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Existing in-loop filters

rely only on an

image’s local

correlations, largely

ignoring nonlocal

similarities. The

proposed approach

uses group-based

sparse representation

to jointly exploit local

and nonlocal self-

similarities, laying

a novel and

meaningful

groundwork for

in-loop filter design.

H
igh Efficiency Video Coding

(HEVC)1 is the latest video cod-

ing standard jointly developed

by the International Telecom-

munication Union–Telecommunication (ITU-T)

Video Coding Experts Group (VCEG) and Mov-

ing Picture Experts Group (MPEG). Compared to

H.264/AVC, HEVC claims to potentially achieve

a more than 50 percent coding gain. The in-loop

filtering is an important video coding module

for improving compression performance by

reducing compression artifacts and providing a

high-quality reference for subsequent video

frames. During the development of HEVC,

researchers intensively investigated the perform-

ance of three kinds of in-loop filters—the

deblocking filter,2 Sample Adaptive Offset

(SAO),3 and Adaptive Loop Filter (ALF)4—and

eventually adopted the first two. However,

these in-loop filters only take advantage of the

image’s local correlations, which limits their

performance.

Here, we explore the performance of in-loop

filters for HEVC by taking advantage of both

local and nonlocal correlations in images. We

incorporate a nonlocal similarity-based loop fil-

ter (NLSLF) into the HEVC standard by simulta-

neously enforcing the intrinsic local sparsity

and nonlocal self-similarity of each frame in

the video sequence. For a reconstructed video

frame from a previous stage, we first divide it

into overlapped image patches and subse-

quently classify them into different groups

based on their similarities. Because these image

patches in the same group have similar struc-

tures, they can be represented sparsely in a

group unit rather than a block unit.5 We can

then reduce the compression artifacts by

thresholding the singular values of image

patches group by group, based on the sparse

property of similar image patches. We also

explore two kinds of thresholding methods—

hard and soft thresholding—and their related

adaptive threshold determination methods.

Our extensive experiments on HEVC common

test sequences demonstrate that the nonlocal

similarity-based in-loop filter significantly

improves the compression performance of

HEVC, achieving up to an 8.1 percent bitrate

savings.

In-Loop Filtering
The deblocking filter was the first adopted in-

loop filter in H.264/AVC to reduce the blocking

artifacts caused by coarse quantization and

motion compensated prediction.6 Figure 1

shows a typical example of the block boundary

with the blocking artifact. H.264/AVC defines a

set of low pass filters with different filtering

strengths that are applied to 4� 4 block boun-

daries. H.264/AVC has five levels of filtering

strength, and the filter strength for each block

boundary is jointly determined by the quanti-

zation parameters, correlations of samples on

both side of block boundaries, and the predic-

tion modes (intra- and interprediction).

The deblocking filter in HEVC is similar to

that in H.264/AVC. However, in HEVC, it’s

applied only to 8� 8 block boundaries, which

are the boundaries of coding units (CU), predic-

tion units (PU), or transform units (TU). Due to

1070-986X/16/$33.00�c 2016 IEEE Published by the IEEE Computer Society

Ubiquitous Multimedia

16



HEVC’s improved prediction accuracy, only

three filtering strengths are used, thus reducing

complexity compared to H.264/AVC.

SAO is a completely new in-loop filter

adopted in HEVC. In contrast to the deblocking

filter, which reconstructs only the samples on

block boundaries, SAO processes all samples.

Because the sizes of coding, prediction, and

transform units have been largely extended

compared with previous coding standards—

that is, the coding unit has been extended from

8� 8 to 64� 64, the prediction unit from 4� 4

to 64� 64, and the transform unit from 4� 4

to 32� 32—the compression artifacts inside

the coding blocks can no longer be compen-

sated by the deblocking filter. Therefore, SAO is

applied to all samples reconstructed from the

deblocking filter by adding an offset to each

sample to reduce the distortion.

