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Abstract—Interest point detection is a fundamental approach
to feature extraction in computer vision tasks. To handle the
scale invariance, interest points usually work on the scale-space
representation of an image. In this letter, we propose a novel
block-wise scale-space representation to significantly reduce the
computational complexity of an interest point detector. Laplacian
of Gaussian (LoG) filtering is applied to implement the block-wise
scale-space representation. Extensive comparison experiments
have shown the block-wise scale-space representation enables the
efficient and effective implementation of an interest point detector
in terms of memory and time complexity reduction, as well as
promising performance in visual search.

Index Terms—Block-wise scale-space representation, interest
point detector, Laplacian of Gaussian, scale-space.

1. INTRODUCTION

ITH the explosive growth of mobile devices, deploying
W computer vision algorithms at low computational com-
plexity is important. For example, to reduce query delivery la-
tency, recent works in mobile visual search [1], [2], [3], [4], [5]
have attempted to extract and compress visual features directly
on a mobile device and transmit compact descriptors instead of
images to the remote server. As intense computing may consume
considerable power and shorten battery life, the complexity of
feature extraction should be moderate.

Local features exhibit superior performance in image recog-
nition and classification. Local feature extraction typically in-
volves detecting interest points and describing the invariant fea-
ture of each interest point. Ideally, an interest point detector
should be invariant to transformations like scale change, trans-
lation and rotation. In this letter, we propose a novel approach to
significantly reduce the complexity of an interest point detector
in terms of memory and time. In particular, a low complexity in-
terest point detector is a key requirement in the emerging MPEG
standard on Compact Descriptors for Visual Search (CDVS)[6].

Manuscript received June 13, 2014; accepted August 15, 2014. Date of pub-
lication September 04, 2014; date of current version September 09, 2014. This
work was supported by the National Natural Science Foundation of China under
Contracts 61271311, 61121002, 61390515, and 61210005. The associate editor
coordinating the review of this manuscript and approving it for publication was
Prof. Alex Dimakis.

J. Chen, L.-Y. Duan, F. Gao, and T. Huang are with the Institute of
Digital Media, the School of EE & CS, Peking University, Beijing 100871,
China (e-mail: cjie@pku.edu.cn, lingyu@pku.edu.cn, gaof@pku.edu.cn,
tjhuang@pku.edu.cn). Ling-Yu Duan is the corresponding author.

J. Cai is with the School of Computer Engineering, Nanyang Technological
University, Singapore (e-mail: ASJFCai@ntu.edu.sg).

A. C. Kot is with the School of Electrical and Electronic Engineering,
Nanyang Technological University, Singapore (e-mail: eackot@ntu.edu.sg).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/LSP.2014.2354237

To handle the scale invariance, an image is extended to a
scale-space, which is represented by a family of smoothed im-
ages, parameterized by a series of smoothing kernels of different
scales. The scale-space representation involves two basic prob-
lems: how to construct a scale-space and how to identify in-
terest points within a scale-space. In [7], [8], [9], it has been
proved that Gaussian function is the unique smoothing kernel for
constructing a scale-space, satisfying the scale-space axioms [9]
including linearity, shift invariance, semi-group structure, non-
creation of local extrema, scale invariance and rotational invari-
ance. To identify interest points within a scale-space, Crowley
and Parker [10] proposed to identify peaks and ridges in the
low-pass transform of an image (which is a kind of scale-space
derivative). Lindeberg proposed automatic scale selection based
on local extrema (i.e., maximum/minimum) over the normalized
scale-space derivatives through different scales [9], [11], [12].

In practice, a scale-space is represented as an image pyramid
in which an image is successively filtered by a family of
smoothing kernels at increasing scale factors. Meanwhile, the
normalized derivatives of each scale in an image pyramid are
generated, where extrema detection is performed by searching
for local extrema, to identify interest points.

