
Contents lists available at ScienceDirect

Computer Vision and Image Understanding

journal homepage: www.elsevier.com/locate/cviu

PA-Search: Predicting units adaptive motion search for surveillance video
coding

Yonghong Tian⁎,a, Jiaying Yanb, Siwei Donga, Tiejun Huanga

aNational Engineering Laboratory for Video Technology, School of Electronics Engineering and Computer Sciences, Peking University, Rm. 2608, Sci. Bldg. 2, Peking
University, 5 Yiheyuan Rd., Beijing 100871, China
b School of Electronic and Computer Engineering, Shenzhen Graduate School, Peking University, Rm. 2604, Sci. Bldg. 2, Peking University, 5 Yiheyuan Rd., Beijing
100871, China

A R T I C L E I N F O

Keywords:
Surveillance video coding
Motion search
Predicting unit classification
PA-Search
HEVC

MSC:
41A05
41A10
65D05
65D17

A B S T R A C T

The large scale of surveillance video and the high requirement of compression in time requires a low complexity
and high efficiency compression algorithm to compress surveillance video. Motion search is a very time-con-
suming procedure in video coding. In the recent video coding standards such as HEVC/H.265, this procedure
becomes more flexible by utilizing the division structure of Coding Units (CUs) and Predicting Units (PUs).
However, for surveillance videos that are often captured by fixed-view cameras, the used motion search strategy
still does not make full use of their intrinsic characteristics. To address this problem, we propose a PU-Adaptive
Search (PA-Search) method for surveillance videos. In PA-Search, a background model is firstly constructed for a
super group of pictures and then a background-foreground representation (BFR) is derived for each frame in this
group. Utilizing the BFR, PUs are classified into four categories, namely, Full Background PUs (FBPUs),
Background PUs (BPUs), Foreground PUs (FPUs), and hybrid foreground-background PUs (XPUs). In PA-Search,
zero motion vector (zero-MV) and non-sub-pixel search are assigned to FBPUs and an error-tolerant search
algorithm is also performed to reduce the influence of PU mis-classifications; while for non-FBPUs, adaptive
search range is calculated according to the PU category and its size, and a BFR-based early-termination algo-
rithm is also used to reduce the search complexity. Moreover, an early terminate partition algorithm is adopted
by Full Background CUs to further reduce the encoding time. Experimental results demonstrate the advantage of
the proposed PA-Search on HEVC reference software HM-16.0. PA-Search can reduce the number of search
points and the total encoding time averagely by 66.90% and 46.69% over TZ Search, while maintaining the
coding efficiency.

1. Introduction

With the wide application of the surveillance cameras in social
safety, city traffic management, and home care, great challenges are
brought to the high efficient video compression. For example, about 5
million surveillance cameras were deployed in UK in 2012. If these
cameras were all High-Definition (HD) ones and the generic video co-
decs such as H.264/AVC were adopted to compress the videos, hun-
dreds of Terabytes data would be produced per minute or thousands of
Petabytes per month (Zhang et al., 2014b). Thus to realize real-time
security monitoring as well as long-time archiving, there is a great
demand for high-efficiency and low-complexity surveillance video
coding methods. Based on these requirements for surveillance video
coding, this paper focuses on the research on the low-complexity sur-
veillance video coding.

In video coding, motion estimation (ME) often plays an important
role in reducing the temporal redundancy. To achieve better estimation
performance, motion search is thus conducted for each to-be-encoded
block in the current frame (called the current block hereafter) to find the
best-matched block in the reference frames so as to provide precise
prediction. Nevertheless, motion search is also a very time-consuming
procedure. In the HEVC reference software HM (Bossen et al., 2012),
motion search takes 7.4% of the total processing time. The proportion is
even much larger in hardware encoders. For example, it has been re-
ported that one third of processor cycles and 90% of the total memory
access are dedicated to motion search and estimation in the hardware
codec (Lou et al., 2010). Therefore, fast motion search methods are
highly desired to the effective implementation of video encoders.

Typically, for each current block, the computational complexity of
motion search can attribute to two factors: the number of the candidate

https://doi.org/10.1016/j.cviu.2018.02.009
Received 16 May 2017; Received in revised form 19 December 2017; Accepted 27 February 2018

⁎ Corresponding author.
E-mail address: yhtian@pku.edu.cn (Y. Tian).

Computer Vision and Image Understanding 170 (2018) 14–27

Available online 10 March 2018
1077-3142/ © 2018 Elsevier Inc. All rights reserved.

T

http://www.sciencedirect.com/science/journal/10773142
https://www.elsevier.com/locate/cviu
https://doi.org/10.1016/j.cviu.2018.02.009
https://doi.org/10.1016/j.cviu.2018.02.009
mailto:yhtian@pku.edu.cn
https://doi.org/10.1016/j.cviu.2018.02.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cviu.2018.02.009&domain=pdf

blocks (called search points hereafter), and the measure of block
matching. Obviously, the full/exhaustive search over the entire search
window in the reference frames gives the optimal match; however, this
is impractical due to time complexity. That is, search should be per-
formed only at a few selected locations within the search range guided
by some fast search strategies. During the search process, there are
many choices for block matching measure, such as mean-square-error
(MSE) and sum of absolute difference (SAD). With the same size of
blocks, SAD is more appealing to video coding for its simplicity and
performance (Dhara et al., 2010). Thus given a fixed procedure of the
calculation of SAD between two blocks, how to effectively reduce the
search points is crucial to speed up the motion search process.

In general, three fast search approaches have been investigated in
the literature. The first one is to design the fast search pattern that
utilizes some selected points to find out the matched block, such as
octagonal search (Dhara et al., 2010), diamond search (Zhu and
Ma, 2000), UMHexagon Search (Chen et al., 2003), and TZ Search
(JVT of ISO/IEC MPEG, ITU-T VCEG, 2010). An underlying assumption is that
the error surface is unimodal, i.e., the block distortion error decreases
monotonically as the search point moves closer to the global minimum
(Dhara et al., 2010). Instead of utilizing a pre-defined search pattern
that has to be isotropic with respect to the current point, the second
approach is to adopt the adaptive search range (ASR) strategy that
adjusts the search ranges so as to dynamically reduce the search points.
For example, the ASR of the current block was determined by the
motion vector (MV) of its father macroblock in Chen et al. (2007), by
the variance of a motion vector predictor (MVP) set in Chung-
Cheng Lou and Kuo (2010); Lou et al. (2010), or by prediction error and
local statistics of the neighboring blocks in Paul et al. (2008). Different
from the above two approaches, the third one aims to early terminate
the motion search. By utilizing some thresholds based on statistical
values regarding the current block and previously-coded blocks to de-
termine whether to early terminate the search, some methods (e.g.,
Sarwer and Wu, 2009; Yang et al., 2002; Yang et al., 2005) could ef-
fectively reduce the computation of ME.

As a new-generation video coding standard, HEVC/H.265
(Bross et al. (2012) leads the video coding performance to a new
milestone. Instead of utilizing fixed-size coding blocks (and macro-
blocks), HEVC introduces a quad-tree division structure to represent
variable-size coding blocks (called coding units, CUs). In quad-tree
coding, the largest CU size is often set to 64× 64 (i.e., the CU depth is
0) while the smallest is 8× 8 (i.e., the CU depth is 3). Each CU can be
then divided into prediction units (PUs) of either intra-picture or inter-
picture prediction type which can vary in size from 64×64 to 4×4.
This quad-tree CU division structure makes the motion search more
precise, more flexible and also more time-consuming. By balancing the
search complexity and rate-distortion performance, TZ Search is
adopted by HEVC. In Pan et al. (2013), an Early-Termination TZ Search
algorithm (ETTZ) was proposed by searching a region around a MVP to
test whether the MVP is precise enough to skip the search, consequently
saving search points remarkably. In Shen et al. (2014), a fast inter-mode
decision algorithm for HEVC by jointly using the inter-level correlation
of quadtree structure and the spatiotemporal correlation was proposed
to reduce the computational comlexity.

Despite demonstrating the promising speed-up performance, these
fast motion search methods, however, are not specifically designed for
surveillance videos that are often captured by fixed-view cameras. In
the surveillance scene, there always exist some static background re-
gions. Thus the motion search can be significantly simplified in these
regions. Following this idea, (Ma et al., 2015; Wang and Dong, 2014;
Xing et al., 2013; Zhang et al., 2013) proposed some methods to reduce
the complexity of the encoder. Our previous work Zhao et al. (2014)
proposed a background-foreground-division-based search (BFDS)
method. The experimental results show that compared with TZ Search,
BFDS could significantly reduce the number of search points on sur-
veillance videos. However, when the foreground regions are relatively

large, BFDS does not perform well since the complex search strategy in
these regions will increase the total search complexity. Besides, BFDS
doesn’t make full use of background-foreground information in CU di-
vision and sub-pixel motion estimation, so its time saving is relatively
small.

To address this problem, we propose a PU-Adaptive Search (PA-
Search) method for surveillance videos. In PA-Search, a background
model is firstly constructed for a super-group of pictures (SGOP) where
each SGOP often consists of several GOPs and then a background-
foreground representation (BFR) is derived for each frame in this group.
Utilizing the BFR, PUs are classified into four categories, namely, Full
Background PUs (FBPUs), Background PUs (BPUs), Foreground PUs
(FPUs) and hybrid foreground-background PUs (XPUs). After that, zero-
MV and non-sub-pixel search are assigned to FBPUs; while for non-
FBPUs, adaptive search range is calculated according to the PU category
and its size. That is, a larger search range is adopted for XPUs and a
smaller one for BPUs, while that for FPUs is between the two categories.
In the same category, PUs with smaller size always have a larger search
range. Meanwhile, an error-tolerant search algorithm is also performed
to reduce the influence of PU mis-classifications (i.e., wrongly classi-
fying a BPU, FPU or XPU into ‘FBPU’), and a BFR-based early-termi-
nation search algorithm is used to determine whether to early terminate
the search procedure on a non-FBPU. Moreover, an early terminate
partition strategy is adopted by Full Background CUs to further reduce
encoding time. As such, PA-Search can significantly reduce both the
search points and the total encoding time while maintaining the coding
efficiency.

