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ABSTRACT 

 
Recently, multiple kernel learning (MKL) methods have 
shown promising performance in image classification. As a 
sort of supervised learning, training MKL-based classifiers 
relies on selecting and annotating extensive dataset. In gen-
eral, we have to manually label large amount of samples to 
achieve desirable MKL-based classifiers. Moreover, MKL 
also suffers a great computational cost on kernel computa-
tion and parameter optimization. In this paper, we propose a 
local adaptive active learning (LA-AL) method to reduce 
the labeling and computational cost by selecting the most 
informative training samples. LA-AL adopts a top-down (or 
global-local) strategy for locating and searching informative 
samples. Uncertain samples are first clustered into groups, 
and then informative samples are consequently selected via 
inter-group and intra-group competitions. Experiments over 
COREL-5K show that the proposed LA-AL method can 
significantly reduce the demand of sample labeling and have 
achieved the state-of-the-art performance. 
 

Index Terms— Multiple kernel learning, active learn-
ing, image classification 
 

1. INTRODUCTION 
 

Classifying images into a number of predefined categories is 
an important yet challenging task. To address the well-
known “semantic gap” issue, many researchers resort to 
advanced machine learning techniques for mapping low-
level visual features to high-level concepts. Remarkably, 
multiple kernels learning (MKL) methods, which optimize 
the classifiers via a linear combination of kernels, have 
shown prominent advantages in image classification [1, 2].   

However, the computational complexity of MKL is very 
high for two major reasons: 1). Similar to normal kernel-
based methods, MKL needs to compute kernel functions for 
each sample-pair over the training set; 2). MKL needs to 
optimize the classifier parameters and kernel weights in an 
alternative manner, thus learning global optimal parameters 
would incur intensive computation. To speed up the process 
of learning MKL, many research efforts have been done [3, 

4]. In particular, as the size of training set becomes much 
bigger, the higher complexity of computing kernel matrix 
would become a bottleneck for efficiently training MKL- 
based classifiers. Intuitively, we may remove those redun-
dant data and keep more informative samples to control the 
size of training data while maintaining the classifier’s com-
parable discriminative power. Unfortunately, much fewer 
works have been made on sample selection for MKL, which 
could be a crucial step for learning classifier over large da-
taset. 

Active learning is one of widely used methods to reduce the 
labeling cost in supervised learning tasks. It repeatedly queries 
the unlabeled samples and selects the most informative samples 
to label, which aims to reduce the demand for a large quantity 
of labeled data [5]. If active learning could be incorporated into 
MKL, kernel matrix can be computed over those selected sam-
ple-pairs only, and then classifier parameters and kernel 
weights can be updated by training over informative samples. 
Hence, active learning is helpful in reducing the complexity of 
kernel matrix computation and optimal parameters learning. 

In the past decade, a great deal of active learning approaches 
were developed by using different learning models and sample 
selection strategies [5, 6, 7]. In image retrieval, a well-known 
active learning technique is support vector machine (SVM) 
active learning [6], which learns a SVM classifier from feed-
back images and employs the classifier to find the most infor-
mative but unlabeled images. However, this method is designed 
to select a single image in each learning round. More recently, 
some active learning methods are proposed for batch querying 
at each round [7]. In [7], a semi-supervised SVM batch active 
learning approach is proposed to take into account the “batch 
sampling problem” for image retrieval. However, this approach 
needs to compute kernel matrix among all unlabeled image-
pairs and solve quadratic programming to select informative 
images, thus leading to higher computational complexity. 

In this paper, we propose a novel approach called local 
adaptive active learning (LA-AL) which combines both 
multiple kernel learning and adaptive data sampling strategy. 
Our main contributions are summarized as follows: 

 We incorporate the advantages of active learning in MKL 
framework to reduce computational complexity.  

 We propose an effective and efficient LA-AL approach to 
automatically adapting sample selection with local data 
distribution.  



 We have achieved significant improvements over recently 
reported results [7, 8] on the COREL-5K dataset.  

The remainder of this paper is organized as following. Sec-
tion 2 gives an overview of LA-AL. Section 3 presents our 
multiple kernel based active learning. Experiment results are 
presented in Section 4. Section 5 concludes the paper. 

 
2. FRAMEWORK OVERVIEW 

 
In this section, we brief the framework of our proposed LA-AL. 
The main processes are illustrated in Fig.1. Firstly, a prelimi-
nary MKL-based classifier is trained on an initial labeled data-
set. Secondly, the images from the unlabeled data pool are fil-
tered by the learnt classifier, leaving uncertain samples for fur-
ther selection. Thirdly, a hierarchical sample selection is con-
ducted, and a batch of informative samples is selected and la-
beled by user. Fourthly, classifier goes on updating on the la-
beled batch data to refine its discriminative power. After the 
four steps above, a complete round is finished and active learn-
er jumps to the next step and continues. 
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Figure 1. Local adaptive active learning framework 

In LA-AL, a key process is the hierarchical sample selec-
tion, in which informative samples are selected in a top-
down manner. At the beginning, all uncertain samples are 
firstly clustered into groups. At the level of inter-group, 
different groups compete to be selected as many samples as 
possible by leveraging their representativeness and informa-
tiveness. At the level of intra-group, competition is con-
ducted within a group to select samples by dynamic bin-
width histogram which adapts with the local data distribu-
tion. Consequently, finding informative samples in the LA-
AL is a global to local, coarse to fine locating and searching 
process. 
 

