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ABSTRACT 
 
Content-based video copy detection over large corpus with 
complex transformations is important but challenging. It is 
not surprising that most existing methods fall short of either 
sufficient robustness to detect severely deformed copies or 
high accuracy to localize copy segments. In this paper, we 
propose a video copy detection approach which exploits 
complementary audio-visual features and sequential 
pyramid matching (SPM). Several independent detectors 
first match visual key frames or audio clips using individual 
features, and then aggregate the frame level results into 
video level results with SPM, which calculates video 
similarities by sequence matching at multiple granularities.  
Finally, detection results from basic detectors are fused and 
further filtered to generate the final result. Excellent 
performance evaluated on TRECVid 2010 copy detection 
task demonstrates the effectiveness of our approach. 
 

Index Terms—copy detection, sequential pyramid 
matching, feature fusion 
 

1. INTRODUCTION 
 
Content-based video copy detection addresses the issue that 
automatically determines whether a query video contains a 
copy from a given database of reference videos and if so 
from where the copy comes. Here the term “copy” means a 
video segment derived from another video usually by visual 
and/or audio transformations. Nowadays, copy detection has 
shown great value in many video applications such as 
copyright control, illegal content monitoring, and so on. 

However, copy detection is pretty challenging due to 
the following factors. First, one certain kind of feature is 
robust only to several kinds of modifications. The invariant 
features proposed in the literature include an augmented 
local visual feature of SIFT [1], a global visual feature based 
on spatio-temporal distribution of intensities [ 2 ], and an 
audio feature as the combination of MFCC and RASTA-
PLP [3]. Second, for frame-based methods without proper 
temporal voting mechanism, copies are not likely to be 
accurately detected and precisely located.  For this reason, a 

spatio-temporal post-filtering mechanism is presented in [1] 
to keep only the frame matches that are consistent with a 
spatio-temporal model. A 2-D Hough transform is applied to 
the audio frame matches to localize the copy segment [3]. 
Last but not least, compact feature representation and 
efficient index are required for a practical copy detection 
system. Toward this end, bag-of-words (BoW) 
representation and inverted index are often used [1, 3, 4]. 

Therefore, we propose a copy detection approach with 
multimodal feature fusion and sequential pyramid matching 
(SPM), which is shown in Figure 1. Complementary audio-
visual features are employed to achieve the goal of total 
robustness to various transformations through later result 
fusion. And SPM is adopted to aggregate frame level results 
into video level results. 

The remainder of this paper is organized as follows. Sec. 
2 describes the proposed approach. Sec. 3 presents the 
experimental results. And sec. 4 concludes this paper. 
 

2. PROPOSED APPROACH 
 
This section presents the modules of our copy detection 
approach, namely preprocessing, basic detectors, SPM as a 
component of each detector, and fusion & verification.  
 

2.1. Preprocessing 
 
Visual key frames are obtained by uniform sampling at a 
rate of 3 frames per second. Audio frames are obtained by 
dividing the audio signal into segments of 60ms with a 40ms 
overlap between consecutive frames, and 4-second-long 
audio clips are constructed by every 198 audio frames with a 
3.8 seconds overlap between adjacent clips. Additionally, 
Hough transform is employed to detect the Picture-in-
Picture transformation, and queries asserted as non-copies 
will be flipped and matched again to deal with potential 
flipping transformation. 
 

2.2. Basic detectors 
 
Four detectors are constructed respectively upon two local 
visual features, one global visual feature and an audio 
feature. Each detector is briefly described as follows, 
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Figure 1. Overview of our video copy detection approach

leaving SPM to be presented in the next subsection. 
Detectors over local visual features: two similar 

detectors employ the BoW framework in [4] for SIFT [5] 
and SURF [6] respectively. Take the detector over SIFT for 
example. During feature extraction, a refinement proposed 
in [7] is utilized to keep the most stable features. K-means 
algorithm is conducted on a random subset of references’ 
features to calculate a visual vocabulary, and all the features 
are quantized as visual words. Position, orientation and scale 
of SIFT features are also used so that only features 
belonging to the same word with similar position, 
orientation and scale are regarded as matches. All these 
information are quantized and stored in an inverted index 
along with reference videos’ SIFT visual words to accelerate 
feature matching process. 