Extensive experiments were conducted on sixteen surveillance vi-
deos from the PKU-SVD-A dataset. The experiments were performed on
the recent version of HEVC reference software, HM-16.0, where the
original TZ Search was selected as the anchor. Moreover, BFDS
(Zhao et al., 2014) and Ma et al. (2015) were also used for comparison.
The experimental results show that PA-Search can significantly reduce
search points and total encoding time on HM-16.0 (averagely 66.90%
and 46.69% over TZ Search) while maintaining the coding efficiency
with only 0.70% BD-rate loss negligibly.

The rest of this paper is organized as follows: Section 2 describes the
related work. Section 3 analyzes the possibility of adopting different
search strategies for foreground and background regions. The proposed
PA-Search is presented in Section 4. Experimental results are shown in
Section 5. Finally, this paper is concluded in Section 6.

2. Related work

As shown in Fig. 1, for each block (e.g., a macroblock, a CU or a PU),
the motion search task is to find a block that matches best in the re-
ference frames (which are already encoded), where the best match
means that the block can minimize an error measure (e.g., SAD) within
the search range. Formally, a block with size of Sb is denoted as

=b I x y S(, ,),b where (x, y) is the left-top position of the block in the
current frame I. Let + +F x u y v S(, ,)b be the best-matched block in the
reference frame F where the MV is defined as (u, v), then the motion
search process can be expressed as a rate-distortion (RD) motion

Fig. 1. Schematic diagram of motion search.

Y. Tian et al. Computer Vision and Image Understanding 170 (2018) 14–27

15

estimation problem (Girod, 1994) as (1).

=
⎡

⎣

⎢
⎢

− + +
+

⎤

⎦

⎥
⎥≤

←

J b
I x y S

F x u y v S
λ u v

() min
((, ,)

(, ,))
(,)

λ
W φ

u v W
u v φ x y

b

b
(,)

(,)
(,) (,)

D

R (1)

whereW is the search range that can be expressed as the size of a search
window around the location (x, y), φ(x, y) is a search pattern that
calculates the candidate blocks (a.k.a. search points) with respect to the
current block b following some heuristic strategies (it can also be re-
presented as an order set of the candidate blocks), (·)D denotes the
block matching measure while u v(,)R denotes the MV bitrate, and λ is
the Lagrangian multiplier. Obviously, the computation involved in one
search operation and the number of search points are two major factors
to determine the search complexity. The cost of each search operation
can be made smaller by either accelerating the SAD calculation (Lin and
Tai, 1997) or by performing subsampling or partial Lagrangian com-
putation techniques (Kossentini et al., 1997). However, it is impractical
to conduct the full search over the entire search window in the re-
ference frames. That is, search should be performed only at a few se-
lected locations within the search range guided by some fast search
strategy. Thus, the search optimization can be casted as a constrained
problem that is to find an optimal search range and search pattern
W φ(*, *)b b for a block =b I x y S(, ,)b that can meet the RD cost criterion
using the minimal search complexity, which can be expressed as (2).

=

≤ ⊆ ≤

W φ argmin W φ

s t W W φ J b T

(*, *) (,)

. . , Φ, and ()

b b
W φ

b

Max λ
W φ

RD

,
(,)

L

(2)

where W φ(,)bL denotes the search complexity given a search range W
and a search pattern φ for the block b, WMax denotes the maximal
search range, Φ is the pre-defined set of search patterns, while TRD is a
pre-defined threshold for motion-compensated coding efficiency.

Along with this optimization problem, various fast search methods
have been developed to reduce the search complexity, which can be
roughly divided into three categories: 1) To dynamically calculate the
adaptive search range (ASR) W; 2) To design or select the fast search
pattern φ*⊆Φ; and 3) To early terminate the search procedure. Thus
this section will present a brief review of their related works, and then
discuss how to optimize the CU mode decision in HEVC and how to
conduct effective motion search on surveillance videos.

2.1. Adaptive search range prediction

Traditionally, the search range can be pre-defined or selected from a
list of candidates or the MVs previously obtained for adjacent blocks
(Paul et al., 2008). However, the pre-defined candidates are difficult to
reflect the large variations in actual motion. Instead, several ASR pre-
diction methods have been investigated recently. For example, Chen
et al. proposed a macroblock-level ASR algorithm in Chen et al. (2007),
where the search range of the current block was determined by the MV
of its father macroblock; while in Paul et al. (2008), the search range
was determined by prediction error and local statistics of the neigh-
boring blocks.

Specifically, Chung-Cheng Lou and Kuo (2010); Lou et al. (2010)
proposed an ASR prediction algorithm by utilizing the variance of a
motion vector predictor (MVP) set. In this algorithm, a joint MVP set Nst

is defined for each block, including a spatial MVP set
=N mv mv mv mv{ , , , }s a b c d that contains four upper-left neighboring

MVs and a temporal one =N mv{t 0 ∼mv8} that contains nine MVs of
the previous frame. Then the best MVP, MVPbst, is calculated as the
mean value of Nst and can be used as the center of motion search. The
variance, σst, which reflects the consistency of the MVP set, can be used
to calculate the search range. That is, a larger variance implies lower
accuracy of the MVP set and, thus, a larger search range. However, the
MVPbst calculated by the MVs of the previously-encoded blocks cannot

work well if the current block contains a fast-moving object. As a result,
this algorithm cannot achieve the best performance.

2.2. Fast search patterns

In order to only utilize some selected points to find out the matched
block, various fast search patterns were proposed in recent years, such
as octagonal search (Dhara et al., 2010), diamond search (Zhu and
Ma, 2000), UMHexagon Search (Chen et al., 2003), and TZ Search
(JVT of ISO/IEC MPEG, ITU-T VCEG, 2010). Among them, TZ Search is adapted
by HEVC reference software HM, while UMHexagon Search is used in
H.264 reference software JM.

Basically, TZ Search utilizes the multiple MVPs decision to locate an
initial search point and hybrid block-matching search to find the best-
matched block (JVT of ISO/IEC MPEG, ITU-T VCEG, 2010). As shown in
Fig. 2(a), after the starting MVP point is determined, TZ Search com-
bines multiple diamond/square search and raster search patterns to
cope with both large and small motions. For example, multiple dia-
mond searches with different stride lengths ranging from 1 through 64
in multiples of 2 (i.e., Step 1, initial grid search) are firstly conducted to
handle the small motion; if the motion is large (i.e., the MV with
minimum SAD obtained from the previous step is larger than a pre-
defined ‘iRaster’ value), the raster search (i.e., Step 2, zonal search) can
be used to find the minimum block distortion (MBD) in the whole
search range. Finally, a fine refinement step (i.e., Step 3) is used to
iteratively refine the MVs obtained from the previous step, by using
either raster refinement or star refinement (square/diamond patterns).

In contrast to the full search, TZ Search can alleviate the

Fig. 2. (a) Search patterns in TZ Search (JVT of ISO/IEC MPEG, ITU-T VCEG, 2010); (b) The
modified TZ search pattern for foreground regions in BFDS (Zhao et al., 2014).

Y. Tian et al. Computer Vision and Image Understanding 170 (2018) 14–27

16

computational burden without degrading video quality remarkably.
However, it still does not make full use of the motion characteristics of
surveillance videos. For example, TZ Search will search at least 22
points even if the actual MVD is zero (e.g., for static regions in the
scene).

2.3. Early termination of motion search

Instead of utilizing fast search patterns and adaptive search range,
the other way is to terminate the search process and the corresponding
ME calculation early. By considering that a signicant portion of blocks
have a zero-MV after ME, the zero-motion-termination method was
proposed in Yang et al. (2002) by comparing the SAD with a threshold
at the Zero-MV point to determine whether to early terminate the
search procedure. Following this idea, an early-termination method was
proposed in Yang et al. (2005) by estimating two thresholds for dif-
ferent block sizes. Similarly, an early termination algorithm was pro-
posed in Sarwer and Wu (2009), with an adaptive threshold based on
the statistical characteristics of the RD cost regarding the current block
and previously-processed blocks.

To accelerate the TZ Search in HEVC, an Early-Termination TZ
Search algorithm (ETTZ) was proposed in Pan et al. (2013). Following
the observation that the minimum distortion point (MDP) is often
central-biased and the median predictor (MP) is more likely to be the
best MV, ETTZ tries to early terminate the TZ Search process: A dia-
mond search with radius of 1 (for small CUs) or a hexagon search with
radius of 2 (for large CUs) is firstly conducted with the MP as the center
so as to test whether it is the MDP; If so, the TZ Search procedure is
skipped and this MP is set as the MVP, otherwise the search is con-
ducted with the MDP as the start point. Their experiments showed that
it could significantly save the encoding time, with the ignorable de-
gradation in the RD performance. However, it is easy to fall in the local
optimum, because although the MP is the MDP among the neighboring
diamond and hexagon points, it is probably not the MDP among the
points that the original TZ Search can reach.

2.4. Optimization of CU Mode Decision

HEVC introduces a quad-tree division structure to represent vari-
able-size CUs, which makes the motion search more precise and more
flexible. Meanwhile, it is more time-consuming because before coding a
2N×2N region, it needs to determine whether this region should be
encoded as a whole 2N×2N CU or recursively encoded in the form of
four separate parts. This process requires recursively calculating the RD
cost for each kind of partitions. In order to reduce the number of can-
didate CU blocks and correspondingly save the encoding time, various
optimization algorithms of CU mode decision were proposed in recent
years. The main idea is to skip mode decision and decide the CU size
early. Hu et al. (2015) proposed a fast mode decision algorithm based
on the Neyman-Pearson rule, which consists of early-skipped mode
decision and fast CU size decision. Xiong et al. (2015) proposed a fast
inter CU decision based on the latent SAD estimation. In
Xiong et al. (2014a), a fast CU decision based on Markov random field
(MRF) was proposed for HEVC inter frames. A pyramid motion diver-
gence (PMD) based method was proposed in Xiong et al. (2014b) to
early skip the specific inter CUs in HEVC. Different from the above
approaches, Zupancic et al. (2016) used the adaptive coding unit vis-
iting order to optimize inter-prediction for video coding.