3. MULTIPLE KERNEL ACTIVE LEARNING 
 

3.1. Learning an MKL-based classifier 
 

Given a labeled training set 1 1{( , ),..., ( , )}
l lN NL = x y x y  and 

an unlabeled set 1 1{( , ),..., ( , )}
u uN NU = x y x y , where x is the 

image sample and { 1,1}y∈ − , MKL  takes advantage of a 
convex combination of kernels [3] as follows: 
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where ( )i jK x ,x measures the similarity between ix and jx , 

( , )mK ⋅ ⋅ is a kernel function which satisfies the Mercer’s 
condition [3], M is the total number of kernels, and 
{ } 1

M
m m

β
=

are the kernel weights. In MKL, ( , )mK ⋅ ⋅ may employ 
various kernel functions. In this paper, we outline the deci-
sion function of MKL for binary classification: 
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b are the coefficients of the classifier. We refer the readers 
to [3] for the details of MKL. 
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be learnt by solving a joint optimization problem as follows. 
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where C is regularization parameter and we set C= 1000 by 
cross-validation. Usually, training a MKL-based classifier 
not only needs to solve the max-min problem above, but 
also to compute kernel functions for each image-pair in the 
training set L. Hence, removing redundant training samples 
can efficiently speed up the learning process of MKL. 
 
3.2. Local Adaptive Active Learning 

 
In the LA-AL, informative samples are selected from a top-
down procedure, involving global grouping, inter-group and 
intra-group competitions.  
 
3.2.1. Filtering and Grouping Uncertain Samples 

 
The key idea of our LA-AL approach is to treat uncertain 
samples as the candidate informative samples since such 
samples may offer more information to the learner. As 
proven in [7], the most informative samples should be se-
lected from unlabeled samples close to the learnt decision 
boundary. Hence, we define the uncertain samples as those 
unlabeled samples near to the decision boundary, according 
to the score f(x) of the MKL-based classifier: 

1   if   
( )

0  otherwise

-T f(x) T
Unc x

+⎧ ≤ ≤
= ⎨
⎩

,           (4) 

where -T and T + are the negative and positive bounds, re-
spectively. These two bounds can be user-defined or esti-
mated using a heuristic method. 

Then the uncertain samples are further clustered into 
groups, so that similar samples are merged into one group 
for sampling competition. We use k-means for clustering in 
this paper, while other clustering methods can be applied. 

 



3.2.2. Inter-Group Sampling Competition 
 

In this sub-section, we present the inter-group sampling 
strategy aiming at allocating different sampling numbers for 
groups. Two criteria are considered here: representativeness 
and informativeness.  

Intuitively, groups with larger sample quantity are likely 
to be allocated with more selected samples. Hence, we de-
fine the representativeness measure of group g as follows. 

( ) ,unc
gRep g N∝                                 (5) 

where unc
gN is the number of the uncertain sample in  group g. 

Entropy is employed to measure the informativeness of each 
group as follows:  

( ) ( ) log ( ),
equ
j

equ equ
j j

b g
Info g P b g P b g

∈
∝ − ⋅∑          (6) 

where equ
jb is the jth entry of an equal bin-width histogram 

which represents the multi-kernel similarity (see Eqn.(1)) 
distribution for the samples within g. Fig.2.(a) is an illustra-
tion of an equal bin-width histogram for the multi-kernel 
similarity distribution.  

   .17 .24 .31 .38 .44 .49 .62 .68.54 .80 1.00

0

10

20

30

40

50

60

70

80

90

 
Figure 2. Two cases of multi-kernel similarity histograms: 

(a). Equal bin-width; (b). Dynamic bin-width. X-axis stands for the 
multi-kernel similarity between samples and its group center, y-
axis denotes the sample quantity for different bins. 

To seek a trade-off between representativeness and in-
formativeness, we calculate the sampling number of each 
group as a linear combination of them: 

( ( ) (1 ) ( )),s s
gN N Rep g Info gγ γ= ⋅ + −                (7) 

where sN is the predefined sampling number in the current 
round, s

gN is the number of samples to be selected in 
group g , and γ is the parameter for adjusting the importance 
of each criteria. γ can be estimated by cross-validation .  
 
3.2.3. Intra-Group Sampling Competition 

 
In order to investigate the distribution of samples within a 
group, we employ a dynamic bin-width histogram (DBH), 
which contains an equal number of samples for all bins. An 
illustration of DBH for a group’s sample distribution is 
shown in Fig.2. (b). Compared with equal bin-width histo-
gram, DBH automatically adapts to the sample distribution. 
If more samples are distributed densely, bins tend to have 
narrow bin-width. No matter how close the samples are, 
their similarity will be displayed by the bin’s ordinate on x-
axis, while fixed bin-width histogram fails to deal with this 
variation.  

