threshold
parameters for mining the EPs: the basic support ratio in the
positive class and the growth rate. By defining the basic sup-
port ratio of the positive class, we maintain the descriptivity
of the mined discriminative patterns for the positive data; and
through the basic growth rate parameter, the discriminative
power of the mined patterns is guaranteed.

Each EP pyj can be used to form a decision rule γyj for
data class y

γyj : pyj → y (1)

and according to [5], its confidence score S(γyj) for making
the decision can be computed as

S(γyj) = ρpyj
∗

τpyj

τpyj + 1
(2)

ρpyj
and τpyj

refer to the support ratio and growth rate of
emerging pattern pyj .

2.2. Classification by the mined decision rules

Based on the decision rule set of each data class, we deter-
mine the class label of an input data by aggregating the confi-
dence score of the decision rules whose corresponding emerg-
ing pattern are contained in data’s itemset.

Given an input data x, for each class y, we compute the
score of x belonging to y by aggregating the confidence score
of the decision rules whose corresponding emerging pattern
are contained in x’s itemset T (x). The aggregation is per-
formed in the same way as the emerging pattern based classi-
fication method Classification by Aggregating Emerging Pat-
terns (CAEP) proposed by Dong et al. [5]. It classifies x by

y∗ = arg max
y
S(x,Γy) (3)

where Γy is the decision rule set of y and S(x,Γy) is the
confidence score of x’s itemset T (x) for class y

S(x,Γy) =
1

Zy

∑
pyj⊆T (x)
γyj∈Γy

S(γyj) (4)



where pyj is the emerging pattern corresponding to decision
rule γyj (refer to Eq .1). Because different class has different
number of emerging patterns, the score of an input data for
each class is normalized by a normalization term to account
for this difference. The normalization term Zy of class y is
computed as the median value of the scores of all the training
data belongs to class y computed as in Eq. 3.

3. EXPERIMENTS

We conduct experiments on video action categorization to
evaluate the performance of the proposed algorithm. The task
of action categorization is to classify video sequences based
on the action types they contain. The KTH human motion
dataset [6] are employed in the experiments.

In the experiments, an action video is represented by
the set of spatiotemporal interest points (STIPs) it contains.
STIP is a type of sparse local feature which characterizes
the local changes of appearance and motion in videos. For
each video, we detect STIPs in eight different scales using
the interest point detector proposed in [7], and extract a 3D
spatial-temporal (ST) cuboid centered at each interest point.
A cuboid’s size is three times the scale of its corresponding
STIP. Then we normalize all the cuboids into the same size,
compute the gradients in x, y, t dimensions at each pixel, and
build a gradient feature vector for each cuboid. The principle
component analysis (PCA) is used to reduce the dimension
of each feature vector to 100. Using these feature vectors, the
detected STIPs are clustered into a predefined number (e.g.
120) of clusters (visual words) by the K-means algorithm.

Using the STIP based action video representation, the fea-
ture vector of an action video is the histogram counting the
visual word occurrence frequency in the video. We utilize a
cross-validation scheme to test the performance of the pro-
posed approach. Specifically, each time, we use videos of
randomly selected 20 actors as training data and the rest as
testing videos. The basic support ratio and growth rate for
mining the emerging patterns is 0.6 and 5 respectively. The
Random Forest classifier with the same set of weak classifiers
as our method is adapted as the baseline method to compare
with the proposed approach.

3.1. Experiments on KTH Dataset

The KTH human motion dataset [6] contains twenty-five peo-
ple performing six types of actions, namely, “boxing”, “wav-
ing”, “handclapping”, “jogging”, “running” and “walking”.
For each people, the actions were captured under four dif-
ferent environments with variations in scales, illuminations
and camera motions, but all the videos were shot with simple
backgrounds. Each type of actions contains about 96 ∼ 99
available sequences.

Twenty rounds of cross-validation are performed on this
dataset. The average recognition accuracy of the proposed

Fig. 2. Left: the confusion matrix illustrating the classifica-
tion accuracy of the proposed method on KTH human action
dataset. Right: comparison of the results of the proposed ap-
proach and the baseline method.

Method Classifier Accuracy (%)
Dollár, et al.[7] SVM 81.2
Wong, et al.[10] NNC 80.1
Niebles et al.[11] pLSA 81.5
Nowozin et al.[8] lpBoost 84.7
Schuldt et al.[6] SVM 71.7
Liu et al.[9] SVM 91.3
Ours EP Random Forest 86.5

Table 1. The performance of the state-of-the-art approaches
categorizing actions using STIP features.

method and the comparison with the baseline classification
method are shown in Fig. 2. It can be observed that the pro-
posed method outperforms the baseline method in most of the
action classes. The results are obtained by using 120 clusters
of visual words and 60 weak classifiers.

We also list other state-of-the-art approaches which also
categorize actions based on STIP features in Tab. 1. Some
of the results are not directly comparable with the proposed
method due to the differences in experiment settings and the
used features. For example, the method in [8] use the sequen-
tial distribution of the STIPs in a video as the basic features
for the classifier, and Liu’s method [9] uses an improved STIP
clustering method and incorporates relative spatial-temporal
distribution information of the interest points in forming the
video features. These additional information (modifications)
are not used in our method. Nevertheless, we still achieve a
comparable result.

3.1.1. Weak classifiers’ importance variations for different
data classes

We check the variations of the importance of the tree classi-
fiers in performing prediction for different action classes us-
ing our method. The importance W (hi)y of a weak classifier
hi for an action class y is computed as the frequency of hi’s



Fig. 3. Illustration of the weak classifiers’ importance varia-
tions when making prediction for different data classes. The
importance of a weak classifier for a data class is computed
according to the frequency of its partitions participating in
forming the decision rules for this class.

outputs participating in forming the decision rules of action
class y

W (hi)y =
‖{γyj |hi ∈ γyj , j = 1, ..., ny}‖

ny
(5)

where ny is the decision rule number of action class y, and
{γyj}

ny

j=1 is class y’s decision rule set. The importance dis-
tributions of the weak classifiers for different action classes
are plotted in Fig. 3. As can be seen, the weak classifiers’ im-
portance distributions vary drastically between different ac-
tion classes, which suggests that the discriminative power of
a weak classifier for different data classes are really different.
The proposed EP Random Forest classifier accounts for this
discriminative power variations by mining decision rules for
each data class individually.

4. CONCLUSION

In this paper, we proposed a new methodology to integrate
the tree classifiers’ classification votes to make the final de-
cision for the random forest classifier. The method discovers
decision rules by checking the statistical properties exhibited
in the outputs of the tree classifiers on training data. The re-
sult classifier is named EP Random Forest since the decision
rules are discovered using the emerging pattern (EP) mining

algorithm. Comparing with the traditional Random Forest
classifier, two improvements are made: first, instead of make
classification prediction by each tree classifier independently,
we discover the tree classifiers composition to form decision
rules; second, we account for the weak classifiers’ discrim-
inative power variations for different data classes by mining
decision rules for each data class individually.
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