These optimization algorithms can effectively reduce the encoding
time. However, they could be further optimized for surveillance videos.
For example, Zupancic et al. (2016) will perform four CU depth levels
with CU sizes ranging from 8×8 to 64× 64 even if the final CU mode
is determined as a whole of 64×64 (e.g., for static regions in the
scene).

2.5. Motion search for surveillance video coding

It is obvious that surveillance video has some special characteristics
that can be exploited by fast motion search methods. For example, the
search procedure can be significantly simplified in static background
regions, without suffering the risk of degrading the RD performance.
Towards this end, Wang and Dong (2014) utilize the luma component
of different images to segment out moving objects from background,
and then selects a proper CU size for different areas. It can simplify the
motion search of static background regions but will lose a lot coding
efficiency due to inaccurate foreground-background separation. In
Ma et al. (2015), a searching speed-up procedure was proposed for
surveillance video coding by removing the rarely used prediction modes
and reference frames for different CUs and PUs adaptively using both
the characteristics of the surveillance video and the information of the
corresponding CUs or PUs in spatial-temporal direction.

If a background picture is modeled from a set of training frames, we
can utilize it to divide the current frame into background and fore-
ground regions more precisely, and then design the fast motion search
strategy for each kind of regions. Following this idea, our previous work
(Zhao et al., 2014) proposed a background-foreground-division-based
search (BFDS) method. In BFDS, the MVs of the background regions are
set to zero to reduce a lot of search points; while for foreground regions,
a modified TZ Search is adopted to achieve better coding efficiency (as
shown in Fig. 2(b)): Firstly, the iterative multiple diamond searches
(i.e., steps 1 and 2) are directly conducted to deal with both large and
small motions while the raster search is forbidden; Then a compulsive
11× 11 rectangular search (i.e., Step 3) is performed to refine the re-
sult obtained in the previous steps so as to make the ME in foreground
regions more precise.

BFDS can significantly reduce the search complexity on surveillance
videos. However, when the foreground regions are relatively large, the
compulsory rectangular search will cause a sharp increase of search
points. Moreover, there is no error-resistance mechanism for the
background-foreground division. That is, if a foreground region were
wrongly classified as the background one, the coding efficiency would
become much worse since the zero-MV was not suitable for these mo-
tion regions. Besides, the total encoding time was not significantly re-
duced. To address these problems, this paper proposes a PU-Adaptive
Search method (PA-search) to direct the motion search for surveillance
videos in a more robust way.

3. Problem analysis

In this study, a basic assumption is that surveillance video has some
special characteristics that can be exploited by fast motion search
methods and CU partition. To verify this assumption, we conducted an
experimental analysis on the distribution of MVs, MVDs, search stra-
tegies (i.e., using integer-pixel search only, or using both integer- and
sub-pixel search) and the CU partitions for different kinds of regions in
several typical surveillance sequences. This experiment was conducted
on HEVC HM-16.0 and the test conditions are tabulated in Table 4.
Eight surveillance videos from the PKU-SVD-A dataset (Gao et al.,
2014) were used in the experiment. Among them, six are with the re-
solution of 720×576 (SD), and two with the resolution of
1600×1200 (HD). As shown in Fig. 3, they can be divided into dif-
ferent categories according to the size and moving speed of the objects.
The up-left video “Office-SD” shows the working scenario inside an
office with large objects and slow moving speed. The up-right three
ones are about traffic surveillance, in which the vehicles are large and
fast-moving. The major foreground objects in the down-left two videos
are pedestrains. The down-right two ones are captured from long dis-
tance. For simplicity, here we performed the analysis on CUs rather
than the finer-grained PUs (the elementary unit for prediction in HEVC)
that may have the non-squared structure by asymmetric spitting.

Y. Tian et al. Computer Vision and Image Understanding 170 (2018) 14–27

17

3.1. Whether to use different search ranges for background and foreground
regions or not?

Fig. 4(a) shows the statistics on the MV distribution of background
and foreground regions. We can see that for background regions, more
than 90% of MVs are equal to zero. This fact reveals that the back-
ground regions are totally static, and even it is unnecessary to perform
motion search in these regions. We also notice that there are about 10%
background regions whose MVs are equal to or larger than one. This is
mainly due to the inaccurate background modeling and dynamic
background (e.g., shadow, varying illumination, waving branches and
leaves). Thus instead of simply setting zero-MVs to all background re-
gions, we should introduce an error-tolerant search strategy for them.
On the other hand, the MVs of foreground regions are central-biased
distributed and over 20% of them are equal to or larger than 5 pixels.
This means that the motion in foreground regions is relatively large and
thus the corresponding search range should be larger.

3.2. What is the influence of both the foreground/background proportion in
a CU and the CU size on the search strategy?

For a given CU, the final output of TZ Search is the difference be-
tween the predicted MV and the MVP (i.e., the start point), called
motion vector difference (MVD). Thus we can analyze the MVD dis-
tribution for different kinds of CUs so as to examine the influence of
both the foreground/background proportion in a CU and the CU size on
the search strategy. The results are shown in Fig. 4 (b) and (c), where
the foreground/background proportion in a CU is set into four bins, i.e.,

0∼ 1/8, 1/8∼ 1/4, 1/4∼ 3/4, 3/4∼ 1, and the CU size is set from
64×64 to 8×8. Similar to the PU categories presented in the next
section, CUs in the four bins can roughly correspond to Full Background
CUs (FBCUs), Background CUs (BCUs), hybrid foreground-background
CUs (XCUs) and Foreground CUs (FCUs), respectively.

From the two figures, we can see that the smaller the foreground
proportion is and the larger the CU size is, the more MVDs distribute
around zero. In Fig. 4(b), the MVDs of FBCUs tend to be zero since there
are no foreground in these CUs; less MVDs equal to zero for BCUs whose
foreground proportion is slightly larger than FBCUs; while for XCUs
which mostly occur in the boundaries of foreground regions and for
FCUs in which the majority of pixels are foreground, their MVDs are
distributed more diversely and thus the search range should be larger.
Similarly, Fig. 4(c) shows that when the size of a CU is large, it is more
likely to output the zero MVD. This is because if there exists motion in a
large CU, it will be divided into several smaller ones by the encoder so
as to reduce the total RD cost of the whole region.

3.3. Whether sub-pixel search should be performed for all kinds of CUs or
not?

From Table 1, we can see that sub-pixel search is more time-con-
suming than integer-pixel search. Basically, sub-pixel search can get a
higher ME accuracy and consequently leads to better coding perfor-
mance. However, it also brings higher computational complexity (to-
tally 17 sub-pixels would be searched in HM, including 8 1/2-precision
pixels and 8 1/4-precision pixels). Thus in order to reduce the total
encoding time, it is necessary to optimize the sub-pixel search.

Fig. 4(d) shows the distribution of two kinds of search strategies for
CUs with different foreground/background proportions, which is ob-
tained by checking whether the final MV is equal to the result of in-
teger- or sub-pixel motion search. We can see that for FBCUs, more than
90% of the final MVs are Integer-MVs. That is, 90% sub-pixel search in
FBCUs is unnecessary. While for other CUs, we should perform both
integer- or sub-pixel motion search. In this case, sub-pixel motion
search should be optimized mainly by accelerating the pixel inter-
polation (Lin et al., 2011) since it takes about 61% time in the whole
process, which is beyond the scope of this study.

3.4. Which kind of CUs should be further partitioned?

In HEVC, each CU can be further split into one, two or four PUs to
specify the prediction information. So the depth of CU partition will
exponentially affect the search complexity (Bross et al., 2012). Thus it is
necessary to analyze the distribution of CUs that should be further
partitioned. Table 2 shows the results. We can see that only 2.91/2.24/
3.56% of the potential FBCUs with N= 32/16/8 will be further parti-
tioned. However, early terminating the partition of these FBCUs will
cause large distortion.

We thus further analyze the relationship between two temporally
consecutive FBCUs in terms of CU partition. To do so, we define S-FBCU
as a special FBCU whose temporally-previous CU is also a FBCU with
the same size and has not been further partitioned. Also from Table 2,
we can see that only 0.20/0.28/0.43% of S-FBCUs will be further

Fig. 3. Eight surveillance videos used in the analysis experiment.

Fig. 4. (a) The MV distribution of background and foreground regions; (b) and (c) the
MVD distribution based on foreground proportion and CU size; (d) the search strategy
distribution based on foreground proportion.

Table 1
The time propotion of different encoding operations with different CU sizes.

CU Size Integer-pixel search Sub-pixel searcha RD mode decision

64×64 19.85% 48.33% 31.82%
32×32 20.45% 49.69% 29.86%
16×16 21.88% 47.53% 30.59%
8×8 23.02% 38.69% 38.29%

a In the whole process, pixel interpolation takes about 61% time while really sub-pixel
search takes about 39% time.

Y. Tian et al. Computer Vision and Image Understanding 170 (2018) 14–27

18

partitioned. That is, we can early terminate the CU partition for S-
FBCUs, without the risk of remarkably degrading the coding efficiency.

3.5. Summary

In summary, the foreground/background proportion in a block, the
block size and the depth of CU partition are three key factors that affect
the search complexity in surveillance video coding. These analysis re-
sults motivate us to design adaptive search strategies for different block
categories. Specifically, the zero-MV, non-sub-pixel search and CU
partition early-termination should be applied to the background blocks,
while different ASR prediction and early-termination search strategies
should be adopted to the other blocks so as to reduce the search com-
plexity while guaranteeing that the best MVD could fall into the search
range.