However, such an image pyramid based scale-space represen-
tation requires huge amount of memory to store the smoothed
images and normalized derivatives, and incurs heavy convolu-
tion operations for generating smoothed images and differen-
tial operations for normalized derivatives. Lowe [13] proposed a
Difference of Gaussian (DoG) filter to approximate a Laplacian
of Gaussian (LoG), which reduces the differential operations of
Laplacian to simple subtractions of Gaussian scales. Bay [14]
used box filters and integral images to approximate the Deter-
minant of Hessian of Gaussian scales, thereby saving the con-
volution operations and differential operations. However, nei-
ther of two methods has addressed the issue of heavy memory
cost in constructing a scale-space representation. Moreover, fur-
ther reducing the filtering time cost in a pyramid based scale-
space is meaningful [6] to improve the efficiency of scale-space
construction.

To address the memory complexity issue, we propose a block-
wise scale-space representation. By decomposing an image into
blocks, we construct a block-wise scale-space, and perform ex-
trema detection within a block of scale-space, thereby signifi-
cantly reducing the memory cost of filters and buffers (say, < 1M
bytes). Meanwhile, the block-wise scale-space enables the fre-
quency domain filtering mechanism, thereby reducing time cost
by 2 ~ 3 times. In particular, the implemented Block based Fre-
quency Domain Laplacian of Gaussian (BFLoG) detector has
been adopted by the emerging MPEG CDVS standard [15].

The rest of this letter is organized as follows: Section II
presents the problem of a block-wise scale-space. Section III
describes the block-wise scale-space and its low complexity
characteristics. Extensive experiments are shown in Section IV.
Finally, we conclude this letter in Section V.
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Fig. 1. The proposed pyramid of block-wise scale-space (b) to approximate

that of image-wise scale-space (a).

II. PROBLEM STATEMENT

A. Brief Review of the Scale-Space

The scale-space of an image I(:x, y) is defined as a function
L{z,y.0) in the continuous domain [13], which convolves the
input image with a series of Gaussian functions G(r, y.s) of
different scale factors:

Liz.y.0) = Gla.y,0) *1(x.y) (1)
where * denotes a convolution operation, and
Gl o) = 5o @)

To2

As concluded in [16], the local extrema of the Laplacian of
Gaussian (LoG) with scale normalization produce most of the
stable interest points, with the formulation as follow:

LoG(x,y.0) = 6>V L{x,y.0) 3)
where V? denotes a Laplacian operator.

As a discrete representation of the scale-space, a number
of scale sampled images are generated w.r.t. scale factors o.
With the increase of scale factor, the enlarged Gaussian Kernels
bring about more complex convolution operations. To reduce
time complexity, rather than memory complexity, a scale-space
is usually represented as an image pyramid as illustrated in
Fig. 1(a), where the sampled images are grouped into @ oc-
taves {Oylg = 1..... @}. Each octave consists of S smoothed
images with exponentlally sampled scale factor o, = 25 § oo,
k= ., 5. Once an octave is constructed, the smoothed
image that has twice the initial value ¢, is downsampled as
the input image for the next octave. Such an image pyramid
saves the convolution operations a lot. On the one hand, within
each octave, scale images can be generated with a cascade of
reduced sized filters. On the other hand, as the scale factor
reaches up to the twice of the initial value oy, the smoothed
image can be downsampled with a factor of 2 due to redundant
pixel information. Accordingly, the kernel size is halved.

B. Problem Formulation

We aim to decompose a scale-space into block-wise repre-
sentation and perform interest point detection for each block
independently. Such block-wise representation may degenerate
compared to the original scale-space, which would impact the
performance (say, image matching) of local features. We de-
rive the block-wise scale-space representation by resolving the
problem of minimizing the distortion of scale-space, subject to
the constraints of memory and time cost.
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Given an image I, the objective is to minimize the distortion
D between the original scale-space L and the block-wise scale-
space L, by optimizing the block decomposing configuration B,
as follows

ngn D(L,L(B)) 4)
For each octave O,, we denote the block decomposition config-
uration B as follows

K, Ky
B:{quk}k\:’1:{( Ta ke Yaoks Waks Rk )}ty %)

where g ¢, yq.k,Wq .k, hq « denote the location coordinate, width,
height of each block, respectively; K, the block number within
octave O, and the union of A, decomposed blocks shall cover
the original octave sufficiently.

