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Abstract—In this contribution, a novel image quality enhance-
ment algorithm based on convolutional network is proposed
for low bit rate image compression. Specifically, a downsample
procedure is performed to generate lower resolution image for
low bit rate compression. While the decoder side, upsample is to
be performed firstly to the original resolution. Image quality is
further enhanced by the proposed convolutional deep network.
In particular, an optional image quality improvement network
can be utilized for further enhancement after the first network.
With the help of deep network, more detailed and high-frequency
information can be recovered while maintaining the consistency
of contour area, leading to better visual quality. Another benefit
of this approach lies in that the proposed approach is fully com-
patible with all third-party image codec pipeline. Experimental
result shows that the proposed scheme significantly outperforms
JPEG in low bit rate image compression.

Index Terms—Low Bit Rate, Image Compression, Deep Con-
volutional Network

I. INTRODUCTION

Popular image compression standards such asin JPEG [1]
and JPEG2000 [2] can not handle the coding performance in
low bit rate image compression well. However, image com-
pression at low bit rate has always been considered as a tough
research topic due to undisciplinable quality of transmission
channel and compatibility of display scalability in devices
with different resolutions. Meanwhile, limited number of bits
for each pixel would lead visually unacceptable compression
artifacts [3], [4], [5]. A sampling-based image compression
strategy has been proposed for low bit rate coding [6], [7],
[8], where an image was downsampled before compression
for reducing spatial redundancies among neighboring pixels
which would be codec-friendly during compression. Lower
resolution can offer flexibility when displaying on devices with
low resolution screens, e.g. mobile devices.

However, the image quality may also suffer from the in-
formation loss during simple sampling. Therefore, extensive
algorithms have been proposed for enhancing the compressed
image quality, which can be divided to three categories, i.e.
iteration-based, dictionary learning and deep learning meth-
ods. A wavelet inpainting driven image compression method

was proposed by Zhao et al. [9] to overcome unsatisfactory
quality of low bit rates image coding, in which a wavelet
inpainting technique via collaborative sparsity was utilized
by merging wavelet transform when downloading. Dictionary
learning based super resolution (SR) approaches typically
built upon sparse coding (SC) theory [10]. Yang et al. [11]
used a SC formulation to learn low-resolution (LR) and
high-resolution (HR) dictionaries by assuming that LR and
HR features share the same reconstruction coefficients. More
recently, deep learning has shown its power in image SR by
learning hierarchical representations of high-dimensional data,
and various successful applications have been observed for
both low-level image processing tasks [12], [13] and high-
level computer vision tasks [14].

We establish a deep convolutional network based image
enhancement mechanism for low bit rate image coding in
this contribution. The benefits are manifold. First, besides
improving the image quality, the proposed framework can also
provide essential features from the deep network for other
vision applications. Second, the framework is compatible with
any third-party image codec so that scalability and flexibili-
ty can be preserved. Third, comparing with iteration-based
algorithms [15], the proposed method can achieve faster run-
ning speed while maintaining the same level of performance.
Experimental results have shown that our framework yields
significant performance improvements compared to JPEG at
low bit rate conditions.

The remainder of the paper is organized as follows. Sec-
tion II describes the details of the proposed framework based
on the deep convolutional network. Section III shows the
compression performance in terms of both objective and
subjective comparisons. Section IV will draw the conclusion
of this work.

II. PROPOSED FRAMEWORK

In this section, we will first overview our framework and
formulate the model as an optimization problem. Subsequent-
ly, the details of the deep network are introduced.

A. Overview

The overview diagram of our proposed framework is shown
in Fig. 1. Firstly, a bicubic downsampling process is performed

978-1-5090-5316-2/16/$31.00 c© 2016 IEEE VCIP 2016, Nov. 27 – 30, 2016, Chengdu, China



Fig. 1. Overview of the Proposed Framework.

on the original image to generate a lower resolution version.
Subsequently, the downsampled image is compressed by a
third-party codec, and the coded bitstream will be transmitted
through the channel. Regarding the decoder side, the decoded
then upsampled image will be processed by a three-layer deep
convolutional network for further image quality improvement.