4. The proposed method

4.1. Framework

The above analysis results reveal that, in order to optimize motion
search for surveillance videos, the block category (or its foreground/
background proportion), its size, and the depth of CU partition should
be taken into account. Following this, the search optimization problem
for surveillance videos can be expressed as (3).

=

≤ ⊆

≤ ≤

≤
∈

≤
W φ d argmin W φ d

s t f C S W f C

f C S D S J b T

(*, *, *) (, ,)

. . (,) , () Φ,

(,) (), and ()

b b b

d f C S

b

W b b Max b

D b b b λ
W φ

RD

(,)

Φ
(,)

D b b
φ f Cb

W fW Cb Sb
Φ (),

(,),
L

(3)

where =b I x y S(, ,)b denotes the current block, Cb and Sb are its block
category and size, fW(Cb, Sb) and fD(Cb, Sb) denote the potential search
range (for both integer- and sub-pixel search) and the CU partition
depth that are determined by Cb and Sb, D(Sb) is the maximal CU par-
tition depth that is related to the CU size (e.g., D(64)=3 for a 64×64
CU), fΦ(Cb) is the set of category-related search patterns, while the
meanings of J ,λ

W φ(,) and ,bL WMax and φ are the same with those in (1)
and (2). Differently from the search optimization problem in (2), here
three functions fW(Cb, Sb), fΦ(Cb) and fΨ(Cb) are introduced to determine
the potential search range, the available search patterns and CU par-
tition patterns for each block b. This can remarkably reduce the number
of search points since different search ranges and patterns can be de-
signed for different categories of blocks.

One implementation of this formulation is to automatically classify
PUs and CUs into several categories and then design different search
strategies (including search ranges and patterns) for PU categories and
different partition strategies for CU categories. PA-Search is exactly
following this idea. As shown in Fig. 5, we can see that the method
works as follows:

1) A background picture is firstly trained for a SGOP and then a
background-foreground representation (BFR) is derived for each

current frame in this group using the background picture.
2) Utilizing the BFR, CUs in the current frame can be divided into four

categories, {FBCUs, BCUs, XCUs, FCUs}. Similarly, PUs can also be
classified into {FBPUs, BPUs, FPUs, XPUs}.

3) For FBCUs, check whether they are S-FBCUs, and if so, the partition
early-termination algorithm is applied.

4) For FBPUs, zero-MV is directly assigned. To reduce the influence of
PU mis-classification caused by inaccurate background modeling, an
error-tolerant search strategy is also applied if the SAD distortion of
a FBPU is larger than an adaptive threshold when using the zero-
MV. After that, skip the sub-pixel search for those FBPUs that are
still assigned with the zero-Integer-MVs.

5) For non-FBPUs, the ASR is calculated according to the PU category
and size, and then the default search pattern (e.g., TZ Search in HM)
can be used to obtain the final MVs. A BFR-based early termination
algorithm is used to determine whether to early terminate the
search.

By adopting different search strategies for FBPUs and non-FBPUs, and
taking the partition early-termination strategy for S-FBCUs, PA-Search
can significantly reduce the search complexity while remaining the
coding efficiency. Note that PA-Search is independent on the coding
platforms, and thus can be easily implemented on either HEVC
(Bross et al., 2012) or AVS2 (Dong et al., 2015).

4.2. CU and PU classification

In PA-Search, the first issue is how to classify each CU and PU into
different categories according to its background-foreground distribu-
tion. This issue can boil down to three sub-problems: 1) how to perform
background modeling in an online way; 2) how to derive the BFR for
the current frame; and 3) how to classify its CUs and PUs using the BFR.

4.2.1. Online background modeling and updating
Generally speaking, the background modeling method in surveil-

lance video coding should enable high coding efficiency, yet with low
computational complexity. Towards this end, the fixed Gaussian
Mixture Model (fGMM) (Chen et al., 2016) was utilized in PA-Search,
which can achieve good coding performance and be easily implemented
in hardware video codecs.

Similar to Zhang et al. (2014a), the background picture is generated
SGOP by SGOP. That is, the first GOP in each SGOPi is utilized as
TrainSeti to train the background picture for this SGOP, while the
pictures in TrainSeti can be coded by using the background picture in

−SGOPi 1. In this way, each SGOP can utilize the background picture to
encode its frames without delay. Note that the bit cost for coding the
background pictures has been counted into the final bitrate results in
our experiments.

4.2.2. BFR generation
Given the background picture, each current frame can be categor-

ized into background and foreground regions. Then a background-

Table 2
The propotion of the further-partitioned FBCUs, BCUs, XCUs and FCUs

CU Size FBCU BCU XCU FCU

All S-FBCUa

64×64 2.91% 0.20% 14.11% 63.63% 88.89%
32×32 2.24% 0.28% 10.02% 50.43% 34.27%
16×16 3.56% 0.43% 6.21% 24.02% 29.82%

a Here S-FBCU denotes a special FBCU whose temporally-previous CU is also a FBCU
with the same size and has not been further partitioned.

Fig. 5. The framework of PA-Search.

Y. Tian et al. Computer Vision and Image Understanding 170 (2018) 14–27

19

foreground representation (BFR) can be derived using 4×4 blocks (i.e.,
the smallest size of a block in HEVC) as the basic units (shortly as BUs).

Intuitively, for each 4× 4 BU, if more than half pixels are fore-
ground ones, it is a foreground block (denoted by F), otherwise a
background one (denoted by B). This can be done by thresholding the
SAD between the current BU u and its corresponding BU u′ in the
background picture, which can be expressed as (4).

∑ ∑=
⎧
⎨
⎩

− ′ <
= =C

u u Th, if ;

, otherwise.
u i j i j i j1

4

1

4
, ,B

F (4)

where ui, j and ′ui j, represent the pixel values at (i, j) in u and u′ re-
spectively, and Th denotes the pre-defined threshold. In our experi-
ments, Th is empirically set to 80 (Zhang et al., 2014b).

4.2.3. BFR-based CU/PU Classification
With the BFR, it is easy to classify PUs or CUs. Here take PU clas-

sification as the example. Let Rb denote the proportion of foreground
BUs in the current PU b, then PU classification can be done according to
how many 4× 4 BUs in it belong to foreground units, which can be
expressed as (5).

=
⎧

⎨
⎪

⎩
⎪

≤ <
≤ <
≤ <

C

R δ
δ R δ
δ R δ

FBPU, if 0 ;
BPU, if ;
XPU, if ;
FPU, otherwise.

b

b

b

b

1

1 2

2 3

(5)

where δ1, δ2, δ3 are practically set to 1/8, 1/4 and 3/4. Different from
two categories used in Zhao et al. (2014), here four PU categories are
used, consequently enabling more delicate search strategies. Similar
classification strategy can be applied to CUs.

4.3. S-FBCU partition early-termination

CU partition will severely affect the search complexity.
Nevertheless, according to the analysis results in Section 3.4, we can
only early terminate the CU partition for S-FBCUs. Here a S-FBCU meet
two conditions: 1) both the current CU and its temporally-previous CU
are FBCUs with the same size; 2) this temporally-previous FBCU has not
been further partitioned. Experiments in Section 5.2 will validate the
effectiveness of this S-FBCU partition early-termination strategy.

4.4. Error-tolerant search for FBPUs

For a FBPU whose foreground proportion Rb is less than 1/8, motion
search can be directly skipped (namely, zero-MV is assigned). If FBPUs
account for a large proportion in a surveillance video, a significant
reduction in search complexity can be achieved. The reason is as fol-
lows: For TZ Search, even it is enhanced with some early termination
strategy, there are at least 2 points for each PU whose RD costs need to
be calculated so as to determine the starting MVP, and 20 points that
need to be searched so as to find the best-matched block. While for the
Zero-MV search pattern for FBPUs, the only calculation is paid for the
Zero-MV distortion between the current FBPU and its zero-MV point.
That is, for each FBPU, the Zero-MV search pattern can reduce 21
search points.

However, due to the inaccurate background modeling, some BPUs
(or even XPUs, FPUs) may be wrongly classified into FBPUs. In this
case, the Zero-MV search pattern cannot obtain the desirable RD per-
formance. To reduce the influence of such mis-classifications, we pro-
pose an error-tolerant search algorithm for FBPUs. Its basic idea is to
utilize the Zero-MV distortion to adaptively determine whether the
Zero-MV search pattern can be applied to the current FBPU. To do so, a
threshold Tzero needs to be learned and updated online. Let Db denote
the Zero-MV distortion for the current FBPU b, then this algorithm can
be expressed as (6).

= ⎧
⎨⎩

≤
W φ

D Z T
W φ

(*, *)
(0, NONE), if / ;
(*, *) , otherwise.b b

b b zero

BPU (6)

where Zb is the block area of b (e.g., =Z Sb b
2 for a squared PU with the

size of Sb× Sb), (0, NONE) denotes the Zero-MV search pattern (i.e.,
W *b =0 and φ *b =“NONE”), and (W*, φ*)BPU represents the search
strategy for BPUs. That is to say, if Db/Zb is no more than Tzero, the zero-
MV is assigned to b; otherwise, the search strategy for BPUs, which will
be described in the next subsection, can be used for b. Note that here
W φ(*, *)b b = (0, NONE) means that sub-pixel search will be directly
skipped. This is supported by the analysis results shown in Section 3.3
(i.e., over 90% of sub-pixel search in FBCUs is unnecessary).

Here the key issue is how to initialize and online update the
threshold Tzero. In this study, Tzero is initialized using the statistical
measures (i.e., mean and variance) of FBPUs’ Zero-MV distortions in the
TrainSet1, where TrainSet1 is the first training set in background
modeling. Let Di denote the Zero-MV distortion of the ith FBPU in
TrainSet1, then μ and σ2 can be expressed as (7) and (8), respectively.