Distortion Measure: The distortion D(L,L) can be directly
measured by Mean Square Error (MSE) between the original
scale-space L and the block-wise scale-space L. However, the
MSE distortion cannot explicitly reflect the performance drop in
vision tasks like visual search, scene classification, etc., from the
degenerated interest point detection in the distorted scale-space.
In this work, we propose a novel distortion measure in terms
of image matching precision (MP), which is a crucial criteria
for evaluating visual search performance. MP can be defined
as a True Positive Rate (TPR) at a target False Positive Rate
(FPR) over an image collection of image matching pairs and
non-matching pairs. Hence, the distortion D(L, L) in (4) is re-
duced to the degradation of image matching precision MP be-
tween the original scale-space L and the block -wise scale-space
T with an optimal block configuration { B,z }+4 PR

D(L,L(B)) = MI}, — MP- (6)

Constraints: The block-wise scale-space allows for the
block-level interest point detection to be independent of each
other, which contributes to the significant reduction of memory.
A simple way is to uniformly partition the image into blocks
or stripes (a few consecutive lines of pixels). A block based
partition can greatly minimize the memory cost, while a stripe
based partition suits for the raster scanning of image cap-
turing but save less memory cost. In terms of the constraint
to minimize the performance distortion D(L,L), the size of
the largest block determines the upper limit of memory use.
Let Size(Bg.i) = wqr X hgw denote the size of each block
B, . The block decomposition optimization in (5) is subject
to the maximum of Size(B, ;). In other words, the optimal
block configuration {Bq_;»}ff:q , 1s subject to the memory use in
addition to the performance distortion.

III. BLOCK-WISE SCALE-SPACE

A. Building up the Block-Wise Scale-Space

To construct a block-wise scale-space, we partition the orig-
inal scale-space into K, overlapping blocks. As interest point
detection is performed for each separate block, proper overlap-
ping is to minimize the precision loss of scale-space represen-
tation at the boundary of each block when performing Gaussian
or Laplacian of Gaussian convolution. Ideally, minimizing the
dlstomon in (4) needs to walk through a huge parameter space
{(xk gk wh nE)Y to search for the best conﬁguratlon {B, }k 2,
with respect to all blocks in all octaves in an image pyramid.
Clearly, this is intractable.
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Fig. 2. Decomposing an image into overlapped blocks.

The proposed block-wise scale-space is described as below:
Starting from the top left corner, each octave input image O,
is decomposed into K, square R-pixel overlapped blocks B, x.
See Fig. 2, the width (or height) of each block is N = C' + 2R.
Size(B, ) = N?. The objective in (4) can be reduced to:

min D(L. L(B(N. R))
v

where N,,.x determines the maximum width (or height) of each
block to reflect the memory constraint. Thus, the huge param-
eter space is reduced to a tractable space of two parameters N
and R. For the nature of convolution, both parameters impact
the performance of interest points detection in the block-wise
scale-space representation. This has been validated in experi-
ments in Section [V. Since both N and I? are integer and limited
with the width or height of an image, the range of .V and R are
enumerable. Therefore, to solve (7), a straightforward way is to
enumerate the values of V and R, and determines the optimal
configuration by choosing the minimum matching performance
distortion.

With an optimal configuration B, ;, the scale-space of each
block % for each octave (7, involves S Gaussian representation
BYs.a € {1...5}, and S +2 LoG representation B, ; ", b €
{0...5 + 1}. Two additional layers of LoG representanon is
meant to support the neighborhood comparison of LoG response
values in extrema detection along the scale direction. To lo-
cate interest points, we perform extrema detection in the scale-
space of each block. Following [13], we generate the local ex-
trema by comparing the response value of a point to the neighbor
U(r.y.o) (say, 3 x 3 x 3). Due to the overlap R, the correct com-
parison of response values at the block boundary can be secured.
Finally, we generate the set of interest points {(z, §. )} which is
the union of interest points obtained by examining the extrema
of B¢ for each block in each octave.

=U U

q=1.Q k=1 K,y

st 0< N < Npax and

T oG
ﬂlg IHH_X ql

{(#.9.4)} (2. y.0)).

