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ABSTRACT

Human action recognition is widely recognized as a chal-
lenging task due to the difficulty of effectively characterizing
human action in a complex scene. Recent studies have shown
that the dense-trajectory-based methods can achieve state-
of-the-art recognition results on some challenging datasets.
However, in these methods, each dense trajectory is often rep-
resented as a vector of coordinates, consequently losing the
structural relationship between different trajectories. To ad-
dress the problem, this paper proposes a novel Deep Trajecto-
ry Descriptor (DTD) for action recognition. First, we extract
dense trajectories from multiple consecutive frames and then
project them onto a canvas. This will result in a “trajectory
texture” image which can effectively characterize the relative
motion in these frames. Based on these trajectory texture im-
ages, a deep neural network (DNN) is utilized to learn a more
compact and powerful representation of dense trajectories. In
the action recognition system, the DTD descriptor, together
with other non-trajectory features such as HOG, HOF and
MBH, can provide an effective way to characterize human
action from various aspects. Experimental results show that
our system can statistically outperform several state-of-the-art
approaches, with an average accuracy of 95.6% on KTH and
an accuracy of 92.14% on UCF50.

Index Terms— Deep Neural Network, Deep Trajectory
Descriptor, action recognition

1. INTRODUCTION

Action recognition is one of active topics in computer vision
and pattern recognition. Technologically, the task of action
recognition is to identify the actions or behaviors of one or
more persons from a series of observations in a video se-
quence. It can be applied to various domains such as public
security, customer behavior analysis and in-home elder moni-
toring. However, accurately recognizing actions is still a chal-
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lenging research task due to view changes, occlusion, varia-
tion in execution rate, and background clutter.

Motion representation plays an important role in the ac-
tion recognition system. Recent studies show that, the Fisher
vector representation [1] with the improved Dense Trajectory
(IDT) features [2] is very effective for capturing motion infor-
mation. Technologically, the original dense trajectory feature
is to sample and track dense points from each frame in multi-
ple scales, while its improved version also considers the cam-
era motion estimation and replaces the bag-of-features with
Fisher vector. As such, it can obtain the state-of-the-art per-
formance on several action recognition datasets [2]. However,
in both two versions, the dense trajectories are only used to
get the locations of feature points, while their characteristics
on motion representation have not been fully taken advantage
of. Moreover, each dense trajectory is often represented as a
vector of coordinates, consequently losing the structural rela-
tionship between different trajectories.

To partially address this problem, Ali et al. [3] represent-
ed the normalized trajectories of human joints as a sequence
of locations which were then used to extract invariant features
of the reconstructed phase space. However, their approach is
heavily dependent on the quality of trajectories, thus easy to
be affected by background clutter. In this study, we focus
on developing a more effective way to encode the trajectories
and then make full use of them. Our study is motivated by the
recent great success of deep neural networks (DNN). Many
works have shown that DNNs can achieve the state-of-the-art
performance in a lot of pattern recognition tasks. More re-
cently, they have also been introduced in action recognition so
as to effectively capture the motion information. Ji et al. [4]
proposed a novel DNN, i.e., 3D convolution neural network
(CNN) model. This 3D-CNN gets input from multiple chan-
nels and performs 3D convolutions in each channel so as to
extract features from both the spatial and the temporal dimen-
sions, thereby effectively capturing the motion information
encoded in multiple adjacent frames. By regularizing the out-
put with high-level features and combining the predictions of
a variety of different models, it can achieve a superior perfor-



Fig. 1. Trajectories from multiple consecutive frames are pro-
jected onto a canvas so as to effectively characterize the rela-
tive motion in these frames using a 2D image.

mance in the real-world environment of airport surveillance
videos. Similar to CNN, V. Le et al. [5] also proposed an in-
dependent subspace analysis (ISA) network. They first learn
features with small input patches; the learned features are then
convolved with a larger region of the input data. By stacking
this convolution layer, the ISA network is able to learn a hi-
erarchical representation of the data suitable for recognition
[6].