Detector over global visual feature: we propose a 
global visual feature based on the relationship between the 
discrete cosine transform (DCT) coefficients of adjacent 
image blocks. In particular, a key frame is firstly normalized 
to 64 64×  pixels and divided into 64 blocks with the size of 
8 8×  pixels. Then a 2-D DCT is applied over each block to 
obtain a coefficient matrix with the same size. After that, 
energies of the first four subbands of each coefficient matrix 
(i.e. the top left four diagonals of the matrix) are computed 
by summing up the absolute values of corresponding DCT 
coefficients. Finally, a 256-bit DCT feature 256D  can be 
obtained by computing relative magnitudes of the energies: 
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where ,i je  is the energy of the i-th subband of the j-th block. 
Hamming distance is used as the distance metric for DCT 
feature and all the reference videos’ DCT features are 
indexed by locality sensitive hashing (LSH) [8]. 

Detector over audio feature: Weighted ASF (WASF) 
[9] is used as audio feature. In brief, a 14-D feature is first 
extracted from each 60ms audio frame. Then, each audio 

clip’s 198 14-D features are assembled and reduced to a 
126-D WASF feature. Euclidean Distance is adopted to 
measure the dissimilarity between two WASF features, and 
all the reference videos’ features are indexed by LSH for 
efficient feature matching. 

Given a query video, each detector picks up the top 1K  
( 1 20K = ) similar reference key frames (audio clips) for 
each query key frame (audio clip), resulting in a collection 

fM  which contains a series of frame level matches fm : 
 , , , ,f q r fm q t r t s=< >  (3) 
where q and r identify the query and reference videos, qt  
and rt  are timestamps of the query and reference key frames 
(audio clips), and fs  is the similarity of the key frame 
(audio clip) pair. Since fs  values computed through 
different features are not consistent, histogram equalization 
is applied in each detector to make these scores more evenly 
distributed and comparable. Distribution of fs  values for 
each feature is learned on the training data set. 
 

2.3. Sequential Pyramid Matching 
 

Given the frame matches fM , copies are detected through 
the following three steps. First, a 2-D Hough transform like 
[3] is conducted on fM  to vote in 2K  hypotheses ,r tδ< >  
( 2 10K = ), where q rt t tδ = −  specifies the temporal offset 
between query and reference video. Second, for each 
hypothesis, the begin and end of copy are identified by 
picking up the first and last matches fm  in fM  that accord 
with this hypothesis. Finally, SPM is performed on each 
potential video match to calculate its similarity, getting: 
 , , , ,, , , , , ,v q b q e r b r e vm q t t r t t s=< >  (4) 
which means the sequence , ,[ , ]q b q et t  of query q is likely to 
be a copy from the sequence , ,[ , ]r b r et t  of reference r with a 
similarity vs . Only if vs  is above a threshold 1T , will vm  be 
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Figure 2. Toy example for a L=2 SPM 

accepted as a video match. When several vm  for query q 
exceed 1T , only the one with the highest vs  is reserved. 

Now we’ll detail SPM. Intuitively speaking, all the 
frame matches between q and r should accord with the same 

tδ  to preserve the temporal characteristic of videos and 
eliminate potential false positives. But in practice such 
restriction may be counterproductive since strictly aligned 
frame matches are so few that many true positives could be 
dropped. To obtain a good tradeoff, inspired by spatial 
pyramid matching [ 10 ] which conducts pyramid match 
kernel [11] in 2-D image space, we adapt the kernel to 1-D 
video temporal space, resulting in the SPM which works by 
partitioning videos into increasingly finer segments and 
computing video similarities at each resolution (c.f. Figure 
2). Besides, the SPM algorithm only needs a set of frame 
level matches as input, thus it is suitable for all kinds of 
audio-visual features and computationally efficient. 

Specifically, SPM performs a series of sequence 
matching at level 0, , L  (in practice 3L = ), such that the 
sequence , ,[ , ]q b q et t  (along with , ,[ , ]r b r et t ) at level  is 

divided into 2D =  segments, namely ,1 ,, ,q q Dts ts  
( ,1 ,, ,r r Dts ts ), where key frames within corresponding 
segments can be matched across two sequences, i.e. the 
video similarity at level   is given by the following formula: 
 , , ,{ | , , , , , , }v i f q r f f q q i r r is sum s q t r t s M t ts t ts= < >∈ ∈ ∈  (5) 
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where fn  denotes the number of key frames (audio clips) in 

, ,[ , ]q b q et t , so that vs  is normalized to eliminate the influence 

of sequence length. The weight of level  is set to 2 L−  for 
0= , and 12 L− −  for 1, , L= , reflecting the penalization 

for matches in coarser levels. The final vs  is calculated by 
accumulating the weighted similarities from multiple levels: 
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2.4. Fusion and verification 
 