∑=
=

μ
N

D
Z

1
i

N i

i1 (7)

∑ ⎜ ⎟=
−

⎛
⎝

− ⎞
⎠=

σ
N

D
Z

μ1
1 i

N i

i

2
1

2

(8)

where N is the number of FBPUs. Here D
Z

i
i
denotes the average distortion

of each pixel in the ith FBPU. By assuming that the mis-classification
results are mostly the outliners in the statistical distribution of FBPUs’
Zero-MV distortions, thus we can initialize Tzero by following the “three
sigma rule” which can be expressed as (9).

= +T μ σ3 .zero (9)

Moreover, Tzero can be online updated by incrementally updating μ
and σ. For the current FBPU, if its average distortion is larger than the
current Tzero, it should be a non-FBPU; otherwise, its average distortion
should be used to update μ and σ. Let D

Z
b
b
denote the average distortion

for the current FBPU b, then μ and σ can be updated as (10) and (11).

=
+

+
≈ − +μ

Nμ

N
ρ μ ρ D

Z1
(1)new

D
Z b

b

b
b

(10)

⎜ ⎟

≈
− + −

≈ − + ⎛
⎝

− ⎞
⎠

()
σ

N σ μ

N

ρ σ ρ D
Z

μ

(1)

(1)

new

D
Z new

b

b
new

2
2

2

2
2

b
b

(11)

where ρ is a parameter to control the decay rate (ρ=0.02 in our ex-
periments). Thus given the initial Tzero, the error-tolerant search algo-
rithm for FBPUs can be summarized in Algorithm 1.

4.5. Adaptive search for non-FBPUs

Typically, different categories of non-FBPUs also exhibit different
motion characteristics. Thus to reduce the search complexity, an
adaptive search range (ASR) selection strategy is proposed for non-
FBPUs. Moreover, a BFR-based early-termination algorithm is also
proposed to determine whether to early terminate the search process
for non-FBPUs or not.

4.5.1. ASR selection
According to the analysis results shown in Fig. 4 (b) and (c), we can

design an ASR selection strategy for non-FBPUs, as (12).

Y. Tian et al. Computer Vision and Image Understanding 170 (2018) 14–27

20

In
pu

t:
T

he
cu

rr
en

tF
B

PU
b
=

I(
x,

y,
S

b
);

th
e

in
iti

al
th

re
sh

ol
d

T
ze

ro
.

O
ut

pu
t:

b’
s

M
V

(u
,v

);
R

D
co

st
J∗ λ

(b
);

an
d

th
e

up
da

te
d

T
ze

ro
.

pr
oc

ed
ur

e
1.

C
al

cu
la

te
th

e
Z

er
o-

M
V

di
st

or
tio

n.
D

b
=
D(

I(
x,

y,
S

b
)−

F
(x
,y
,S

b
))

w
he

re
D(
·)d

en
ot

es
th

e
bl

oc
k

m
at

ch
in

g
m

ea
su

re
,a

nd
F

de
no

te
s

th
e

re
fe

re
nc

e
fr

am
e.

2.
D

et
er

m
in

e
th

e
se

ar
ch

ra
ng

e
an

d
pa

tte
rn

.
C

al
cu

la
te

Z
b

by
S

b
,w

he
re

Z
b
=

S
2 b

fo
r

a
sq

ua
re

d
PU

;
if

D
b
/Z

b
≤

T
ze

ro
th

en
(u
,v

)
=

(0
,0

);
J∗ λ

(b
)
=

D
b
;

Sk
ip

su
b-

pi
xe

ls
ea

rc
h

fo
r

b;
3.

U
pd

at
e

th
e

th
re

sh
ol

d.
U

pd
at

e
μ

an
d
σ

us
in

g
(1

0)
an

d
(1

1)
;

U
pd

at
e

T
ze

ro
us

in
g

(9
)

;
el

se
T

re
at

b
as

a
B

PU
an

d
pe

rf
or

m
th

e
co

rr
es

po
nd

in
g

m
ot

io
n

se
ar

ch
st

ra
te

gy
(W
∗ ,
ϕ
∗)

B
PU

,r
et

ur
n

M
V

(u
,v

)
an

d
th

e
op

tim
al

R
D

co
st

J∗ λ
(b

).
en

d
if

en
d

pr
oc

ed
ur

e

A
lg
or

it
hm

1.
Th

e
er
ro
r-
to
le
ra
nt

se
ar
ch

al
go

ri
th
m

fo
r
FB

PU
s

Y. Tian et al. Computer Vision and Image Understanding 170 (2018) 14–27

21

=

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

= ≥
= <
= ≥

= <
= ≥

= <

W

C Z β
W C Z β
W C Z β

W
C Z β
C Z β

W C Z β

*

1, if BPU and ;
/4, if BPU and ;
/2, if FPU and ;

,
if (FPU and) or

(XPU and);
1.5 , if XPU and .

b

b b

b b

b b

b b

b b

b b

STD

STD

STD

STD (12)

where WSTD denotes the standard search range when applying the de-
fault fast search pattern to this PU, and β is a threshold (β=1024 in our
experiments). Note that, if WSTD=64 (i.e., the standard search window
is 64×64), WSTD/4 should be 16.

Basically, two principles are considered when designing this ASR se-
lection strategy: First, for PUs with the same size, W *b will gradually in-
crease from BPUs, to FPUs, and then to XPUs. For BPUs whose foreground
proportion is slightly larger than FBPUs, less MVDs are equal to zero and
thus small non-zero search ranges should be used. For FPUs, we can di-
rectly apply the default fast search pattern and thus follow the standard
search range WSTD. While XPUs, which mostly occur in objects’ bound-
aries, should be assigned to a larger search range thanWSTD. This is mainly
due to the fact that different motion properties of background and fore-
ground pixels in an XPU will cause a large prediction distortion.

Second, the PU size should also be taken into account. Within the
same PU category, the larger the PU size is, the smaller its search range
should be used. This is because if there exists motion in a large PU, it
would be divided into smaller ones by the encoder so as to reduce the
total RD cost of the whole region. Here a large PU means that its area Zb
should be no smaller than 1024 (i.e., a 32× 32 PU). Following this,
W *b =1 for a large BPU while WSTD/4 for a small BPU; similarly, W *b is
set to WSTD/2 for a large FPU, WSTD for a small FPU or a large XPU,
while 1.5WSTD for a small XPU.

This ASR selection strategy can also be summarized in Table 3. Note
that, if a search range is assigned to a non-FBPU (e.g., WSTD/2 for a
32×32 FPU), it indicates that the default fast search pattern (e.g., TZ
Search) should be conducted within the corresponding search window.
By using this strategy, the encoder is able to have more chances to find
the best MVs while avoiding some unnecessary search points.

4.5.2. Search early-termination for non-FBPUs
To further reduce the search complexity for non-FBPUs, an early-

termination strategy can be implemented by comparing the BFRs of the
current frame and the reference frame. Fig. 6 shows an example. Here
the reference frame may be either a recent/hierarchical reference frame
or a background picture. For a non-FBPU, the search is initially con-
ducted within a rectangular search window in the reference frame.
However, for some candidate blocks in the window, we actually need
not to perform all search steps (namely, the search can be skipped). The
reason is as follows: Usually, a non-FBPU is used to represent a part of
an object in the current frame. It is certain that this object should also
occur as foreground in one of the reference frames. In this case, the
best-matched block should have the same or at least highly similar FBR
as the current non-FBPU. In other words, if the FBR of a candidate block
is dissimilar with that of the current non-FBPU, the search can be
skipped directly.

The remaining problem is how to compare the FBRs between the

current non-FBPU and each candidate block in the reference frames
through a low-complexity way. To quickly filter out the candidate
blocks whose BFRs are not similar to that of the current non-FBPU, PA-
Search utilizes a simple point-based block filtering strategy. As Fig. 7
shows, four corner points in both the candidate block and the current
non-FBPU are selected. Let =b I x y S(, ,)b denote the current non-FBPU,
Sbx and Sby are its width and depth, then the four points in b can be
expressed as + +I x i y j(,) where (i, j)∈ {(0, 0), (0, Sbx), (Sby, 0), (Sby,
Sbx)}. Then the BFR values of the four point pairs are compared to
evaluate whether they are matched. If the number of the matched
points is larger than a pre-defined threshold Tmatch, this candidate block
should be searched; otherwise, it could be skipped. In Fig. 7, for ex-
ample, the numbers of the matched points in (b) and (c) are 3 and 2
respectively. If Tmatch is set as 2, the candidate block in (b) will be
searched while that in (c) will be skipped. In this study, Tmatch will be
set experimentally.

By summarizing the ASR selection strategy and the BFR-based early-
termination algorithm, the motion search procedure for non-FBPUs can
be discribed in Algorithm 2.

4.6. Complexity analysis

This subsection will briefly describe the complexity analysis of PA-

Table 3
The search range selection strategy for non-FBPUs

PU size

PU category 64× 64∼ 32×32 (Zb≥ 1024) 32× 32∼ 4×4
(Zb < 1024)

BPU 1 WSTD/4
FPU WSTD/2 WSTD

XPU WSTD 1.5WSTD

Table 4
Test conditions.

Max. CU size 64× 64
Max. CU depth 4
Asymmetric PU (AMP) partitions enabled
Quantization Parameter (QP) 22, 27, 32, 37
Search Range [-64, 64]
Configuration file encoderlowdelayPmain.cfg
Number of tested frames 2000

Fig. 6. The BFRs of the current frame and its reference frame. For the current PU, only the
foreground regions within the search window will be searched.

Fig. 7. An example of the point-based block filtering strategy. The regions in light color
are foreground while those in deep color are background. If the corresponding points
have the same BFR value, they are called as two matched points; then if the number of the
matched points between two blocks is larger than a threshold Tmatch (here Tmatch=2), they
are called as matched blocks.