B. Problem Formulation
The formation is defined as follows,

Y = HX + N, (1)

where X denotes the original image and Y represents the
directly reconstructed low resolution image at decoder side.
H indicates the downsampling operator, which is the bicubic
interpolation in this work. N is the quantization and Gaussian
noises introduced during compression and transmission. At the
decoder side, an up-sampling process is performed to obtain
the image in original resolution, which can be considered as
an inverse progress of downsampling. According to (1), the
restoration problem can be formulated as follows,

X̂ = argmin
X
‖ HX− Y ‖22 . (2)

As for image enhancement using deep network, we define
the learning process as follows. Given a set of ground truth
images xi and their corresponding upsampled decoded images
yi , the Mean Squared Error (MSE) is adopted as the loss
function for optimizing the F process,

Ł (θ) =
1

N

N∑
i=1

‖ F (yi; θ)− xi ‖22, (3)

where θ consists of all convolution kernel coefficient, N is the
number of training examples.

C. Deep Network
In recent years, deep network have demonstrate its power

in image processing. Dong et al. [16] proposed an algorithm
using deep convolutional nets for super resolution and com-
pression artifact reduction. In our framework, the decoded
and upsampled image will be processed by a three-layer
convolutional network, see Fig. 2. Formally, the convolution
layers can be expressed as operation F in Eq. (6):

Fi (Yi) = max (0,Wi ∗ Yi +Bi) , i = 1, 2 (4)

F3 (Y2) =W3 ∗ F2 (Y2) +B3. (5)

F (Y ) = F3 (F2 (F1 (Y))) . (6)

where in Eq. (4) Wi and Bi represent the filters and biases of
each layer respectively, and ∗ denotes the convolution opera-
tion. Here, Wi corresponds to ni filters of support c× fi× fi,
where c is the number of channels of input image, fi is the
filter kernel size. That is, Wi applies ni convolutions with each
kernel size c× fi × fi on the image. Therefore, the output of
each layer-i is composed of ni feature maps, and Bi is the ni-
dimensional bias vector. All filter responses are then applied
by a ReLU unit [17].

D. Implementation Details
We implement our model using the latest version of Caffe

package [18]. To generate the training and test samples, we
prepare our ground truth image Xi as ftrain×ftrain×c pixel
sub-images, which are randomly cropped from the training im-
age dataset [12]. To synthesize the low-resolution samples Yi,
we implemented the downsampling and upsampling process
via bicubic interpolation. The Caffe file format we choose is
HDF5.

As for training parameters, to avoid overfitting during
training, we set the learning rate as 0.0001. For better conver-
gence, the momentum is set as 0.9, while ignoring the weight
decay term which is mainly utilized to avoid local minimum
in deep learning training. The training set consists of 200
images. For better visual quality, we also add artifact reduction
convolutional neural network (ARCNN) [16] as an optional
stage after bicubic upsampling at the decoder side since low
bit rate coding always brings heavy artifacts and bad subjective
quality. During training process, no dropout is adopted due to
our network only consists of several convolution layers.

The overall diagram of our deep convolutional network is
shown in Fig. 2.

III. EXPERIMENT RESULTS

This section provides experimental results including both
objective and subjective quality as well as complexity analysis.
Specifically, seven commonly used images are utilized for
testing, including Baby, Bird, Butterfly, Head, Woman, Zebra
and Barbara. The popular single image compression standard
JPEG coding is adopted as the comparison method (baseline).



Fig. 2. Diagram of Deep Convolutional Network.

TABLE I
PSNR PERFORMANCE FOR DIFFERENT CODING RATE.