A result level fusion is utilized to fuse the detection results 
from different detectors. Besides, considering that the BoW 
representation inevitably causes decrease in feature’s 
discriminability, a verification module is added to calculate 
the similarities of certain video matches again with original 
(vectorial) SIFT and SURF features. More specifically, if a 
query is asserted as a copy by any two detectors, i.e. there’re 
two tuples like (8) and (9) satisfying (10), it is confirmed as 
a copy represented by (11): 
 , , , ,, , , , , ,v q b q e r b r e vm q t t r t t s=< >  (8) 
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Query asserted as a copy by only one detector is passed to 
the verification module. Only if the new calculated 
similarity for the video match is above a threshold 2T , will it 
be accepted as a copy. 
 

3. EXPERIMENTS 
 
Experiments are conducted over the TRECVid 2010 CCD 
task [ 12 ]. The task contains a 420-hour-long reference 
database composed of videos collected from the internet and 
10,976 query videos1 which are averagely 70 seconds long. 
It adopts 8 visual transformations and 7 audio 
transformations, combining into 56 mixed transformations, 
which cover most practical video modifications. We test 
four runs, the first pair “balanced.perseus” & “nofa.perseus” 
follows the exact scenario presented above, while the 
second pair “balanced.kraken” & “nofa.kraken” omits the 
verification module and instead uses higher threshold 1T  in 
SPM to prevent false positives. Official evaluation results 
are summarized below. 

NDCR: Normalized Detection Cost Rate synthesizes 
the cost for false negatives and false positives, measuring a 
system’s detection effectiveness. Our system achieves 
excellent NDCR: among all the 56 transformations, it gets 
39 best (lowest) “Actual NDCR” and 51 best “Optimal 
NDCR” for BALANCED profile, and it gets 52 best “Actual 
NDCR” and 50 best “Optimal NDCR” for NOFA profile. 
Figure 3 exhibits the details about “Optimal NDCR” for 
BALANCED profile, note that we achieve perfect results 
(NDCR=0) for 20 transformations. 

The NDCR performance demonstrates that with 
preprocessing, the combination of multimodal features is 
                                                 
1 11,256 query videos were used at first, 280 of which were 
dropped by NIST later. 
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Figure 3. Optimal NDCR for BALANCED profile. The “bestExceptUs” columns present the best NDCR obtained by all the 

other participants, and the “median” columns present the median NDCR of all the participants (including our results)

largely robust to all kinds of transformations. Lower 
NDCRs achieved by “perseus” than those of “kraken” over 
most transformations imply the effectiveness of verification 
module. Furthermore, average NDCRs obtained by the DCT 
detector with single level sequence matching and SPM 
respectively are listed in Table 1, illustrating that SPM 
significantly outperforms single level sequence matching. 
On the one hand, result at single level 0=  is 
unsatisfactory since the malposed frame matches are 
included in the video similarity calculation, thus leading to 
many false positives. On the other hand, sequence matching 
at 4=  misses some short copies because strictly aligned 
frame matches are too few. In comparison, SPM obtains a 
better tradeoff through the multi-granularity strategy. 

Table 1. DCT detector’s average Optimal NDCR for 
BALANCED profile 

L Single Level SPM 
0 (1 ts) 0.415  
1 (2 ts) 0.346 0.312 
2 (4 ts) 0.294 0.241 
3 (8 ts) 0.251 0.179 

4 (16 ts) 0.263 0.180 
 
Mean F1: F1 evaluates the accuracy of copy 

localization (only for true positives). Our system achieves 
competitive F1 performance: for both profiles and all the 
transformations, the F1 values are all around 0.9 with minor 
deviation. Table 2 exhibits the average “Optimal Mean F1” 
for BALANCED profile over 56 transformations. The 
difference between our F1 and the best ones may be 
attributed to the “overcautious” strategy for copy extent 
computation expressed by (11) in the fusion module. 
Table 2. Average Optimal Mean F1 for BALANCED profile 

perseus kraken bestExceptUs median 
0.889 0.892 0.968 0.794 

 
4. CONCLUSION 

 
We have proposed a multimodal video copy detection 
approach with sequential pyramid matching to address the 

challenging issues posed by detecting video copies over 
large corpus with complex transformations. Official 
evaluation results prove that our approach is effective in 
both copy detection and localization. Further endeavors will 
be devoted to optimizing fusion strategy for better 
localization accuracy. 
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