Following these ideas, this paper proposes a novel Deep
Trajectory Descriptor (DTD) to effectively characterize mo-
tion in video, consequently facilitating action recognition in
complex scenes. Basically, our DTD can be viewed as a more
compact and powerful representation of dense trajectories.
First, we extract dense trajectories from multiple consecutive
frames and then project them onto a canvas. This will result
in a “trajectory texture” image which can effectively charac-
terize the relative motion in these frames (as illustrated by
Fig. 1). In this way, we transfer the raw 3D (two for spatial
and one for temporal) space into a 2D space, hence signifi-
cantly reducing complexity. Based on these trajectory texture
images, a deep neural network (DNN) is utilized to learn a
more macroscopical representation of dense trajectories. In
the action recognition system, the DTD descriptor, together
with other non-trajectory features such as HOG (histogram of
gradient), HOF (histogram of optical flow) and MBH (motion
boundary histogram), can provide an effective way to charac-
terize human action from various aspects. Experimental re-
sults show that our system can statistically outperform sev-
eral state-of-the-art approaches, with an average accuracy of
95.6% on KTH and an accuracy of 92.14% on UCF50.

The rest of the paper is organized as follows: In section
2, we briefly introduce the concept of dense trajectories. The
proposed DTD is presented in section 3. Our action recogni-
tion system with DTD is described in section 4. Experimental
results are discussed in section 5. Finally, section 6 concludes
this paper.

2. DENSE TRAJECTORIES

In this section, we will describe the dense trajectory feature
(DTF) [7] and its improved version (i.e., IDT) [2], which are

used as the baseline in our system. Basically, dense trajec-
tory is used to describe the motion between frames. Feature
points are sampled on a grid with the space of W pixels and
then tracked in multiple spatial scales. Point pt at frame t is
represented as (xt, yt). Then we track pt by median filtering
in a dense optical flow field ω = (ut, vt), as follows:

Pt+1 = (xt+1, yt+1) = (xt, yt) + (M ∗ ω)|(xt,yt)
, (1)

where M is the median filtering kernel, and (xt, yt)
is the rounded position of (xt, yt). The length of tra-
jectories is limit to L frames to avoid the drifting prob-
lem. Note that the too small or too large trajectories will
be removed. Then a trajectory is represented as D =
(∆Pt,∆Pt+1,∆Pt+2, ...,∆Pt+L−1), where ∆Pt is the dis-
placement between Pt and Pt+1. The resulting vector is nor-
malized by the sum of the magnitudes of the displacement
vectors.

Beside the trajectory descriptors, some other features are
also computed so as to capture texture and local motion in-
formation. In [7], Wang et al. compute HOG, HOF and
MBH features along the dense trajectories. Different fea-
tures are encoded with a standard bag-of-features approach
and then combined in a multi-channel framework with a non-
linear SVM and a χ2-kernel [8]. A one-against-rest approach
is used to handle the multi-class classification problem. In the
improved Dense Trajectory (IDT) [2], the descriptor dimen-
sionality is reduced by Principal Component Analysis (PCA),
and the bag-of-features approach is replaced by Fisher vector.
After applying power and L2 normalization to the Fisher vec-
tor, different features are concatenated and then a linear SVM
is used for classification.

3. DEEP TRAJECTORY DESCRIPTOR

Fig. 2 illustrates the framework of our Deep Trajectory De-
scriptor (DTD). After extracting dense trajectories from a
video sequence, a denoising step is performed so as to reduce
the influence of clutter background. Instead of the camer-
a motion estimation method in [2], a background subtraction
method is used in our approach for trajectories denoising. The
trajectories are then projected onto a canvas to obtain trajec-
tory texture images. On these trajectory texture images, the
DNN model is trained to generate the DTD descriptors.

3.1. Background-subtraction-based IDT (bIDT)

In [2], a camera motion estimation method is used to remove
the trajectories generated by camera motion. Namely, they
use SURF features to estimate camera motion and remove the
trajectories which have a smaller displacement compared with
the camera motion; then a state-of-the-art human detector is
used to solve the problem of human dominating the frame.
However, this method may be complicated and low efficient
sometimes.



Fig. 2. Illustrating the pipeline of our Deep Trajectory Descriptor (DTD). We compute dense trajectories first. In order to
capture the structure information, the trajectories are projected onto a canvas to obtain trajectory texture images. The DNN
model is then trained to extract the DTD features from trajectory texture images.