(ﬂrg(min)(Bq,k (e,y.0)) st (a.y.0) €EUlx,y.0) (8)
a,y.o

B. Complexity Analysis of the Block-Wise Scale-Space

The block-wise scale-space has clear potentials of low
memory complexity. As interest point detection works on
each block independently, the actual memory cost equals to
the memory cost of an individual block. Referring to (4), the
optimal configuration B is subject to the memory use.

Below we discuss time complexity. Convolution operations
are the most time consuming in constructing a scale-space. Time
complexity T(N, R) can be measured in terms of block number
and time cost of a series of filtering operations of a block as

follows:
V Hq
Z fconsﬂ uctzon( N ) * ’V 7\7’ ‘)R—‘ * ’V-N- — QR—‘ (9)

T(N.R
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where the number of blocks in each octave is [ z— I 1 H] [ ey
W, and H, are the image width and height of the octave 1nput
image respectively. feonstruction denotes the filtering time cost
of each block. Below we discuss how to speed up the construc-
tion of a block-wise scale-space.

(1) Frequency domain convolution. The block-wise
process allows for very efficient frequency domain
filtering. In the spatial domain, each point of an input
image is smoothed by its neighbor region where the re-
gion radius increases with a scale factor. The equivalent
of convolution in frequency domain is independent of
the scale factor, where the convolution involves only one
dot product operation per point, a Discrete Fourier Trans-
form (DFT), and a Inverse Discrete Fourier Transform
(IDFT). As each block is of a uniform size, convolution
filters can be pre-computed by different scale factors.
In addition, we employ the Cooley-Tukey Fast Fourier
Transform (FFT) algorithm with the complexity:

Orpr(N)=2N%log, N> —6N> 4+ 8N (10)
Here, N is the closest number of power of 2 equal or
larger than V. A larger kernel size means even faster FFT
filtering compared to the spatial domain convolution.

(2) Paralleled implementation. The independent interest
point detection of each block offers the engineering
potential of paralleled implementation to speed up the
process.

IV. EXPERIMENTS

Datasets and Evaluation Protocols: We evaluate the perfor-
mance of BFLoG over the MPEG CDVS benchmark datasets
[22]. There are in total 30,256 images involving a variety of
categories like Graphics, Paintings, Video Frames, Landmarks,
and Common Objects, which are well annotated in terms of
matching pairs (10,155) vs. non-matching pairs (112,175), query
images (8,313) versus reference images (18,840). Moreover, a
FLICKERIM dataset containing 1 million images is used as dis-
tractors in retrieval experiments.

All images are converted to grayscale images. If at least one
of the dimensions of the original image is greater than 640 pixels
then the original image shall be spatially resampled, maintaining
the aspect ratio, so that the largest of the vertical and horizontal
image dimensions is equal to 640 pixels.

The retrieval performance is measured by mean Average Pre-
cision (mAP). The pairwise matching performance is measured
by a True Positive Rate (TPR) at a target False Positive Rate
(FPR), where 1% FPR is setup in our experiments.

Baselines: We perform comparisons over six baselines:
(1) BFLoG + SIFT: combines the BFLoG detector and the
well known SIFT descriptor [13]; (2) DoG + SIFT [13]: DoG
is well known for a fast approximation of LoG. (3) SURF [14]: a
fast detector by applying integral images to image convolutions.
(4) AKAZE [17]: using a non-linear scale-space construction
kernel of higher complexity than a linear scale-space kernel.
(5) ORB [18]: a very fast detector ignoring the scale invariance.
(6) BRISK [19]: injecting the scale invariance to the AGAST
corner detector [20]. Comparing baselines (1) and (2) is to vali-
date the performance of a block-wise scale-space at much lower
memory cost. Other baselines are for extensive comparisons
with the state-of-the-art local feature descriptors.
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Fig. 3. Matching performance w.r.t. Block overlap size.