SAO has proven to be a powerful tool to

reduce ringing and contouring artifacts. To

adapt the image content, SAO first divides a

reconstructed picture into different regions and

then derives an optimal offset for each region

by minimizing the distortion between the origi-

nal and reconstructed samples. SAO can use dif-

ferent offsets sample by sample in a region,

depending on the sample classification strategy.

In HEVC, two SAO types were adopted: edge

offset and band offset. For the edge offset, the

sample classification is based on comparing the

current and the neighboring samples according

to four one-dimensional neighboring patterns

(see Figure 2). For the band offset, the sample

classification is based on sample values, and the

sample value range is equally divided into 32

bands. These offset values and region indices

are signaled in the bitstream, which can impose

a relatively large overhead.

ALF is a Wiener-based adaptive filter; its coeffi-

cients are derived by minimizing the mean

square errors between original and reconstructed

samples. Numerous recent efforts have been

dedicated to developing high-efficiency and low-

complexity ALF approaches. In HEVC reference

software HM7.0, the filter shape of ALF is a com-

bination of a 9� 7-tap cross shape and a 3� 3-

tap rectangular shape, as Figure 3 illustrates.

Therefore, only correlations within a local patch

are used to reduce the compression artifacts.

To adapt the properties of an input frame, up

to 16 filters are derived for different regions of

the luminance component. Such high adaptabil-

ity also creates a large overhead, which should be

signaled in the bitstream. Therefore, these

regions must be merged at the encoder side based

on rate-distortion optimization (RDO), which

makes neighboring regions share the same filters

to achieve a good tradeoff between the filter per-

formance and overheads. One of us (Zhang) and

colleagues proposed reusing the filter coefficients

and regions division in the previous encoded

frame to reduce overheads.7 Stephan Wenger

and his colleagues proposed placing the filter

coefficient parameters in a picture-level header

called the Adaptation Parameter Set (APS), which
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Figure 1. A one-dimensional example of the block

boundary with the blocking artifact. Here, fpig
and fqig are pixels in neighboring blocks.

a

a a a
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Figure 2. Four 1D directional patterns for edge

offset sample classification. The samples in the

positions, a, b and c, are used for comparison.
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Figure 3. Adaptive loop filter (ALF) shape in

HM7.0 (each square corresponds to a sample). The

notations, c1; c2;…; c9 are the filter coefficients.
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makes in-loop filter parameters reuse more flexi-

ble with APS indices.8

The Nonlocal Similarity-Based In-Loop
Filter
In addition to image local-correlation-based fil-

ters, many nonlocal-correlation-based filters

have been proposed in the literature (see the

“Related Work in Nonlocal Image Filters” side-

bar). In our previous work,5 we formulated a

new sparse representation model in terms of a

group of similar image patches. Our group-based

sparse representation (GSR) model can exploit

the local sparsity and the nonlocal self-similarity

of natural images simultaneously in a unified

framework. Here, we describe how the NLSLF is

designed in stages based on the GSR model.

Patch Grouping

The basic idea of GSR is to adaptively sparsify

the natural image in the domain of a group.

Thus, we first show how to construct a group.

Related Work in Nonlocal Image Filters
In existing video coding standards, in-loop filters focus only

on the local correlation within image patches without fully

considering nonlocal similarities. However, in image resto-

ration and denoising fields, researchers have proposed

many methods based on image nonlocal similarities.1–5

Antoni Buades and his colleagues proposed the famous

nonlocal means filter (NLM) to remove different kinds of

noise by predicting each pixel with a weighted average of

nonlocal pixels, where the weights are determined by the

similarity of image patches located at the source and target

coordinates.1 The well-known block-matching and 3D fil-

tering (BM3D) denoising filter stacks nonlocal similar image

patches into 3D matrices and removes noise by shrinking

coefficients of 3D transform of similar image patches based

on the image-sparse prior model.2 Other research used the

nonlocal similar image patches to suppress compression

artifacts, which is achieved by adaptively combining the

pixels restored by the NLM filter and reconstructed pixels

according to the reliability of NLM prediction and quantiza-

tion noise in the transform domain.3–5 In other work, the

authors use a group of nonlocal similar image patches to

construct image-sparse representation, which can be fur-

ther applied to image deblurring, denoising, and inpaint-

ing.6–8 Although these nonlocal methods significantly

improve the quality of restored images, all of them are

treated as post-processing filters and thus don’t fully exploit

the compression information.