Y. Tian et al. Computer Vision and Image Understanding 170 (2018) 14–27

22

In
pu

t:
T

he
cu

rr
en

t
FB

PU
b
=

I(
x,

y,
S

b
)

w
ith

its
ca

te
go

ry
C

b
;

th
e

B
FR

of
th

e
cu

rr
en

t
fr

am
e

I,
Υ

(I
);

th
e

re
fe

re
nc

e
fr

am
es
{F

k}K 1
w

ith
th

ei
r

co
rr

es
po

nd
in

g
B

FR
s
{Υ

(F
k)
};t

he
th

re
sh

ol
d

T
m

at
ch

.
O

ut
pu

t:
b’

s
M

V
(u
,v

),
R

D
co

st
J∗ λ

(b
).

pr
oc

ed
ur

e
1.

C
al

cu
la

te
th

e
se

ar
ch

ra
ng

e
W
∗ b

fo
r

b
us

in
g

(1
2)

;
J∗ λ

(b
)=

0;
fo

r
∀F

k,
k
=

1,
···
,K

do
2.

C
al

cu
la

te
th

e
se

ar
ch

or
de

r
se

tϕ
(x
,y

)
w

ith
in

W
∗ b
,

us
in

g
T

Z
Se

ar
ch

;
fo

r
∀c
∈ϕ

(x
,y

)
w

he
re

c
=

F
k(

s,
t,

S
b
)

do
3.

M
at

ch
be

tw
ee

n
B

FR
s

of
b

an
d

c;
M

(b
,c

)=
0;

fo
r

(i
,

j)
∈{(

0,
0)
,(

0,
S

bx
),

(S
by
,0

),
(S

by
,S

bx
)}

do
if
Υ

(I
,x
+

i,
y
+

j)
=
Υ

(F
k,

s
+

i,
t+

j)
th

en
M

(b
,c

)
=

M
(b
,c

)+
1;

en
d

if
en

d
fo

r
4.

Se
ar

ch
w

ith
B

FR
-b

as
ed

ea
rl

y-
te

rm
in

at
io

n
if

M
(b
,c

)
≤

T
m

at
ch

th
en

Sk
ip

th
e

se
ar

ch
on

c;
co

nt
in

ue
;

el
se

C
al

cu
la

te
J(W
,ϕ

)
λ

(b
)

us
in

g
(1

);

J∗ λ
(b

)
←

m
in
{J∗ λ

(b
),

J(W
,ϕ

)
λ

(b
)};

en
d

if
en

d
fo

r
en

d
fo

r
5.

R
et

ur
n

th
e

M
V

(u
,v

)
co

rr
es

po
nd

in
g

to
J∗ λ

(b
).

en
d

pr
oc

ed
ur

e

A
lg
or

it
hm

2.
Th

e
m
ot
io
n
se
ar
ch

pr
oc

ed
ur
e
fo
r
no

n-
FB

PU
s

Y. Tian et al. Computer Vision and Image Understanding 170 (2018) 14–27

23

Search over the anchor (i.e., TZ Search). More details can be found in
the Appendix.

Statistically, two factors will significantly affect the actual search
complexity if TZ Search or PA-Search is used on a given surveillance
video V, i.e., the foreground proportion Rv and the motion factor mv.
Here Rv is calculated by counting the proportion of foreground regions
in the BFRs of that video, thereby reflecting the scene complexity; while
mv is defined as the proportion of PUs in the video whose MVs are
greater than the pre-defined value r, thus reflecting the average motion
speed of foreground objects. With these assumptions, the total number
of search points in TZ Search can be approximated as

= + +N R m R R m(,) 22 121.4 169 .TZ v v v v v (13)

Meanwhile, since PA-Search will adopt different search strategies
for different PU categories, we will introduce three additional variables
RB, RF and RX to denote the percentages of three non-FBPUs (i.e., BPUs,
FPUs and XPUs), with + + =R R R 1B F X . Then the total number of
search points in PA-Search can be approximated as

= + + +
+ + +

N R m R R R R R
R m R R

(, , ,) 1 (106.88 35.52 53.28)
10.563 (1 15 35).

PA v v F X v F X

v v F X (14)

Finally, we can define the Search-Points-Proportion value (SPP-
value) as the ratio of the number of search points in PA-Search divided
by that in the anchor, as

⎜ ⎟

=

=

⎛
⎝

+ + +
+ + +

⎞
⎠

+ +

SPP N R m R R
N R m

R R R
R m R R

R R m

(, , ,)
(,)

1 (106.88 35.52 53.28)
10.563 (1 15 35)

22 121.4 169

PA v v F X

TZ v v

v F X

v v F X

v v v (15)

This SPP-value can be used to approximately estimate the reduction of
search complexity by using the proposed fast motion search method. In
the experiments, we will compare the estimated proportion with its
actual value so as to validate its estimation precision.

5. Experiments

5.1. Experimental settings

In this section, several experiments were conducted to validate the
effectiveness of the proposed PA-Search. The main objectives were two-
fold: (1) to explore how different components of PA-Search work, and
(2) to demonstrate the advantage of PA-Search over several state-of-the-
art methods.

Totally sixteen uncompressed surveillance sequences from the PKU-
SVD-A dataset1 were used in the experiments. These sequences were
captured from different surveillance scenes (e.g., campus, office, road
intersection, etc.), with large or small objects (LO/SO), and fast or slow
motion (FM/SM). Here they are divided into two subsets: Subset-1 with
eight SD∼HD sequences that have been used in Section 3 for problem
analysis (as shown in Fig. 3), and Subset-2 with the other eight 1080P
videos that were mostly captured with shadow/dim illumination con-
ditions (as shown in Fig. 8). Note that sequences in Subset-1 have also
been used in (Zhang et al., 2014a) for surveillance video coding ex-
periments.

Three metrics were used to evaluate the performance of different
search methods, i.e. Bjontegaard Distortion (BD)-rate (Bjontegard, 2001),
Search-Points-Proportion value (SPP-value, including the points searched
in sub-pixel search) and Total-Encoding-Time-Proportion value (TETP-
value). By combining the bitrate and the PSNR, the BD-rate value reflects
the bitrate difference under the same PSNR. The negative value of BD-rate
means that there is bit-saving over the anchor; otherwise, there is some

loss in coding efficiency. On the other side, the SPP-value (TETP-value) is
defined as the ratio of search points (the total encoding time) in the given
search method divided by that in the anchor. Therefore, BD-rate can be
used to measure the coding efficiency while SPP-value and TETP-value can
be used to measure the coding complexity.

The experiments were conducted on the recent stable version of
HEVC reference software, HM-16.0, with TZ Search as the anchor. The
test conditions are tabulated in Table 4. The other coding parameters
adopts the default setting in the HM-16.0 coding profile. The hardware
platform is Intel Xeon CPU e5-1620 v2 @ 3.70GHz, 16.0GB RAM with
the Microsoft Windows 7 64-bit OS.

5.2. How it works

5.2.1. Parameter selection
In PA-Search, some parameters need to be selected in advance, such

as the matching threshold Tmatch for non-FBPU search early-termina-
tion. Thus in the first set of experiments, our objective was to determine
them experimentally on the eight sequences in Subset-1. For the other
parameters, some can be determined according to the experimental
analysis in Section 3 (e.g., δ1∼ 3, β), while some others can be set
empirically (e.g., ρ). Therefore, we do not include the experiments for
them here.

In the process of generating BFR, the threshold Th determines if a
BU is a foreground block or not. Fig. 9 shows the distribution of the
difference of pixel value between current frame and background frame.
As we know, there are many static background regions in surveillance
videos. From Fig. 9 we can see that most difference of pixel value are
within 5, which means if the difference of one pixel less than 5 then it is
a background pixel. Considering that the size of BU is 4×4, the value
of Th is setted to 80 (5× 16).

In the non-FBPU early-termination algorithm, the matching
threshold Tmatch determines which candidate blocks can be skipped for
search. Within the value range ⋯[0, ,4], a larger value of Tmatch means a
tighter matching criterion such that few candidate blocks will be
searched. Thus this experiment was to determine its optimal value in
terms of coding efficiency and search complexity, where the anchor was
Tmatch =0 (i.e., no early-termination for non-FBPUs).

Fig. 10 shows the BD-rates and SPP-values when using different
values of Tmatch. We can see that when increasing the value of Tmatch, the
coding efficiency becomes worse while the search complexity reduces
synchronously. This is reasonable since with fewer blocks to be sear-
ched, there should be more PUs whose best-matched blocks in the re-
ference frames cannot be found, and consequently the total RD cost
would increase inevitably. We also notice that when Tmatch=2, the BD-
rate is less than 0.15% while the increase of SPP-value is no more
than 20% compared with the no early-termination case. Moreover, its
BD-rate is almost the same as that of Tmatch=1, but its search com-
plexity is less by about 5%. When Tmatch is larger than 2, the coding
efficiency declines rapidly. Therefore, it seems that the optimal value of
Tmatch is 2.

Fig. 8. The representative frames for the surveillance videos in Subset-2 of the PKU-SVD-
A dataset.

1 The PKU-SVD-A dataset, http://pkuml.org/resources/pku-svd-a.html.

Y. Tian et al. Computer Vision and Image Understanding 170 (2018) 14–27

24

http://pkuml.org/resources/pku-svd-a.html

5.2.2. Contributions of different components in PA-Search
PA-Search can be roughly divided into two parts: (1) CUpart, in-

cluding S-FBCU partition early-termination, and (2) PUpart, including
zero-MV and error-tolerant search search for FBPUs, ASR selection and
BFR-based search early-termination for non-FBPUs. So this experiment
was to evaluate the influence of the two parts on the coding efficiency
and complexity.