Within a group, different bins of the DBH compete to be 
allocated with different sampling numbers. Criterion of di-
versity is considered. For a bin with large bin-width, sam-
ples with diverse appearances are scattered in a sparse area. 
Then the selected samples should cover as much diversity as 
possible. Hence, we allocate the number of samples for each 
bin as follows:  
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where ( ) ( )dyn dyn
j jDiv b width b∝ , dyn

jb  is the jth entry of the 

DBH.     
By the above inter-group and intra-group competition, we 

can locate where to sample data. Then we sort the candidate 
samples within the located bin via two criteria: sample’s 
representativeness within the bin, and its diversity with the 
labeled set L. They are defined as follows: 
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where ( , )Sim ⋅ ⋅ is the multi-kernel similarity learnt from 
MKL. Then the query function can be linear combination of 
two criteria to search informative samples, i.e.  

( ) ( ) (1 ) ( ),q x Rep x Div xλ λ= + −            (11)   
where λ represents the balance of the two criteria and can be 
estimated by cross-validation. Finally, samples with the 
highest scores q(x) are selected for user labeling.  
 

4. EXPERIMENTS 
 

Our experiments are carried out over the COREL-5K image 
dataset. This dataset is composed of 50 categories and each 
containing 100 images culled from the COREL image CDs. 
We compare our proposed method (MKL-LA-AL) with 
representative learning methods including unbiased active 
Learning (UAL) [8], SVM active learning (SAL) [6], trans-
ductive SVM active learning (TSVM-SAL) [9], semi-
supervised active learning (SVM-SSAL) [7], and MKL with 
random sampling (MKL-Ran).  
 
4.1. Features and Kernels 

 
SIFT [10] and Dense Color-SIFT [11] are employed as local 
descriptors to represent an image. And k-means is used to 
quantize these descriptors to obtain codebooks with a size of 
k (say, 400). 

We implement Spatial Pyramid Kernels (SPK) [11] and 
Proximity Distribution Kernels (PDK) [12]. For SPK, an 
image is divided into cells and the features from the spatial-
ly corresponding cells are matched between images. For 
PDK, matching is done between local feature distributions 
of the K-nearest neighbors.  

 
4.2. Performance Evaluation 



 
In our experiment, 2.5k images from different categories are 
mixed up to form the unlabeled data pool for active learning. 
The remaining 2.5k images are used for testing. Initially, 5 
images are selected in each category for labeling and train-
ing. At the stage of active learning, we query and label 250 
images (on average 5 positive samples for each of the 50 
categories) at each round in total 6 rounds. For fair compari-
son with other works, we follow the experimental setting in 
[8, 9]. The average precision (AP) of the top 20 returned 
images is utilized as the evaluation metric.  

In Fig.3, we compare the performances of MKL-LA-AL 
and other methods including UAL, SAL, TSVM-SAL, 
SVM-SSAL, and MKL-Ran. As shown in the figure, two 
MKL based learning methods obtain significant improve-
ment (about 30%) over other methods. This may be attri-
buted to more discriminative power of MKL for image clas-
sification, where multiple features and kernel functions are 
combined. By taking advantage of LA-AL, our MKL-based 
method achieves the highest performance in all rounds.  
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Fig.3. AP of top 20 returned images using MKL-LA-AL and other methods 

To further investigate the effectiveness of LA-AL, we list 
the APs of MKL-Ran and MKL-LA-AL in Table 1. From 
the table, we observe that MKL-LA-AL achieves different 
degrees of improvements in different rounds, which can be 
attributed to the benefit of MKL-LA-AL in selecting more 
informative samples than the random selection in each 
round. When the number of training samples per class 
reaches up to 20, MKL-LA-AL achieves AP 80.7%, which 
is comparable with the highest AP 80.3% of MKL-Ran in 
all rounds.  

Table 1. The AP of top 20 returned images 
# Labels 5 10 15 20 25 30 

MKL-Ran 0.612 0.700 0.732 0.758 0.793 0.803
MKL-LA-AL 0.612 0.745 0.779 0.807 0.824 0.832
In summary, MKL-LA-AL has shown great advantages 

in effectiveness and efficiency. In term of effectiveness, 
compared with the latest active learning methods, our me-
thod achieves the best results on the COREL-5K dataset. 
For efficiency, compared with MKL using randomly sam-
pling, the proposed method not only achieves higher per-
formance, but also keeps comparable performance with less 
training samples and lower computation complexity. 

 

5. CONCLUSION 
 

In this paper, we propose a local adaptive active learning 
(LA-AL) approach for multiple kernel learning. LA-AL has 
suggested a top-down locating and searching process, which 
select informative samples from grouped uncertain samples 
via both inter-group and intra-group competitions. To eva-
luate the performance of LA-AL, experiments have been 
conducted on COREL-5K dataset. Extensive comparison 
results show that our proposed MKL-LA-AL not only out-
performs the latest active learning methods and MKL with 
random sampling, but also achieves an equal performance 
using less labeled data compared with MKL.  
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