Masaaki Matsumura and his colleagues first introduced

the NLM filter to compensate for the shortcomings of

HEVC with only image-local prior models; to improve the

coding performance, they used delicately designed patch

shapes, search window shapes, and optimizing filter on/off

control modules.9,10 Finally, Qinglong Han and his col-

leagues also employed nonlocal similar image patches in a

quadtree-based Kuan’s filter to suppress compression arti-

facts; the pixels restored by the NLM filter and the recon-

structed pixels are adaptively combined according to the

variance of image signals and quantization noise.11 How-

ever, the weights in these filters are difficult to determine,

leading to limited coding performance improvement.
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In fact, each group is represented by a matrix,

which is composed of nonlocal patches with

similar structures. For a video frame, I, we first

divide it into S overlapped image patches with

the size of
ffiffiffiffiffi
Bs

p
�

ffiffiffiffiffi
Bs

p
. Each patch is reorganized

into a vector, xk, k ¼ 1;2; :::; S, as illustrated in

Figure 4. For every image patch, we find K near-

est neighbors according to the Euclidean dis-

tance between different image patches,

dðxi;xjÞ ¼ kxi � xjk22: (1)

These K similar image patches are stacked

into a matrix of size Bs � K;

XGi
¼
�
xGi;1; xGi;2; :::; xGi;K

�
: (2)

Here, XGi
contains all the image patches

with similar structures, which we call a group.

Group Filtering and Reconstruction

Because the image patches in the same group are

very similar, they can be represented sparsely.

For each group, we apply singular value

decomposition (SVD) and get image sparse

representation,

XGi
¼ UGi

RGi
VT

Gi
¼
XM
k¼1

!Gi;k

�
uGi;kv

T
Gi;k

�
; (3)

where !Gi
¼ ½!Gi;1;!Gi;2; :::;!Gi;M � is a column

vector, RGi
¼ diagð!Gi

Þ is a diagonal matrix

with the elements of c Gi
as its main diagonal,

and uGi;kv
T
Gi;k

are the columns of UGi
and VGi

,

respectively. M is the maximum dimension of

matrix XGi
.

The matrix composed of the corresponding

compressed video frame is formulated as

Y ¼ XþN; (4)

where N is the compression noise and X and Y

(without any subscript) represent the original

and reconstructed frames, respectively. To

derive the sparse representation parameters, we

apply thresholding, which is a widely used

operation for coefficients with sparse property

in image denoising problems. We apply two

kinds of the thresholding methods—hard and

soft thresholding— to the singular values in

!Gi
, which is composed of singular values of

matrix Y,

a
ðhÞ
Gi
¼ hardð!Gi;sÞ and (5)

a
ðsÞ
Gi
¼ softð!Gi;sÞ; (6)

where the hard and soft thresholding are

defined as

hard ðx; sÞ ¼ signðxÞ �
�

absðxÞ � s1
�

(7)

soft ðx; sÞ ¼ signðxÞ �max
�

absðxÞ � s1;0
�
: (8)

Here, � stands for the element-wise product

of two vectors, sign(�) is the function extracting

the sign of every element of a vector, 1 is an all-

ones vector, and s denotes the threshold. After

achieving the shrunken singular values, the

restored group of image patches x̂ is given by

Extracting Matching

Group filtering and reconstruction

Stacking

xi ∈ Bs XGi
 ∈ Bs

× K

K

Figure 4. Framework of the nonlocal similarity-based loop filter (NLSLF). The high-quality image is

reconstructed via patch grouping, group filtering, and reconstruction.
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x̂ ¼
XM
k¼1

aGi ;kðuGi;kv
T
Gi;k
Þ: (9)

Because these image patches are overlap

extracted, we simply take the average of the

overlapped samples as the final filtered values.