Table 5 shows the results. We can see that, the BD-rate of PUpart
over the anchor (i.e., HM-16.0) is slightly larger than CUpart+PUpart
over PUpart. On the contrary, the SPP-value saving of PUpart is re-
markably larger than that of CUpart (60.10% vs. 26.05%). This in-
dicates that in PA-search, PUpart is the main component that con-
tributes to the reduction of search points. We also notice that their
TETP-values are comparable (28.74% vs. 28.79%). This is because
CUpart can effectively reduce the depth of CU partition, where each CU
partition step consists of several computationally-expensive operations
such as integer-pixel search, sub-pixel search and RD-model decision. In
this case, a small number in the reduction of search points by CUpart
would incur a large saving of the total encoding time.

5.3. Comparison with the State-of-the-Arts

This subsection describes the experiments that were designed to
compare the performance of PA-Search and state-of-the-art methods on
surveillance videos. Two state-of-the-art methods were involved in the
experiments, including BFDS (Zhao et al., 2014) and Ma et al. (2015).
Note that both of them can also be seen as the modified versions of TZ
Search.

Table 6 shows the results. We can see that, compared with the
original TZ Search, the BD-rate of PA-Search has a negligible loss
(averagely 0.70% on all surveillance videos) but its coding complexity
can be reduced by averagely 66.90% of SPP-value saving and 46.69% of
TETP-value saving, respectively. We can also find that on surveillance
videos, PA-Search significantly outperforms the two state-of-the-art
methods, BFDS and Ma et al. (2015), in terms of both SPP-value and
TETP-value. On average, PA-Search has slightly higher BD-rate than
BFDS (0.70% vs. 0.53%) and lower BD-rate than Ma et al. (2015)
(0.70% vs. 1.57%), but much larger SPP-value saving (66.90% vs.
24.59% and 47.29%) and TETP-value saving (46.69% vs. 3.01% and
34.10%). The results show that PA-Search is able to reduce the coding
complexity considerably while maintaining the coding efficiency.

Noticeably, Ma et al. (2015) can reduce the search complexity re-
markably by removing the rarely used prediction modes and reference
frames for different CUs and PUs adaptively. However, it will bring lots
of loss in performance because the condition estimating which predic-
tion modes or reference frames should be removed is too simply. It is
easy for the mv to fall in the local optimum. As the previous work of PA-
Search, BFDS can reduce the search complexity on surveillance videos,
with 24.59% of the average SPP-value saving. However, due to the lack
of non-sub-pixel search mechanism for FBPUs and CU partition early-
termination strategy for S-FBCUs, the total encoding time will not re-
duce significantly. This is the reason why BFDS has a small TETP-value
saving (averagely 3.01%). Clearly, these drawbacks have been suc-
cessfully solved by PA-Search.

5.4. Supplementary experiment

In Section 4.5, we present the complexity analysis for PUpart of PA-
Search. However, one may argue the precision of this analysis method
since it is built on several assumptions (e.g., ignoring the influence of
the BFR-based early-termination algorithm) and with some approx-
imate values. Thus this experiment was designed to validate its ap-
plicability.

Table 7 shows the comparison results. We can see that the average
difference between the estimated and the actual SPP-values of PUpart
of PA-Search is 3.77% for surveillance videos. This indicates the com-
plexity analysis method for PA-Search is reasonably accurate.

We also notice that the estimated SPP-values are always larger than
the actual values more or less. This is because by ignoring the influence
of the block size on the search range selection and the possible speed-up
of the BFR-based early-termination algorithm, the approximate esti-
mation method tends to use the maximum number of search points as
the estimated value. In this sense, the estimated value can be seen as the
worst case of search points in PA-Search.

6. Conclusions

This paper proposes a PU-Adaptive Search (PA-Search) method for
surveillance videos, by adaptively adopting search strategies for dif-
ferent CU and PU categories. Experimental results on the PKU-SVD-A
dataset demonstrate the advantage of PA-Search on the HEVC reference
software HM-16.0. In particular, PA-Search can reduce the number of
search points of 66.90% and total encoding time of 46.69% over TZ
Search on HM-16.0, while maintaining the coding efficiency.

In the future work, we will further optimize the performance of PA-
Search and then extend it to scene videos, a super-set of surveillance

Fig. 9. The distribution of the difference of pixel value between current frame and
background frame.

Fig. 10. The BD-rate and SPP-value curves for different values of Tmatch, where the anchor
is Tmatch=0 (i.e., no early-termination for non-FBPUs).

Y. Tian et al. Computer Vision and Image Understanding 170 (2018) 14–27

25

videos that are often captured on a relatively-fixed place by (mostly
fixed-view) cameras for a long time (e.g., classroom videos and meeting
videos). Moreover, we also plan to integrate the proposed PA-Search
method in the open-source fast HEVC encoder, X.265.

Acknowledgments

This work is partially supported by grants from the National Basic
Research Program of China under grant 2015CB351806, the National
Natural Science Foundation of China under contract nos. U1611461,
61390515, and 61425025.

Supplementary material

Supplementary material associated with this article can be found, in
the online version, at 10.1016/j.cviu.2018.02.009.

Table 5
The coding efficiency and complexity of CUpart and PUpart of PA-Search on HM-16.0.

Sequence PUpart vs. Anchor PUpart+CUpart vs. PUpart

BD-rate (%) SPP-value TETP-value BD-rate (%) SPP-value TETP-value
Saving (%) Saving (%) Saving (%) Saving (%)

Subset-1 of PKU-SVD-A BankSD 0.61 56.87 27.13 0.24 12.26 22.02
ClassoverSD 0.89 68.72 33.48 0.04 19.85 31.10
CompusSD 0.86 64.54 31.65 0.09 17.96 26.32
CrossroadSD 0.73 46.54 18.24 0.04 6.96 10.72
OfficeSD 0.25 36.87 17.30 0.04 6.90 12.05
OverbridgeSD 0.81 54.75 25.44 0.08 14.30 18.80
IntersectionHD 0.53 46.00 23.58 0.22 15.09 22.65
MainroadHD 0.55 53.11 27.82 -0.05 16.87 26.92

Subset-2 of PKU-SVD-A JingChunRoadnorth 0.22 62.39 27.01 0.51 55.09 33.76
JingChunRoadsouth 0.44 79.05 42.19 0.35 45.13 47.59
RedHouseNo.1east 0.78 86.27 45.67 0.03 26.73 56.31
RedHouseNo.1south 0.36 74.62 37.82 0.34 34.21 39.71
RedHouseNo.4north 0.18 65.90 31.05 0.26 40.86 33.34
RedHouseNo.4west 0.31 74.60 37.33 0.31 49.40 40.36
WeiMingLakeeast 0.37 58.63 23.53 0.36 51.06 30.72
HaiDiancrossroad 0.41 32.75 10.58 0.03 4.18 8.34

AVG 0.52 60.10 28.74 0.18 26.05 28.79

Table 6
The coding efficiency and coding complexity of PA-Search, BFDS and Ma et al. (2015) on HM-16.0, with the original TZ Search as the anchor.

Sequence PA-Search BFDS Ma et al. (2015)

BD-rate SPP-value TETP-value BD-rate SPP-value TETP-value BD-rate SPP-value TETP-value
(%) Saving (%)a Saving (%)a (%) Saving (%) Saving (%) (%) Saving (%) Saving (%)

Subset-1 of PKU-SVD-A BankSD 0.85 59.75 40.66 0.68 19.95 1.79 1.51 48.09 36.66
ClassoverSD 0.92 72.88 51.80 0.93 28.75 3.30 2.84 62.67 47.61
CompusSD 0.95 68.08 46.86 0.97 30.19 3.44 1.33 53.72 40.04
CrossroadSD 0.77 49.18 26.39 0.73 18.51 2.14 1.44 37.88 20.37
OfficeSD 0.29 40.39 26.72 0.32 4.22 0.79 1.09 39.81 24.93
OverbridgeSD 0.90 58.37 37.74 0.81 26.50 3.42 1.94 52.32 32.19
IntersectionHD 0.75 53.69 40.52 0.56 21.18 2.19 1.78 42.14 30.43
MainroadHD 0.50 58.22 43.33 0.72 42.05 4.22 1.56 39.29 27.08

Subset-2 of PKU-SVD-A JingChunRoadnorth 0.73 79.16 50.61 0.25 23.94 2.93 1.47 45.53 37.32
JingChunRoadsouth 0.80 86.25 66.95 0.30 28.98 4.45 1.52 42.72 33.07
RedHouseNo.1east 0.82 92.26 74.25 0.79 29.63 4.22 1.49 54.69 40.11
RedHouseNo.1south 0.71 85.29 62.20 0.29 26.77 3.60 1.61 47.38 38.42
RedHouseNo.4north 0.44 74.62 53.56 0.20 24.57 3.11 1.22 49.89 37.41
RedHouseNo.4west 0.62 82.43 61.25 0.35 26.68 3.14 1.34 60.09 44.49
WeiMingLakeeast 0.74 74.52 46.34 0.19 23.50 3.24 1.79 52.47 33.84
HaiDiancrossroad 0.44 35.23 17.81 0.32 18.07 2.23 1.20 27.89 21.63

AVG 0.70 66.90 46.69 0.53 24.59 3.01 1.57 47.29 34.10

a Here the value is equal to 1 minus the corresponding SPP-value (or TETP-value). The same below.

Table 7
Comparison of the estimated and the actual SPP-values of the PUpart of PA-Search by
using TZ Search as the anchor.

Sequence Estimated (%) SPP-value
(%)

Diff. (%)

Subset-2 of PKU-
SVD-A

JingChunRoadnorth 41.94 37.61 4.33

JingChunRoadsouth 26.25 20.95 5.30
RedHouseNo.1east 18.17 13.73 4.44
RedHouseNo.1south 28.56 25.38 3.18
RedHouseNo.4north 37.28 34.10 3.18
RedHouseNo.4west 27.50 25.40 2.10
WeiMingLakeeast 47.58 41.37 6.21
HaiDiancrossroad 68.63 67.25 1.38
AVG 36.99 33.22 3.77

Y. Tian et al. Computer Vision and Image Understanding 170 (2018) 14–27

26

https://doi.org/10.1016/j.cviu.2018.02.009

References

Bjontegard, G., 2001. Calculation of average PSNR differences between rd-curves. ITU-T
VCEG-M33.