In our approach, we improve the dense trajectories by us-
ing ViBe [9]. ViBe is a background subtraction technique that
incorporates several innovative mechanisms. First, we apply
background subtraction to the raw video clips to get fore-
ground clips. When extracting trajectories from raw video
clips, every feature point is tested in a r ∗ r square area in the
corresponding foreground frame ft:

Sfore =

r
2∑

i=− r
2

r
2∑

j=− r
2

ft(xt + i, yt + j), (2)

where Sfore is the sum of the foreground square area, (i, j)
index around the square area. If Sfore is less than F where F
is the threshold, this feature point is regarded as coming from
camera motion and will be removed.

3.2. Trajectory Texture Image

Traditionally, most approaches treat videos in the three-
dimensional space and try to extract features from both tem-
poral and spatial dimension [4]. This leads to very high com-
putational overhead when a large volume of video data are
processed. To address this problem, we propose a novel way
to convert a video into a two-dimensional space so that it can
be easily handled. Imagine there is a fixed invisible canvas
behind the video frame, and every motion in the video will
be projected onto this canvas. Then after several frames, we
can get a new image of motion trajectories, which records the
information of all the motions in the past frames. Note that
Fig. 1 has demonstrated this idea in an intuitive way.

To implement this idea, we first extract dense trajecto-
ries to obtain coordinates and optical flow along every tra-
jectory (denoted as (xt, yt, uxt,yt,t, vxt,yt,t), where t is the
frame number, xt is the rounded value of x at frame t and
(uxt,yt,t, vxt,yt,t) is the value of the dense optical flow on
vertical and horizontal directions separately). We then sim-
ply draw trajectories from multiple frames onto a canvas C so
as to assemble them together.

Cxt,yt,s =
√
u2
xt,yt,t

+ v2
xt,yt,t

, (3)

where s is the canvas index. In case of too many trajectories,
we use S canvases and divide the trajectories from a video

clip into S segments. After the projecting, every clip will
correspond to several canvases.

3.3. Deep Trajectory Descriptor (DTD)

In order to learn a more compact and powerful representa-
tion of trajectories, a deep neural network (DNN) is used to
process the trajectory texture images. All trajectory texture
images for a video clip are stacked together and used as one
multi-channel sample for DNN. Our DNN model consists of
four convolution layers, three max-pooling layers, two local
response normalization layers and one full connection layer.

Basically, the convolutional layers perform the convolu-
tion operation to the previous layer and extract features from
local neighborhood. Then an additive bias is applied and the
result is passed through an activation function. Formally, the
value of an unit at position (x, y) of the jth feature map in the
ith layer, denoted as vxyij , is given by

vxyij = a
(
bij +

M−1∑
m=0

∆∑
w=−∆

Θ∑
h=−Θ

ωwhijmv
(x+w)(y+h)
(i−1)m

)
, (4)

where ∆ = Wi

2 , Θ = Hi

2 , a(·) is the activation function, bij
is the bias for this feature map, M is the number of feature
maps in the (i − 1)th layer, ωwhijm is the weight of the kernel
at position (w, h), and Wi and Hi are the width and height
of the kernel, respectively. We use the ReLU [10] activation
function in all convolution layers. In terms of training time
with gradient descent, DNNs with ReLUs train several times
faster than their equivalents with tanh.

The pooling layers pool over local neighborhood on the
feature maps in the previous layer. Thus, the resolution is
reduced, thereby enhancing the invariance to distortions on
the input.

The LRN layer implements a form of lateral inhibition
inspired by the type found in real neurons. The response-
normalized activity at position (x, y) is given by the expres-
sion

rxyij = vxyij /
(
k + α

min(M−1,j+n/2)∑
j=max(0,j−n/2)

(vxyij )2
)β
, (5)



where k, n, α, and β are hyper-parameters.
The DNNs are trained on the training set first. After

the training phase, we re-run the DNN models on the whole
dataset (both training and test sets) and ignore the back prop-
agation computation. We save all the values at the fourth con-
volutional layer at every iteration as the final representation
of the video clips.

4. ACTION RECOGNITION WITH DTD

In this section, we first describe our system framework for
action recognition, and then discuss some details about the
system implementation.