Threshold Estimation

Based on the above discussion, we determine

the filtering strength by the thresholding-level

parameter s in Equations 5 and 6. However,

given that various video content is compressed

with different quantization parameters, this is a

nontrivial problem that has not been well

resolved. In essence, the optimal threshold is

closely related with the standard deviation of

noise denoted as rn, and larger thresholds corre-

spond to higher rn values.

In video coding, the compression noise is

mainly caused by quantizing the transform

coefficients. Therefore, we can use quantization

steps to determine the standard deviation of

the compression noise and a scale factor to

adapt different prediction modes, including

intra- and interprediction.

For hard thresholding, the optimal values of

rn are derived experimentally based on the

sequences BasketballDrive and FourPeople, com-

pressed with different quantization parameters

ðQP ¼ 27; 32; 38; 45Þ, which are further con-

verted to the quantization step sizes (Qsteps), as

Figure 5 shows. We can infer that different

sequences with the same quantization parame-

ter or Qstep have similar optimal values of rn,

implying that rn is closely related with the quan-

tization parameter or Qstep. Inspired by this, we

estimate the optimal value of rn directly from

the Qstep by curve fitting using the following

empirical formulation,

r ¼ a �Qstepþ b; (10)

where the Qstep can be easily derived from the

quantization parameter based on the following

relationship in HEVC:

Qstep ¼ 2
ðQP � 4Þ

6
: (11)

Table 1 shows the parameters ða; bÞ for differ-

ent coding configurations.

Based on the filtering performance, we fur-

ther use the size and number of similar image

patches in one group as a scale factor

s ¼ rn � ðBs þ
ffiffiffiffi
K
p
Þ; (12)

where rn is the standard deviation of compres-

sion noise for the whole image, which is esti-

mated based on Equation 10.

For soft thresholding, based on the filtering

performance, we take the optimal threshold

formulation for generalized Gaussian signals,

s ¼ cr2
n

rx
; (13)

where rx is the standard deviation of original

signals that can be estimated by

r2
x ¼ r2

y � r2
n: (14)

Because the variance of compression noise,

rn, is derived at the encoder side, we quantize it

into the nearest integer range,9 which is sig-

naled with 4 bits and transmitted in the bit-

stream. Therefore, 12 bits are encoded in total

for one frame with three color components—

for example, YUV. The two thresholds for both

Table 1. The coefficient for estimating r for all configurations.

Color component

All intra coding Low delay B coding Random access coding

a b a b a b

Y 0.13000 0.7100 0.10450 0.4870 0.10450 0.4870

U 0.06623 0.8617 0.03771 0.8833 0.03771 0.8833

V 0.06623 0.8617 0.03771 0.8833 0.03771 0.8833

16

14

12

10

8
σ

6

4

2
0 20 40 60

Qstep
80 100 120

Best (BasketballDrive)
Best (FourPeople)
Estimated

Figure 5. The

relationship between

Qstep and the

standard deviation of

compression noise.

The linear function

can fits well with their

relationship.
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hard and soft thresholding operations increase

with the standard deviation of compression

noise, which implies that the frames with more

noise should be filtered with higher strength.

Furthermore, the thresholds decrease with the

standard deviation of signals, which can avoid

over-smoothing for smooth areas.

