
Parallelizing Video Transcoding With
Load Balancing On Cloud Computing

Song Lin1,2 and Xinfeng Zhang2,3
1School of Computer & Information Engineering

Peking University Shenzhen Graduate School
Shenzhen, China

{slin,xfzhang}@jdl.ac.cn

Qin Yu2,Honggang Qi3and Siwei Ma2
2Institute of Digital Media, Peking University, Beijing, China
3Universityof Chinese Academy of Sciences, Beijing, China

{qyu, swma}@pku.edu.cn

Abstract—Cloud computing is emerging as a very promising
technology for computing and storage services. However, the
multi-resources load balancing over heterogeneous cluster or
cloud is a NP-hard problem. To obtain an optimized solution, in
this paper, we propose a heuristic algorithm named Minimum
Longest Queue Finish Time(MLFT). In the proposed scheme, we
first divide the high computation task into multiple sub-tasks,
and then- re-organize all the tasks into multiple task queues to
shorten the entire finish time of all the tasks submitted to the
cluster and launched in parallel according to load balancing. In
the task division process, an adaptive segmentation algorithm is
proposed according to the complexity and maximum
segmentation granularity of the input task. Based on the
proposed algorithm, an efficient parallel video transcoding
framework with cloud computing is presented. Experimental
results show that the proposed algorithm outperforms the
existing algorithms significantly on the entire finish time of the
tasks and approaches to the optimal solution closely.

I. INTRODUCTION
Along with the popularity of digital sets such as digital

cameras, digital video recorders and mobile phones, the
amount of video data with different formats available on the
internet has been increasing explosively. At the same time,
cloud computing is emerging as a very promising technology
for video computing and storage services over the internet.
Therefore, cloud based transcoding and streaming come to be
an efficient solution for internet video services due to its
highly parallel computation capability.

Cloud computing consists of a cluster of loosely connected
computers working together. Each computer can run its own
instance independently and all the computers together can
provide powerful parallel computing capability. Since
computers can be heterogeneous, the cloud computing is
extendable and relatively inexpensive.

In order to improve the efficiency of cloud computing, the
authors in [1] proposed the classical distributed cloud
computing programming model named Map/Reduce. In this
model, the computing efficiency can be improved via load
balancing on all the computers, which need split the input data

into many splits and handle them in distributed computing
system. But load balancing is a great challenge in distributed
computing system. A well known batch scheduling algorithm
on computing cluster is First Come First Serve (FCFS) where
tasks are processed in the order of arrival. Each task specifies
the number of processors it requires and is placed in a FIFO
queue upon arrival [2]. The FCFS scheduling algorithm is
easy to implement, but ignores the load balancing problem.
Generally, the load balancing problem has been proved to be
NP-hard [3]. In [4], eleven heuristic algorithms for mapping a
class of independent tasks onto heterogeneous distributed
computing system had been compared and the performance of
Min-min is the best one. For video transcoding, Minimal
Complete Time (MCT) algorithm is equal to Min-min
algorithm when the execution time is in proportion to segment
complexity [6].

There are also several other efforts devoted to parallel
transcoding on multi-core processor or cloud computing, such
as [5] [6]. In [5], Huang et. al. proposed a cloud-based proxy
that can transcodes video in real time. They formulated the
transcoding process as an on-line scheduling problem and
provided two mapping options to reduce the transcoding jitters
and optimize transcoding speed. Unfortunately, they did not
consider the sub-task launching overhead. A parallel
transcoding system using Map/Reduce based on cloud
computing was proposed in [6]. However，only the case of
single-tasking is considered and the segmentation scheme is
not adaptive to the input task.

In this paper, we focus on optimizing the entire finish time
for batch of transcoding tasks. Considering the characteristics
of video transcoding and load balancing, we propose a novel
parallelizing video transcoding framework. This framework
includes three modules: task pre-analysis, adaptive threshold
segmentation and minimal finish time (MFT) scheduling.
Based on the complexity and the maximum segmentation
granularity of the input video, these tasks are divided into
sub-tasks, and then all the tasks are launched to the cluster
based on load balancing strategy. The adaptive threshold
segmentation and the MFT scheduling constitute a novel

heuristic algorithm, named minimum longest queue finish
time algorithm (MLFT).

The rest of this paper is organized as follows. In Section II,
a brief introduction to the system architecture and problem
formulation is provided. In Section III, the proposed minimum
longest queue finish time algorithm is detailed, including
adaptive task splitting and the minimal finish time scheduling.
Finally, experimental results are given in Section IV.