Rate(bpp) 0.15 0.20 0.25 0.30 0.35

Baby JPEG 25.47 30.99 32.57 33.86 34.74
Proposed 31.69 32.92 33.98 34.51 34.97

Bird JPEG 24.13 27.29 29.65 31.02 32.59
Proposed 28.43 30.48 31.61 32.72 33.42

Butterfly JPEG 20.05 20.39 21.16 22.98 23.88
Proposed 21.07 22.81 23.27 23.87 24.57

Head JPEG 27.12 29.78 31.22 32.07 32.81
Proposed 30.81 31.65 32.21 32.61 33.02

Woman JPEG 23.15 24.68 26.88 28.07 29.41
Proposed 25.92 27.44 28.39 29.11 29.92

Zebra JPEG 22.32 24.08 25.69 26.89 27.36
Proposed 24.23 26.19 26.88 27.66 28.23

Barbara JPEG 22.84 25.01 26.44 27.13 27.82
Proposed 25.75 26.41 26.84 27.22 28.02

Average JPEG 23.58 26.03 27.66 28.86 29.80
Proposed 26.84 28.27 29.03 29.67 30.31
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Fig. 3. PSNR-bpp Curves Comparing with JPEG Coding.

A. Objective Quality

The PSNR comparisons under similar rate are reported in
Table.I. At each bit rate, the best PSNR results are marked
in bold for each image. The corresponding PSNR-bpp curves
are also drawn in Fig. 3. We can clearly see that our proposed
framework can provide significant coding gains against JPEG
for all the cases under extremely low bit rates from 0.15 bpp
to 0.30 bpp, even when the bit rate reaches up to 0.35 bpp.

(a) Ori/PSNR (b) JPEG/27.57 (c)
Propose/28.74

(d) Ori/PSNR (e) JPEG/30.47 (f)
Propose/32.89

(g) Ori/PSNR (h) JPEG/23.21 (i)
Propose/24.43

Fig. 4. Visual Quality Comparisons.

B. Subjective Quality

We then exploit the subjective quality of image woman
in Fig. 4. One can observe that the edges and contours of
woman’s hands can be retained by the proposed algorithm
while the JPEG brings obvious ringing artifacts. Moreover,
the details in strips area especially around boundaries can be
also reserved, leading to better subjective quality. According
to these observations, we can conclude that the proposed
algorithm not only can process the pixels inside objects, but
also can filter object boundary for suppressing compression
artifacts, leading to more pleasing visual quality.

C. Quality Improvement

To further improve image quality, we adopt compression
artifact reduction convolutional neural network (ARCNN) [16]
after bicubic upsampling at the decoder side as described in
Section II-D. Since the philosophy of our proposed frame-
work mainly emphasizes on a post-processing stage of the
upsampled image for better image quality. By appending
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Fig. 5. PSNR-bpp Curve: Appending ARCNN Network before Upsampling
at Decoder Side

the strengthen network ARCNN, the objective and subjective
quality of upsampled image can be promoted to a higher level.

To evaluate the performance of the ARCNN, the PSNR-
bpp curves before and after ARCNN strengthen are plotted in
Fig. 5. Obviously, the ARCNN can bring further performance
improvements after the first stage of deep network for both
the JPEG coding and the proposed scheme.

D. Complexity Analysis

Many existing sampling-based algorithms need iteration op-
eration for better performance which discounts their ability for
practical application usage [19], [9], [20]. Our proposed CNN-
based algorithm can benefit from the fast processing, while
the major complexity lies in the offline training procedure in
which we choose the standard version of Caffe. After training,
we adopted the Caffe MATLAB wrapper to run our model.
The computing environment is Windows 10 64-bit operating
system with 8GB RAM. It takes 10 hours for training to get all
network model parameters. Fortunately, only 2.39 seconds are
used for processing a 288×344 image, indicating the proposed
framework can be applied in practical applications.

IV. CONCLUSION

In this paper, an image enhancing scheme based on deep
convolutional network is proposed for low bit rate image com-
pression, which follows the sampling-based coding strategy.
The visual quality of the decoded and upsampled image can
be improved through the trained deep network. The proposed
framework is also compatible with any third-party image
codec so that the scalability and flexibility can be maintained.
Experimental results have shown that the coding performance
of the proposed scheme can be significantly improved over
JPEG at low bit rate conditions.
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