Filtering On/Off Control

To ensure that the NLSLF consistently leads to

distortion reduction, we introduce on/off con-

trol flags for frame and largest coding unit

(LCU) levels, which should be signaled in the

bitstream. Specifically, regarding the frame-

level on/off control, three flags—Filtered Y, Fil-

tered U, and Filtered V—are designed for the cor-

responding color components Y, U, and V,

respectively. When the distortions of the fil-

tered image decrease, the corresponding flag

signals as true, indicating that the image color

component is finally filtered. For the on/off

control at the LCU level, each LCU needs only

one flag Filterd LCU[i] to indicate the on/off fil-

tering for the luminance component of the cor-

responding LCU. In the picture header syntax

structure, three bits are encoded to signal

frame-level control flags for each color compo-

nent, respectively. We place the syntax ele-

ments of the LCU-level control flags in coding

tree unit parts, using only one bit for each LCU.

Experimental Results and Analysis
In our experiments, we implement the nonlo-

cal similarity-based in-loop filter in the HEVC

reference software, HM12.0. We denote the

hard-threshold filtering (with the threshold in

Equation 12) as NLSLF-H, and the soft-thresh-

old filtering (with the threshold in Equation 13)

as NLSLF-S. To better analyze the performance

of the nonlocal similarity-based in-loop filter,

we further integrate the ALF from HM3.0 into

HM12.0 (in which the ALF tool has been

removed) and compare the nonlocal similarity-

based in-loop filter with ALF.

The test video sequences in our experiments

are widely used in HEVC common test condi-

tions. There are 20 test sequences that are classi-

fied into six categories (Classes A–F). The

resolutions for the first five categories are as

follows:

� Class A: 2560� 1600,

� Class B: 1920� 1080,

� Class C: 832� 480,

� Class D: 416� 240, and

� Class E is 1280� 720.

Class F contains screen videos with three dif-

ferent resolutions: 1280� 720, 1024� 768, and

832� 480.

We tested four typical quantization parame-

ters—22, 27, 32, and 37—and three common

coding configurations: all intra coding (AI), low

delay B (LDB) coding, and random access (RA)

coding. Along with the increase of K and Bs, the

computational complexity increases rapidly,

while the filtering performance might decrease

for some sequences because dissimilar struc-

tures are more likely to be included. Therefore,

in our experiments, the size of image patches is

set to Bs ¼ 6, and the number of nearest neigh-

bors for each image patch is set to K ¼ 30 for all

the sequences. For each frame, we extract image

patches every five pixels according to the raster

scanning order, which makes the image patches

overlap.

First, we treat the HM12.0 with and with-

out ALF as anchors. The overall coding per-

formances of NLSLF-S and NLSLF-H with only

frame-level control are shown in Tables 2–5.

Both of the two thresholding filters with non-

local image patches achieve significant bitrate

savings compared to HM12.0 without ALF.

NLSLF-S achieves 3.2 percent, 3.1 percent, and

4.0 percent bitrate savings on average for the

AI, LDB, and RA configurations, respectively.

Moreover, NLSLF-H achieves 4.1 percent, 3.3

percent, and 4.4 percent bitrate savings on

Hard and soft

thresholding operations

increase with the

standard deviation of

compression noise, which

implies that the frames

with more noise should

be filtered with higher

strength.
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average for the all intra, LDB, and random

access configurations, respectively, compared

to HM12.0 without ALF. When the nonlocal

similarity-based in-loop filters are combined

with ALF, NLSLF-S achieves approximately 2.6

percent, 2.6 percent, and 3.2 percent bitrate

savings for all intra, LDB, and random access

coding, respectively, and NLSLF-H achieves

approximately 3.1 percent, 2.8 percent, and

3.4 percent bitrate savings for all intro, LDB,

and random access coding, respectively, com-

pared with HM12.0 with ALF.

Although the NLSLF improvements are not

as significant as those achieved without ALF,

they can still further improve the performance

of HEVC with ALF. This verifies that nonlocal

Table 2. Performance of the nonlocal similarity-based loop filter with soft thresholding (NLSLF-S) on HM12.0 with adaptive loop fil-

tering (ALF) turned off.