Bossen, F., Bross, B., Suhring, K., Flynn, D., 2012. HEVC complexity and implementation
analysis. IEEE Trans. Circuits Syst. Video Technol. 22 (12), 1685–1696.

Bross, B., Han, W.-J., Sullivan, G.J., Ohm, J.-R., Wiegand, T., 2012.. High efficiency video
coding (HEVC) text specification draft 9. JCTVC-K1003, Joint Collaborative Team on
Video Coding (JCT-VC), Stockholm, Sweden. document.

Chen, W., Tian, Y., Wang, Y., Huang, T., 2016. Fixed-point gaussian mixture model for
analysis-friendly surveillance video coding. Comput. Vis. Image Understand. 142,
65–79.

Chen, Z., Song, Y., Ikenaga, T., Goto, S., 2007. Macroblock level adaptive search range
algorithm for variable block size motion estimation in H.264/AVC. Proceedings of
International Symposium Intelligent Signal Processing and Communication Systems.
pp. 598–601.

Chen, Z., Zhou, P., He, Y., 2003. Hybrid unsymmetrical-cross multi-hexagon-grid search
strategy for integer pel motion estimation in H.264. Proceedings of Picture Coding
Symposium. pp. 17–22.

Chung-Cheng Lou, S.-W.L., Kuo, C.-C.J., 2010. Adaptive search range selection in motion
estimation. Proceedings of IEEE Conference on Acoustics Speech and Signal
Processing. pp. 918–921.

Dhara, B.C., Saha, S.K., Chanda, B., 2010. A video coding technique using octagonal
motion search and BTC-PF method for fast reconstruction. Proceedings of AST/UCMA/
ISA/ACN 2010, LNCS 6059. pp. 480–490.

Dong, S., Tian, Y., Huang, T., 2015. Performance evaluation for avs2 scene video coding
techniques. Multimedia Big Data (BigMM), 2015 IEEE International Conference on.
IEEE, pp. 411–414.

Gao, W., Tian, Y., Huang, T., Ma, S., Zhang, X., 2014. The IEEE 1857 standard empow-
ering smart video surveillance systems. IEEE Intell. Syst. 29 (5), 30–39. Sep.-Oct.

Girod, B., 1994. Rate-constrained motion estimation. SPIE Proceedings of Visual
Communication and Image Processing. 2308. pp. 1026–1034.

Hu, Q., Zhang, X., Shi, Z., Gao, Z., 2015. Neyman-Pearson-based early mode decision for
HEVC encoding. IEEE Trans. Multimedia 18 (3), 1.

Kossentini, F., Lee, Y.-W., Smith, M.J.T., Ward, R.K., 1997. Predictive RD optimized mo-
tion estimation for very low bit-rate video coding. IEEE J. Sel. Areas Commun. 15 (9),
1752–1763.

Lin, W., Panusopone, K., Baylon, D.M., Sun, M.-T., Chen, Z., Li, H., 2011. A fast sub-pixel
motion estimation algorithm for h.264/avc video coding. IEEE Trans. Circuits Syst.
Video Technol. 21 (2), 237–242.

Lin, Y.-C., Tai, S.-C., 1997. Fast full-search block-matching algorithm for motion-com-
pensated video compression. IEEE Trans. Commun. 45 (5), 527–531.

Lou, C.-C., Lee, S.-W., Kuo, C.-C.J., 2010. Adaptive motion search range prediction for
video encoding. IEEE Trans. Circuits Syst. Video Techn. 20 (12), 1903–1908.

Ma, L., Qi, H., Zhu, S., Ma, S., 2015. A fast background model based surveillance video
coding in HEVC. Visual Communications and Image Processing Conference. pp.
237–240.

Pan, Z., Yun Zhang, S.K., Wang, X., Xu, L., 2013. Early termination for TZ Search in HEVC

motion estimation. Proceedings of IEEE Conference on Acoustics Speech and Signal
Processing. pp. 1389–1393.

Paul, A., Wang, J.-F., Yang, J.-F., 2008. Adaptive search range selection for scalable video
coding extension of H.264/AVC. Proceedings of IEEE Region 10 Conference. pp. 1–4.

Sarwer, M.G., Wu, Q.M.J., 2009. Adaptive variable block-size early motion estimation
termination algorithm for H.264/AVC video coding standard. IEEE Trans. Circuits Syst.
Video Technol. 19 (8), 1196–1201.

Shen, L., Zhang, Z., Liu, Z., 2014. Adaptive inter-mode decision for hevc jointly utilizing
inter-level and spatiotemporal correlations. IEEE Trans. Circuits Syst. Video Technol.
24 (10), 1709–1722.

JVT of ISO/IEC MPEGITU-T VCEG, 2010. MVC Software Reference Manual-JMVC 8.2,
May.

Wang, J., Dong, L., 2014. An efficient coding scheme for surveillance videos based on
high efficiency video coding. Natural Computation (ICNC), 2014 10th International
Conference on. pp. 899–904.

Xing, P., Tian, Y., Zhang, X., Wang, Y., Huang, T., 2013. A coding unit classification based
AVC-to-HEVC transcoding with background modeling for surveillance videos. Visual
Communications and Image Processing. pp. 1–6.

Xiong, J., Li, H., Meng, F., Wu, Q., 2015. Fast hevc inter cu decision based on latent sad
estimation. IEEE Trans. Multimedia 17 (12), 2147–2159.

Xiong, J., Li, H., Meng, F., Zhu, S., Wu, Q., Zeng, B., 2014. MRF-based fast HEVC inter cu
decision with the variance of absolute differences. IEEE Trans. Multimedia 16 (8),
2141–2153.

Xiong, J., Li, H., Wu, Q., Meng, F., 2014. A fast hevc inter cu selection method based on
pyramid motion divergence. IEEE Trans. Multimedia 16 (2), 559–564.

Yang, J.-F., Chang, S.-C., Chen, C.-Y., 2002. Computation reduction for motion search in
low rate video coders. IEEE Trans. Circuits Syst Video Technol. 12 (10), 948–951.

Yang, L., Yu, K., Li, J., Li, S., 2005. An effective variable block-size early termination
algorithm for H.264 video coding. IEEE Trans. Circuits Syst. Video Technol. 15 (6),
784–788.

Zhang, X., Huang, T., Tian, Y., Gao, W., 2014. Background-modeling based adaptive
prediction for surveillance video coding. IEEE Trans. Image Process. 23 (2), 769–784.

Zhang, X., Huang, T., Tian, Y., Geng, M., Ma, S., Gao, W., 2013. Fast and efficient
transcoding based on low-complexity background modeling and adaptive block
classification. IEEE Trans. Multimedia 15 (8), 1769–1785.

Zhang, X., Tian, Y., Huang, T., Dong, S., Gao, W., 2014. Optimizing the hierarchical
prediction and coding in HEVC for surveillance and conference videos with back-
ground modeling. IEEE Trans. Image Processing 23 (10), 4511–4526.

Zhao, L., Tian, Y., Huang, T., 2014. Background-foreground division based search for
motion estimation in surveillance video coding. Proceedings of IEEE Conference on
Multimedia and Expo. pp. 1–6.

Zhu, S., Ma, K.-K., 2000. A new diamond search algorithm for fast block-matching motion
estimation. IEEE Trans. Image Process. 9 (2), 287–290.

Zupancic, I., Blasi, S.G., Peixoto, E., Izquierdo, E., 2016. Inter-prediction optimizations for
video coding using adaptive coding unit visiting order. IEEE Trans. Multimedia 1.

Y. Tian et al. Computer Vision and Image Understanding 170 (2018) 14–27

27

http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0001
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0001
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0002
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0002
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0003
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0003
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0003
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0004
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0004
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0004
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0005
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0005
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0005
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0005
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0006
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0006
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0006
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0007
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0007
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0007
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0008
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0008
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0008
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0009
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0009
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0009
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0023
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0023
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0010
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0010
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0011
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0011
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0012
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0012
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0012
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0013
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0013
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0013
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0014
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0014
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0015
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0015
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0016
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0016
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0016
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0017
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0017
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0017
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0018
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0018
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0019
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0019
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0019
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0020
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0020
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0020
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0021
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0021
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0022
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0022
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0022
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0024
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0024
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0024
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0025
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0025
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0026
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0026
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0026
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0027
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0027
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0028
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0028
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0029
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0029
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0029
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0030
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0030
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0031
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0031
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0031
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0032
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0032
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0032
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0033
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0033
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0033
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0034
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0034
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0035
http://refhub.elsevier.com/S1077-3142(18)30035-3/sbref0035

	PA-Search: Predicting units adaptive motion search for surveillance video coding
	Introduction
	Related work
	Adaptive search range prediction
	Fast search patterns
	Early termination of motion search
	Optimization of CU Mode Decision
	Motion search for surveillance video coding

	Problem analysis
	Whether to use different search ranges for background and foreground regions or not?
	What is the influence of both the foreground/background proportion in a CU and the CU size on the search strategy?
	Whether sub-pixel search should be performed for all kinds of CUs or not?
	Which kind of CUs should be further partitioned?
	Summary

	The proposed method
	Framework
	CU and PU classification
	Online background modeling and updating
	BFR generation
	BFR-based CU/PU Classification

	S-FBCU partition early-termination
	Error-tolerant search for FBPUs
	Adaptive search for non-FBPUs
	ASR selection
	Search early-termination for non-FBPUs

	Complexity analysis

	Experiments
	Experimental settings
	How it works
	Parameter selection
	Contributions of different components in PA-Search

	Comparison with the State-of-the-Arts
	Supplementary experiment

	Conclusions
	Acknowledgments
	Supplementary material
	References