4.1. The System Framework

The framework is shown in Fig. 3. Roughly speaking, this
system consists of three modules, i.e., dense trajectory extrac-
tion, DTD generation, and classification. It should be noted
that, to further boost the recognition performance, we also in-
troduce some other non-trajectory features so as to capture
texture and local motion information, just as [7] did. For each
trajectory, we compute HOG, HOF and MBH descriptors and
these descriptors are then encoded with Fisher vector. The
encoded features are simply concatenated with DTD and a
linear SVM is used for classification.

4.2. Implementation Issues

We use the ViBe’s implementation provided by Barnich1 and
our dense trajectory is modified based on Wang’s implemen-
tation 2.

To achieve the speedup and enable our model to be trained
and applied to large datasets, we adopt caffe [11], a popular
deep learning framework developed with cleanliness, read-
ability, and speed in mind.

We use Principal Component Analysis (PCA) to reduce
the dimensionality of the descriptors (DNN feature exclud-
ed) by a factor of two. We randomly sample 20 percent of
the features to estimate K = 256 GMM for each kind of
features. We then apply L2 normalization to every Fisher
vector and simply concatenate their normalized Fisher vec-
tors to combine different descriptors. The encoded feature
is 107,520 dimensions: 6,144 for DTD features, 24,576 for
HOG, 27,648 for HOF, and 49,152 for MBH. For classifica-
tion, we fix C = 100 for the SVM in our implementation and
use the one-against-rest approach for multi-class classifica-
tion. Here LIBSVM[12] is employed to do the classification
job.

1 http://www.motiondetection.org/
2 http://lear.inrialpes.fr/˜wang/improved_
trajectories

5. EXPERIMENTS

In this section, we first briefly introduce our experimental
settings and the datasets used in our evaluation in section
5.1. Section 5.2 reports the gain due to our background-
subtraction-based IDT, and the performance of our system by
comparing with several state-of-the-art methods.

5.1. Experimental Settings

In our experiments, we use a fixed configuration for DNN.
The size of trajectory texture images is kept at 165 ∗ 165. We
set the number of convolution kernels in the four convolution
layers to 96, 256, 384 and 384 and set the kernel sizes to 6∗6,
6 ∗ 6, 5 ∗ 5 and 4 ∗ 4 individually. The three pooling layers
have the kernel sizes of 2 ∗ 2, 3 ∗ 3 and 3 ∗ 3. We set k = 2,
n = 3, α = 5 × 10−5, and β = 0.75 for LRN layers. All
our experiments were performed with a single NVIDIA K40
GPU.

Two standard action datasets, KTH and UCF50, were
used in our experiments:

The KTH action dataset [13] contains six types of human
actions (see Fig.4) and 25 subjects. The sequences are cap-
tured in four different scenarios with a homogeneous back-
ground. The dataset consists of 2,391 sequences. Following
the original experimental setup, we divide the samples into
the test set (9 subjects: 2,3,5,6,7,8,9,10, and 22) and the train-
ing set (the remaining 16 subjects). We will train and evaluate
a multi-class classifier and report the average accuracy over
all classes as the performance measure.

The UCF50 [14] dataset is a more challenging dataset
with 50 action categories. Each category contains 25 group-
s and each group includes at least 4 action clips. There are
6,618 video clips in total. The clips in the same group may
share some common features. Thereby the dataset should be
split in a group level. In order to do quick test, we random se-
lect one group as the test set and train on the others. This can
be extended to leave-one-group-out cross-validation easily.

5.2. Evaluations

5.2.1. Gain from Background-subtraction-based IDT

In our experiments, we use default parameters for ViBe. We
compare our background-subtraction-based method with the
camera motion estimation method in the original IDT [2].
Our background-subtraction-based method always performs a
foreground test during computing feature points, and removes
trajectories in the background. As shown in Table.1, our
background-subtraction-based method significantly reduces
the space cost and keeps the performance of dense trajecto-
ries in the same time. On average, our improvement saves
59.14% and 21.92% disk usage on KTH and UCF50 datasets
respectively.



Fig. 3. The framework of our action recognition system with DTD.

Fig. 4. Sample frames from video sequences of KTH (first row) and UCF50 (second row) action datasets.

Table 1. Comparison of disk usage between our bIDT with
the original IDT [2]. We remarkably reduce the space cost,
meanwhile remaining the performance.