Sequences

All intra coding (%) Low delay B (LDB) coding (%) Random access coding (%)

Y U V Y U V Y U V

Class A �4.3 �4.0 �3.9 �3.5 �3.3 �2.3 �4.8 �6.1 �5.7

Class B �2.9 �3.3 �4.0 �3.0 �4.2 �4.2 �4.3 �5.5 �4.7

Class C �2.8 �4.6 �6.2 �1.6 �3.4 �5.4 �2.1 �5.1 �6.5

Class D �2.0 �4.5 �5.5 �1.3 �2.4 �2.5 �1.6 �3.5 �4.4

Class E �5.8 �5.3 �4.4 �7.9 �10.0 �9.5 �9.8 �9.4 �8.6

Class F �2.5 �3.1 �3.4 �1.7 �2.8 �3.3 �2.2 �4.4 �4.7

Overall �3.4 �4.1 �4.6 �3.2 �4.4 �4.5 �4.1 �5.6 �5.8

Table 3. Performance of the nonlocal similarity-based loop filter with soft thresholding (NLSLF-S) on HM12.0 with adaptive loop fil-

tering (ALF) turned on.

Sequences

All intra coding (%) Low delay B (LDB) coding (%) Random access coding (%)

Y U V Y U V Y U V

Class A �1.8 �2.3 �2.4 �1.0 �3.9 �2.5 �2.2 �5.2 �5.0

Class B �1.8 �2.1 �3.0 �1.8 �3.9 �4.7 �2.6 �5.0 �5.2

Class C �2.7 �3.5 �4.5 �1.7 �4.4 �5.9 �2.2 �5.6 �6.4

Class D �1.9 �2.8 �3.7 �1.7 �2.2 �3.2 �1.8 �3.7 �4.6

Class E �3.9 �2.8 �2.1 �6.1 �7.5 �6.0 �7.4 �7.3 �6.2

Class F �2.4 �2.9 �3.2 �1.9 �3.6 �3.9 �2.0 �4.2 �4.5

Overall �2.4 �2.7 �3.2 �2.4 �4.2 �4.4 �3.0 �5.1 �5.3

Table 4. Performance of the nonlocal similarity-based loop filter with hard thresholding (NLSLF-H) on HM12.0 with adaptive loop

filtering (ALF) turned off.

Sequences

All intra coding (%) Low delay B (LDB) coding (%) Random access coding (%)

Y U V Y U V Y U V

Class A �4.9 �3.0 �3.5 �3.1 �1.2 �1.4 �4.2 �3.1 �2.8

Class B �3.2 �2.2 �3.9 �3.2 �3.5 �3.7 �4.3 �3.9 �3.8

Class C �3.6 �4.9 �6.9 �1.9 �3.4 �4.8 �2.5 �4.2 �5.9

Class D �3.1 �4.4 �5.9 �1.5 �2.5 �2.8 �2.1 �3.4 �3.4

Class E �7.1 �8.5 �8.9 �7.4 �9.5 �10.5 �10.0 �11.4 �12.1

Class F �3.5 �4.4 �5.0 �2.4 �2.8 �3.6 �3.0 �5.0 �5.4

Overall �4.2 �4.6 �5.7 �3.3 �3.8 �4.5 �4.3 �5.2 �5.6
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similarity offers more benefits for compression

artifact reduction than local similarity alone.

Because hard- and soft-thresholding operations

are suitable for signals with different distribu-

tions, they show different coding gains on differ-

ent sequences. Although NLSLF-H achieves

better performance for most sequences than

NLSLF-S in our experiments, soft thresholding

outperforms hard thresholding for some sequen-

ces, such as for Class E in the LDB coding config-

uration and Class A in the LDB and random

access coding configurations.

Table 6 shows the detailed results of NLSLF-S

with LCU-level control for each sequence.