II. PROBLEM FORMULATION AND SYSTEM
ARCHITECTURE

A. Problem Formulation
In general, the entire running time of one task consists of

the task-launching overhead and execution time. For video
transcoding, the task-launching overhead is less compared to
the execution time. So the task-launching overhead of each
task can be defined as a constant Tdelay. We assume that one
batch of tasks J consists of n independent tasks. Each task j in
J has the different complexity, denoted as Cj (j=1, 2,…, n).The
cluster has m computing cores with different computing
capacity Pk (k = 1,2,…,m). The execution time of computing
core is proportional to the task complexity and inversely
proportional to the computing capacity. So the transcoding
time spent for task j on core k can be calculated as:

 (1)
In the computing period, each computing core will handle

several tasks. We denote the set of tasks on computing core k
as Sk . Then the overall completion time of set Sk is

 (2)

So the problem can be formulated as an optimal
scheduling problem. Our scheduling goal is to minimize the
overall completion time as follows,

 (3)

Where L={S1, S2,…, Sm}is the scheduling strategy.

If the capacities of computing cores are identical and the
task launching overhead is zero, this problem is known to be
the load balancing problem. As mention above [6], the load
balancing problem has been proved to be NP-hard, so our
scheduling problem is NP-hard. To find the optimal solution
by traversing all possible solutions, the complexity of solution
will be O(mn).

The optimal solution of the problem is to make the running
time of each computing core exactly identical. So the
theoretical optimal solution of entire finish time Tld-ideal is

 (4)

For the initial task set, due to the dispersion of Cj and Pk,
even the optimal solution by traversing all possible solutions is
usually far from the theoretical optimal solution. For
heterogeneous cluster and non-zero task-launching overhead,
our motivation is to balance the load of each computing core.
Since some tasks of video transcoding can be divided into lots
of sub-tasks, we can achieve better load balancing by task

segmentation. However, due to the additional overhead from
task segmentation, the segmentation scheme of each task is a
great challenge.

B. System Architecture
The flow chart of our proposed parallelizing video

transcoding method on cloud is shown in Fig. 1. The
framework mainly includes three modules: task pre-analysis,
adaptive task segmentation and load balancing scheduling.

Figure 1. System flowchart

For video coding, if the input sequence has
instantaneous decoder refresh (IDR) frame, this video coding
task can be divided into sub-tasks [7]. For complexity
estimation of video transcoding tasks, the existing algorithms
[8] [9] can be utilized, and we won’t talk more here and start
with task segmentation. The complexity and maximum
segmentation granularity which equal to the number of IDR
frames of each task are obtained in the pre-analysis procedure.
Based on the number of IDR frames and complexity of tasks,
the splitter would divide each of them into several video
segments at the limit of the segmentation threshold, and then
each segment is regarded as a new task. The complexity of
each new task can also be obtained using above estimating
algorithm. After that, all segments and undivided tasks are
submitted to the cluster.

The cluster consists of many computing nodes, and each
node has several computing cores with different computing
power. The computing capacity of each core can be estimated
and normalized by the historical video transcoding record. All
the tasks are restructured into m scheduling queues using MFT
algorithm based on load balancing strategy. Each task queue is
mapped to a specific computing core. The tasks in the queue
are processed sequentially, without preemption. When all the
computing cores finish their tasks, the batch of tasks are
entirely finished. To launch a task, computing nodes have to
obtain the input files from the distributed file system and
prepare the input data. We denote the sum of them and other
overhead as a constant task launching overhead Tdelay.

After all the computing cores finish their tasks, for all
divided tasks, all the streams segments are available on the
cluster. The merger downloads these segments and
concatenates them together to provide the output.

III. MINIMUM LONGEST QUEUE FINISH TIMEALGORITHM
In this section, we propose a novel heuristic algorithm,

named minimum longest queue finish time. The algorithm is
based on the load balancing strategy, and mainly consists of
two procedures: adaptive multi-threshold segmentation and
minimal finish time algorithm. Before discussing the
algorithm, the complexity and the maximum segmentation
granularity of all the input tasks are obtained in the
pre-analysis stage. In the adaptive task segmentation
procedure, the segmentation schemes of highly complexity
tasks which can be segmented are decided. The number of

divided segments depends on the maximum segmentation
granularity of original task and the comprehensive influence
of the segmentation scheme on the entire finish time. After
that, all the tasks are arranged in descending order based the
complexity of each task. Then, we employ MFT algorithm for
the sorted tasks to average the entire finish time of the cores,
so that we can minimize the entire finish time.