Dataset IDT bIDT Saving Best Acc
KTH 17.4G 7.11G 59.15% 95.60%

UCF50 146G 114G 21.92% 92.14%

However, our background-subtraction-based method is
kind of rude and possibly removes trajectories of slight move-
ments or tiny objects. Thus, it may lead IDT to a worse result
due to the partly loss of statistical information. On the oth-
er hand, the loss is too tiny to change the overall structure.
Owing to the fact that our DTD mainly takes advantage of
structural information and DNN is also robust to distortion,
the loss is tolerable for DTD. As shown in Table 4, although
bIDT produces a worse result compared with DTF in [7], we
get a better result after combining the bIDT with DNN.

5.2.2. Evaluation of DTD

We compare our DTD with DTF [7], IDT [2], and bIDT, in
terms of the action recognition performance. We use the same
parameters as discussed previously. To compute the trajecto-
ries, we set N = 32, nδ = 2, nγ = 3 for dense trajectories
and r = 3, F = 256 for background subtraction. We fix the
trajectory length to L = 15 and the step size to W = 5 as in
[7].

Table 2. Performance confusion matrix for our DTD on the
KTH dataset. The overall accuracy rate is 95.60%.

bx cl wv jg rn wk
box 1 0 0 0 0 0
clap 0 1 0 0 0 0
wave 0 0.125 0.875 0 0 0
jog 0 0 0 0.980 0.020 0
run 0 0 0 0.118 0.882 0

walk 0 0 0 0 0 1

The KTH action dataset is the most common dataset used
in evaluations of action recognition. The confusion matrix of
KTH for our approach is shown in Table 2. Our approach
successfully recognizes boxing, hand clapping, walking with
the accuracy of 100%, and recognizes jogging with the accu-
racy of 98.0%. We also compare our results with the state-of-
the-art results in Table 3. The average accuracy of our DTD
is 95.60%, which is comparable to the state-of-the-art result,
i.e., 95.70%.

The UCF50 dataset is an extension of the YouTube dataset
[15]. Since we use a different training/testing split setup, we
only compare our DTD with bIDT and IDT’s results in [2].
On this dataset, our DTD method obtains better results when
compared with bIDT. As Wang et al. [2] did, we also ap-
ply the power normalization and get the accuracy of 92.14%,
which is much better than bIDT about 3.5% and IDT [2] about
1% .



Table 3. Comparison of our DTD with the state-of-the-art
methods on the KTH dataset in the literature.

Approach Accuracy
Laptev et al. [15] 91.80%

Kovashka et al. [16] 94.53%
Gilbert et al. [17] 95.70%

Le et al. [5] 93.90%
Wang et al. [7] 94.20%

Ours 95.60%

Table 4. Comparison between our DTD and IDT on the KTH
and UCF50 datasets.

(a) Without power normalization

KTH UCF50
Wang’s DTF [7] 94.2% N/A

bIDT 93.63% 87.86%
DTD 95.60% 90.00%

(b) With power normalization

KTH UCF50
Wang’s IDT [2] N/A 91.2%

bIDT 95.37% 88.57%
DTD 95.24% 92.14%

Table 4 compares our results with bIDT on the KTH and
UCF50 datasets. On both datasets, our DTD outperforms
bIDT by 2% and outperforms DTF [7] and IDT [2] by 1%.
Power normalization is designed for Fisher vector to increase
the magnitude of each value. We test our results after ap-
plying power normalization to the encoded Fisher vector fea-
tures. When only L2 normalization is applied, DTD performs
better than bIDT by 2% in both KTH and UCF50 datasets.
However, bIDT achieves a good result of 95.37% on the K-
TH dataset with the power normalization approach. On the
contrary, DTD is not able to improve the result by using the
power normalization. On the UCF50 dataset, bIDT achieves
the accuracy of 88.57% when using the power normalization,
which is slightly better than the case when only using the L2
normalization. Similarly, the performance of our DTD is also
improved from the accuracy of 90.00% to 92.14% by using
the power normalization.

6. CONCLUSIONS

This paper proposes a novel Deep Trajectory Descriptor (DT-
D) as a more compact and powerful representation of dense
trajectories. We show that the disk usage of IDT can be sig-
nificantly reduced by using the background-subtraction-based
method. Experimental results show that our DTD can sta-
tistically outperform several state-of-the-art approaches, with
an average accuracy of 95.6% on KTH and an accuracy of
92.14% on UCF50.
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