Table 5. Performance of the nonlocal similarity-based loop filter with hard thresholding (NLSLF-H) on HM12.0 with adaptive loop

filtering (ALF) turned on.

Sequences

All intra coding (%) Low delay B (LDB) coding (%) Random access coding (%)

Y U V Y U V Y U V

Class A �2.1 �1.4 �1.8 �1.0 �1.6 �1.3 �1.7 �2.3 �2.1

Class B �1.9 �1.0 �2.5 �2.1 �2.9 �3.3 �2.6 �3.0 �3.8

Class C �3.1 �2.6 �5.0 �2.0 �4.0 �5.1 �2.2 �4.3 �5.9

Class D �2.6 �1.6 �3.1 �1.6 �2.5 �3.0 �1.9 �3.6 �3.8

Class E �4.9 �4.5 �3.9 �5.5 �5.5 �5.6 �7.5 �7.5 �6.8

Class F �3.1 �4.3 �5.0 �2.8 �3.5 �3.6 �2.9 �4.7 �5.3

Overall �2.9 �2.6 �3.5 �2.5 �3.3 �3.7 �3.1 �4.2 �4.6

Table 6. Performance of the nonlocal similarity-based loop filter with soft thresholding (NLSLF-S) with largest coding unit (LCU)

level control for each sequence.

Sequences

All intra coding (%) Low delay B (LDB) coding (%) Random access coding (%)

Y U V Y U V Y U V

Class A Traffic �2.0 �2.0 �2.4 �2.3 �1.9 �1.5 �2.9 �3.9 �3.2

PeopleOnStreet �2.4 �2.7 �2.4 �2.8 �5.2 �3.4 �2.5 �5.8 �6.1

Class B Kimono �1.9 �1.0 �1.8 �3.0 �4.3 �4.4 �1.5 �2.8 �4.1

ParkScene �0.6 �0.5 �0.9 �0.9 1.4 0.5 �1.3 �0.4 �0.1

Cactus �2.4 �1.5 �4.5 �4.1 �2.3 �4.9 �4.3 �6.8 �7.3

BasketballDrive �1.9 �4.7 �5.2 �2.5 �9.1 �8.5 �2.3 �8.0 �6.9

BQTerrace �2.8 �2.5 �2.7 �4.6 �2.5 �4.9 �7.2 �4.4 �5.6

Class C BasketballDrill �4.3 �7.0 �8.6 �3.1 �10.2 �11.9 �3.3 �11.8 �13.0

BQMall �4.2 �3.8 �4.0 �4.7 �4.3 �4.5 �4.4 �5.4 �5.0

PartyScene �0.9 �1.3 �1.8 �1.4 0.9 1.5 �1.8 �0.1 �0.2

RaceHorsesC �1.3 �1.8 �3.6 �2.7 �3.1 �7.6 �2.6 �3.6 �7.3

Class D BasketballPass �3.4 �4.5 �4.7 �2.4 �4.0 �3.6 �2.0 �5.2 �4.6

BQSquare �1.7 �0.9 �2.6 �1.5 1.0 �0.4 �2.4 �0.8 �1.9

BlowingBubbles �1.1 �2.9 �3.6 �1.9 �2.7 �0.5 �2.2 �3.7 �4.1

RaceHorses �2.1 �3.3 �4.4 �3.3 �1.0 �5.6 �2.7 �4.6 �7.2

Class E FourPeople �3.2 �2.5 �1.7 �4.8 �5.6 �4.5 �5.6 �5.2 �4.7

Johnny �4.9 �3.0 �1.7 �6.7 �7.7 �5.3 �8.1 �6.8 �5.8

KristenAndSara �3.6 �2.6 �2.7 �5.2 �5.0 �4.4 �6.0 �7.4 �5.2

Class F BasketballDrillText �4.4 �6.7 �7.8 �3.3 �8.2 �8.5 �3.7 �10.3 �10.8

ChinaSpeed �1.7 �2.5 �2.5 �2.9 �2.1 �3.1 �2.3 �4.6 �4.4

SlideEditing �1.9 �0.5 �0.8 �2.1 �0.2 �0.4 �2.1 �0.5 �0.8

SlideShow �1.4 �1.5 �1.4 �0.8 �3.2 �1.4 0.0 �0.7 �0.9

Overall �2.5 �2.7 �3.1 �3.1 �3.7 �3.9 �3.3 �4.8 �5.0
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Although LCU-level control increases over-