A. Adaptivethreshold Segmentation
After the pre-analysis of each input task, the input task set

is divided into two task sets: one is divisible, the other is
indivisible. Based on the complexity of task, the threshold of
segmentation Cthr is defined as:

 (5)

Where kth= (1, 2, …, kthmax), and the kthmax is a user data, the
value of which is defined by the user. Cj is the complexity of
task j. n is the number of task. m is the number of computing
cores in the cluster. To all initial input tasks, if the complexity
of segmentable task is larger than Cthr, the task will be divided
into sub-tasks sequentially. For video transcoding, the picture
data between each two IDR frames are defined as a basic unit.
If the complexity of basic unit is greater than Cthr, the basic
unit would be regarded as a new sub-task. Otherwise, each
sub-task contains one or multiple basic units and the
complexity of each sub-task should be less than and as close
as possible to Cthr. Fig.2 shows an example of task
segmentation.

Figure 2. The schematic diagram of task segmentation, the height of

graphics indicates complexity, the task is divided into 3 sub-tasks.

As the data dependence doesn’t exist between the basic
units for video transcoding, these segments can be handled
independently. When the splitting procedure is
finished, the overall completion time of new task set can be
obtained using the MFT algorithm in the simulator. The
optimal scheduling scheme could be selected by traversing all
values of kth in the simulator. Then, the initial task set J is
handled based on the optimal scheduling scheme. The
adaptive multi-threshold segmentation is shown in Fig. 3.

Figure 3. Adaptive multi-threshold segmentation

B. Minimal Finish Time(MFT)
For a specific segmentation threshold Cthr (kth = ns), there

exists a generated task set, which is defined to be Zns. Then the
theoretically optimal solution of the entire completion time of
Zns is:

 (6)

N is the number of tasks. m is the number of cores and Pk is
the computing capacity of each computing core k,(k=1,
2,…,m).

First, we select out s tasks which have the highest
complexity from the set Zns, and s also is user data. The
traversal algorithm with pruning is adopted to obtain the
optimal solution of this sub-set. As the optimal solution Topt-s
of this sub-set will not exceed the optimal solution of the
whole set. Topt is set to be max{ Tld-ideal, Topt-s }, and Topt will be
less than or equal to the optimal solution of set J.

Before the tasks of set Zns are assigned, they are sorted in
descending order according to their complexity by Quicksort
algorithm. According to (2), the finish timeΤκ of core k is

 (7)

In order to minimize the overall completion time, the load
on each core should be balanced, which means that all the
computing cores should finish their tasks as simultaneously as
possible. For each computing core, we establish a scheduling
queue. After that, the tasks of set Zns which have been sorted
sequentially are assigned to these cores using a greedy like
algorithm. Tthr is defined as the threshold of overall
completion time and its initial value is set to be max {Tns-ideal,
Topt-s }. The assigning principle is as follows:

1. Assign all the tasks sequentially in descending
complexity order. (For each unassigned task, the core
with higher computing capacity has priority over other
cores.)

2. For each unassigned task j, the cores are judged in their
descending computing capacity order according to the
following criterion: assuming the task j is assigned to
core k, if Τκ ≤ Tthr, the assignment is verified.
Otherwise, we will judge the next core.

3. If all the cores are traversed and all the computing time
are beyond Tthr, the task j will be assigned by MCT
algorithm. and Tthr is updated to be the new finish time
of the received core Tk.

After all the tasks have been assigned, we select out the
longest and shortest queues. All the tasks of the two queues
are redistributed using the MCT algorithm. If the difference
between the two new queues is less than the original
difference, repeat the above redistribution step. Otherwise, the
current scheduling scheme is regarded as the final scheme. Fig.
4 shows the flowchart of MFT algorithm.

Figure 4. The flowchart of MFT algorithm

IV. EXPERIMENT RESULTS
In order to evaluate the efficiency of the proposed

algorithm, simulations are conducted using C/C++ program. A
heterogeneous cluster with 50 computing cores is designed.
The computing capacity of each core ranging from 1.0 to 3.0
is randomly generated. The complexity and the maximum
segmentation granularity of each task are also randomly
generated. The complexity ranges from 15 to 3600 and the
maximum segmentation granularity ranges from 1 to 150. The
maximum of kth and s are set as 20 and 8 respectively. For
each situation, 500 experiments are carried out and the
average of entire finish times is employed as the average
completion time Tf. The task-launching overhead Tdelay is set to
be 20 seconds.

Figure 5. The average completion time Tf of different algorithms

The factor E is employed to evaluate the efficiency of
different algorithms. E is denoted as follows.

100%f opt

opt

T T
E

T
−

= × (8)

TABLE I. THE PERFORMANCE COMPARISON BETWEEN MLFT, FCFS AND
MCT

Number of Tasks FCFS MCT MLFT
30 403.05 124.14 4.18
40 295.31 71.48 2.16
50 222.94 39.41 1.68
60 177.10 20.75 1.61
70 145.82 19.36 1.22
80 121.27 16.48 1.06
90 105.21 12.00 0.97

100 94.14 9.09 0.89
110 85.33 8.64 0.83
120 77.55 7.93 0.76
130 72.48 6.51 0.70
140 68.12 5.61 0.67

Fig. 5 and Table I show the performance comparisons
between the proposed algorithm and other two algorithms
while the number of input tasks ranges from 30 to 140. It is
observed that our scheme outperforms the others in all cases.
Moreover, the MLFT still maintains excellent performance
when the number of the tasks is fewer than that of cores while
the MCT algorithm performs badly.