TABLE 1
COMPARISON OF FILTERING TIME COMPLEXITY IN THE SCALE-SPACE
CONSTRUCTION BETWEEN FREQUENCY DOMAIN BFLOG AND
SPATIAL DOMAIN DOG (UNIT: MFLOP)

Octave [ Blo Frequency filtering [ Spatial Ratio
W [ H | cks | FFTs | Filtering [ Total | filtering
640 | 480 35 113.86 2.29 116.16 259.28 45%
320 | 240 12 39.04 0.79 39.83 55.6 72%
160 | 120 4 13.01 0.26 13.28 13.9 95%
80 60 1 3.25 0.07 3.32 3.48 95%
40 30 1 3.25 0.07 3.32 0.87 382%
[ Total [ 533 [ 1242 ] 347 [ 1759 [ 33312 [ 53% |

Distortion Analysis: As shown in Fig. 3, by fixing a block
size, increasing block overlap R can improve TPR till R reaches
the maximum radius of Gaussian filters (i.e., ® = 16) and TPR
becomes stable. Given a fixed overlap R < 16, a larger block
means fewer blocks, which yields higher performance due to
less accumulated convolution loss at the boundaries. In subse-
quent experiments, we set overlap R = 16.

Complexity Analysis: For time cost, we measure the Mil-
lion FLoating-point OPeration (MFLOP) in constructing a scale-
space. For memory cost, we provide a theoretical estimate of
memory use of filtering and buffering, etc..

As shown in Fig. 4(b), a bigger block incurs more memory
use. Fig. 4(a) does not show any monotone increasing or de-
creasing patterns w.r.t. the block size. On the one hand, this is
due to the nature of DFT that a block width of power of 2 is
with lower complexity. On the other hand, too large blocks may
result in more “waste” operations from the padding pixels of a
block at the boundary of an image, while too small blocks result
in more operations at the overlapping regions of more blocks.
Thus, an optimal block width N = 128 is empirically setup for
the subsequent comparison experiments.

(1) Time Cost. Table I compares the time cost of filtering
(the major part in constructing a scale-space) between
frequency and spatial domain. The frequency domain fil-
tering shows a significant time cost reduction by a ratio
of 53% on average.

(2) Memory Cost. Our BFLoG has reduced the footprint of
filters and buffers to 956KB, which is much smaller than
the image-wise scale-space with 12.9 MB in baseline (2).

Performance Comparisons: As shown in Fig. 5, the BFLoG
has yielded comparable or slightly better performance than the
DoG in pairwise matching and retrieval experiments, at much
reduced runtime memory and time cost(See Table II).

Fig. 6 compares the matching TPR of all the baselines. The
BFLoG achieves the highest TPR. Table II reports the average
number of interest points, the extraction time and the runtime
memory cost of baselines. The BFLoG is the second fastest with
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TABLE II
RUNTIME MEMORY AND TIME COST COMPARISON OF BASELINE
DETECTORS. (TESTED ON A WINDOWS PC WITH INTEL CORE
CPU 15 3470@3.2 GHZz). NOTE THAT THE RUNTIME MEMORY COST
IS GREATER THAN THE THEORETICAL ESTIMATED MEMORY USE IN TERMS OF
FILTERS AND BUFFERS AS REPORTED IN COMPLEXITY ANALYSIS

Ave. Number of Interest Points Time  Memory
BFLoG 1011.59 132ms 5.3MB
SIFT(VIFeat) 1081.46 383ms  30.2MB
SURF 1164.97 225ms  50.4MB
AKAZE 917.77 17lms  76.4MB
ORB 1330.89 22ms 9.2MB
BRISK 917.03 234ms  24.9MB
s
[~ 0
)
= ~@-BFLoG  —A-SIFT
~#-AKAZE % SURF
~—~ORB {1~ BRISK
20 + T T T

0 02 04 06 08 1 12 14 1.6 1.8 2
FPR (%)

Fig. 6. Performance comparison among different descriptors over MPEG
CDVS benchmark datasets.

the lowest runtime memory cost. However, the fastest ORB suf-
fers from the poor performance as shown in Fig. 6.

V. CONCLUSION

We have proposed a block-wise scale-space representation
to minimize the complexity of an interest point detector. Very
fast extraction and extremely low memory footprint have been
achieved for the well-known LoG detector. The block-level in-
dependent behavior of filtering and extrema detection elegantly
supports a paralleled process. The MPEG CDVS standard
adopted BFLoG has shown great advantages of block-wise
scale-space representation towards low complexity visual fea-
ture extraction on (mobile) hardware platforms like multi-core
CPU, GPU, DSP, or ASIC.
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