heads, it can also improve coding efficiency by

avoiding the over-smoothing case. Further, this

shows that room still exists for improving the fil-

tering efficiency by designing more reasonable

thresholds for group-based sparse coefficients.

Figures 6 and 7 illustrate the rate-distortion

curves of NLSF and HEVC without ALF for the

sequences Johnny, KristenAndSara, and FourPeo-

ple, which are compressed at different quantiza-

tion parameters under the random access

configuration. As the figures show, the coding

performance is significantly improved in a wide

bit range with the nonlocal similarity-based in-

loop filters.

We further compare the visual quality of the

decoded video frames with different in-loop fil-

ters in Figure 8. The deblocking filter removes

only the blocking artifacts, and it is difficult to

reduce other artifacts, such as the ringing arti-

facts around the coat’s stripes in the Johnny

image. Although SAO can process all the recon-

structed samples, its performance is constrained

by the large overheads, such that blurring edges

still exist. The nonlocal similarity-based filters

can efficiently remove different kinds of com-

pression artifacts, as well as recover destroyed

structures by utilizing nonlocal similar image

patches, such as recovering most of the lines in

Johnny’s coat.

Although NLSLF achieves significant impro-

vement for video coding, it also introduces

many computational burdens, especially due to

SVD. Compared with HM12.0 encoding, NLSLF-

H’s encoding time increase is 133 percent, 30

percent, and 33 percent for all intra, LDB, and

random access coding, respectively. This also

proposes new challenges for loop filter research
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Figure 6. The rate-distortion performance of the nonlocal similarity-based loop filter with soft thresholding (NLSLF-S) compared with

HEVC with the adaptive in-loop filter turned off. The test involved three sequences: (a) Johnny, (b) KristenAndSara, and (c)

FourPeople. All three sequences are compressed by HEVC RA coding.
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on image nonlocal correlations, which we plan

to explore in our future work.

T he novelty in our approach lies in adopt-

ing the nonlocal model in the in-loop fil-

tering process, which leads to reconstructed

frames with higher fidelity. To estimate the

noise level, we examined different kinds of

thresholding operations, confirming that the

nonlocal strategy can significantly improve the

coding efficiency. This offers new opportunities

for in-loop filter research with nonlocal prior

models. It also opens up new space for future

exploration in nonlocal-inspired high-effi-

ciency video compression.

Apart from in-loop filtering, the nonlocal

information can motivate the design of other

key modules in video compression as well. Tra-

ditional video coding technologies focus

mainly on reducing the local redundancies by

intraprediction with limited neighboring sam-

ples. This interprediction can be regarded as a

simplified version of nonlocal prediction,

which obtains predictions from a relatively

large range compared to intraprediction, lead-

ing to significant performance improvement.

However, to the maximum extent, only a

unique pair of patches can be employed, such

as one image patch in unidirectional predic-

tions and two image patches in bidirectional

predictions. This significantly limits the predic-

tion technique’s potential, as the number of

similar image patches can be further extended

to fully exploit the spatial and temporal redun-

dancies. With the new technological advances

in hardware and software, we could have fore-

seen the arrival and maturity of these nonlocal-

based coding techniques. We also believe that

the nonlocal-based video coding technology

described in this article—or similar technolo-

gies developed based on it—could play an

important role in the future of video

standardization. MM
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