To further examine the influences of the task-launching
overhead time, we conduct an experiment to evaluate the
entire finish time under different task-launching overhead. The
experimental results are shown in Fig. 6 with Tdelay varying
from 20seconds to 200 seconds. The number of input tasks is
set as 40, 60 and 80. The other parameters are set to be the
same as mentioned above. It shows that the task-launching
overhead has little influence on the entire finish time since the

number of divided segments adaptively decreases as the
task-launching overhead increasing.

Figure 6. The performance with different task-launching overhead time

V. CONCLUSION
In this paper, cloud computing based multi-tasking video

transcoding is investigated and a parallelizing video
transcoding framework is proposed based on load balancing
strategy. First, we formulate the multi-resources transcoding
process in the cloud as a NP-hard problem. Then a heuristic
algorithm called MLFT is proposed to minimize the entire
finish time. Experimental results demonstrate that the
proposed algorithm is more effective than the existing
algorithms, and approaches to the optimal solution closely. In
addition, it can be observed that the proposed algorithm has
strong robustness to the task launching delay.

ACKNOWLEDGMENT
This research is supported by the 973 program

(2009CB320903), the National Science Foundation of China
(61121002, 61103088), the 863 program (2012AA011505)
and National Key Technology R&D Program
(2011BAH08B01), which are gratefully acknowledged.

REFERENCES
[1] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on

Large Clusters”. Proc. of the 6th Symp. On OSDI, pp. 137-150, 2004,
USENIX Association, 2004.

[2] D. G. Feitelson, L. Rudolph and U. Schwiegelshohn, “Parallel Job
Scheduling - A Status Report.” in 10th Workshop on Job Scheduling
Strategies for Parallel Processing, 2004, pp. 1-16.

[3] R. L. Graham, L.E. Lawler, J. K. Lenstra and A. H. Kan, “Optimization
and Approximation in Deterministic Sequencing and Scheduling:A
Survey,” Annals of Discrete Math, pp. 287-326, 1979.

[4] T. Braun, H. J. Siegel and N. Beck,“A comparison of eleven static
heuristics for mapping a class of independent tasks onto heterogeneous
distributed computing systems,”Journal of Parallel and Distributed
Computing, vol. 61, no. 6, pp. 810–837, 2001.

[5] Z. Huang, C. Mei, and L. E. Li, etc, “Cloudstream: Delivering
high-quality streaming videos through a cloud-based svc proxy,” in
INFOCOM, April 2011, pp. 201–205.

[6] F. Lao, X. G. Zhang, and Z. M. Guo, “Parallelizing Video Transcoding
Using Map-Reduce Based Cloud Computing,” In ISCAS, Seoul,
May2012, pp.2905-2908.

[7] T. Wiegand, G. Sullivan, G. Bjøntegaard and A. Luthra, “Overview of
the H.264/AVCvideo coding standard,” in IEEE Trans. Circuits
Syst.Video Technol., vol. 13, no. 7, pp. 560–576, Jul. 2003.

[8] L. Su, Y. Lu, F. Wu, S. P. Li, and W. Gao, “Complexity-constrained
H.264 video encoding,” IEEE Trans. Circuits Syst. Video Technol,
vol.19, no. 4, pp. 1–15, Apr. 2009.

[9] S. M. Sadjadi, S. Shimizua and J. Figueroa,etc, “A modeling approach
for estimating execution time of long-running scientific applications,”
in IEEE Int’lSymposium on Parallel and Distributed Processing, Apr
2008, pp. 1–8.

500

1500

2500

3500

30 40 50 60 70 80 90 100 110 120 130 140

Topt MLFT
MCT FCFS

Number of input tasks

Th
e e

nt
ir

e f
in

ish
 ti

m
e

(m
)

400

600

800

1000

1200

1400

1600

0 40 80 120 160 200 240

80-MLFT

80-Topt

60-MLFT

60-Topt

40-MLFT

40-Topt

Task-launching overhead (s)

Th
e e

nt
ir

e f
in

ish
 ti

m
e

(m
)

	I. Introduction
	II. Problem Formulation And System Architecture
	A. Problem Formulation
	B. System Architecture

	III. Minimum Longest Queue Finish TimeAlgorithm
	A. Adaptivethreshold Segmentation
	B. Minimal Finish Time(MFT)

	IV. Experiment Results
	V. Conclusion
	Acknowledgment
	References

