
276 IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, VOL. 64, NO. 3, AUGUST 2018

Parallel In-Loop Filtering in HEVC
Encoder on GPU

Yang Wang , Xun Guo, Member, IEEE, Xiaopeng Fan , Senior Member, IEEE, Yan Lu,

Debin Zhao , Member, IEEE, and Wen Gao, Fellow, IEEE

Abstract—In-loop filtering is an important part of high
efficiency video coding (HEVC), which consists of deblocking
filter and sample adaptive offset (SAO) filter. It can not only
improve the compression efficiency of HEVC, but also improve
the visual quality of the reconstructed videos significantly.
However, the high computational complexity hampers its applica-
tions for real-time encoding scenarios. In this paper, we propose a
parallel strategy for in-loop filtering in HEVC encoder on graph-
ics processing unit (GPU). In the proposed strategy, the pipeline
structure for HEVC encoding by parallel processing deblock-
ing filter and SAO on GPU is described first. Then, the joint
optimization for deblocking filter and SAO on GPU is detailed
by parallel processing of deblocking filter and parallel processing
of SAO separately. The joint optimization can improve the degree
of parallelism and ease the computational burden of the CPU.
Experimental results demonstrate that the proposed method can
achieve about 47% (up to 67%) time saving on average for test
sequences.

Index Terms—HEVC encoder, in-loop filter, GPU, deblocking
filter, SAO.

I. INTRODUCTION

H IGH Efficiency Video Coding (HEVC) standard devel-
oped by the Joint Collaborative Team on Video Coding

(JCT-VC) [1] becomes the state-of-the-art video coding stan-
dard, which can provide similar perceptual quality with
about 50% bitrate saving compared with its predecessor
H.264/AVC [2]. This remarkable improvement mainly comes
from the following techniques, such as flexible quad-tree cod-
ing block partitioning structure, multi-angular intra prediction,
advanced motion vector prediction, in-loop filtering, and
improved context-adaptive binary arithmetic coding. In-loop
filtering, as an important part of HEVC, consists of deblocking

Manuscript received March 13, 2018; revised June 13, 2018 and August 16,
2018; accepted August 17, 2018. Date of publication August 29, 2018; date of
current version September 24, 2018. This work was supported in part by the
Major State Basic Research Development Program of China (973 Program)
under Grant 2015CB351804, and in part by the National Science Foundation
of China under Grant 61472101 and Grant 61631017. (Corresponding author:
Xiaopeng Fan.)

Y. Wang, X. Fan, and D. Zhao are with the Department of Computer Science
and Technology, Harbin Institute of Technology, Harbin 150001, China
(e-mail: wangyang.cs@hit.edu.cn; fxp@hit.edu.cn; dbzhao@hit.edu.cn).

X. Guo and Y. Lu are with Microsoft Research Asia, Beijing 100080, China
(e-mail: xun.guo@microsoft.com; yanlu@microsoft.com).

W. Gao is with the Department of Electronics Engineering and
Computer Science, Peking University, Beijing 100871, China (e-mail:
wgao@pku.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCE.2018.2867812

Fig. 1. Complexity percentages of in-loop filtering in HEVC encoder.

filter and Sample Adaptive Offset filter (SAO) [3]. According
to [4], the coding gains of deblocking filter are about 1.3%,
2.6%, and 3.3% for luma component on average in All Intra
(AI), Random Access (RA), and Low Delay P (LDP) configu-
rations respectively. According to [5], the coding gains of SAO
are about 0.7%, 1.7%, 9.2%, and 2.5% for luma component
on average in AI, RA, LDP, and Low Delay B (LDB) configu-
rations respectively. In-loop filtering can not only improve the
compression efficiency of HEVC, but also improve the visual
quality of the reconstructed videos significantly.

However, its high computational complexity hampers its
applications for real-time encoding scenarios, especially for
low-power devices. For instance, in x265, which is one of
the best open-source HEVC encoders, the encoding complex-
ity percentage of in-loop filtering is fairly high. As shown in
Fig. 1, the percentage increases 2%-35% with different encod-
ing configurations. With the popularity of consumer electronic
devices (e.g., smartphones, tablets, laptops), it is inevitable to
reduce the complexity of in-loop filtering for real-time encod-
ing in these devices. Moreover, it is more challenging for
consumer electronic devices due to the low-power and lim-
ited computing resources. Benefit from the development of
GPU in mobile devices, we propose to reduce the complexity
of in-loop filtering in HEVC encoder on GPU.

In recent years, there have been some research to reduce
the computational complexity of deblocking filter and SAO.
They can be classified into three categories. The first category
mainly focuses on reducing the complexity by utilizing cod-
ing information or texture information [6], [7]. Kang et al. [6]

1558-4127 c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-5604-7885
https://orcid.org/0000-0002-9660-3636
https://orcid.org/0000-0003-3434-9967

WANG et al.: PARALLEL IN-LOOP FILTERING IN HEVC ENCODER ON GPU 277

proposed a novel and efficient deblocking algorithm for
HEVC, in which the complexity of boundary decision was
reduced by using coding information, including depth, trans-
form index, and partitioning size. Joo et al. [8] proposed
to decide the best edge offset type in SAO according to
intra prediction mode. Furthermore, they also proposed a fast
parameter estimation algorithm for SAO by using the dominant
edge direction [9]. Zhengyong et al. [10] utilized the coding
unit partitioning information to accelerate encoding process
of SAO. Besides, Yang et al. [7] accelerated the process of
SAO by using the temporal relationship of SAO parameters in
current coding tree unit (CTU) and the collocated CTU.

The second category focuses on parallel processing on
CPU to reduce the complexity of deblocking filter and
SAO [11], [12], which generally contains several threads.
Kotra et al. [11] implemented three different parallelization
deblocking methods on changing the order of horizontal filter-
ing and vertical filtering. Yan et al. [12] proposed to process
edge decision and boundary strength calculation simultane-
ously before edge filtering and then parallelize edge filtering
with directed acyclic graphs.

The third category focuses on parallel processing on graph-
ics processing unit (GPU) to reduce the complexity of
deblocking filter and SAO [13]–[19], which usually contains
thousands of threads. GPU is very efficient at manipulat-
ing computer graphics and image processing, and the highly
parallel structure of GPU makes it more efficient than general-
purpose CPU. In [13]–[15], different parallelization meth-
ods to accelerate deblocking filter on GPU were proposed.
De Souza et al. [13] proposed three novel optimization algo-
rithms for maximum parallelism level in deblocking filter
of HEVC decoder, including a highly optimized CPU paral-
lel implementation, GPU implementation of deblocking filter,
and a hybrid and load-balanced CPU+GPU implementation.
Jiang et al. [14] presented a novel parallel optimization
strategy to improve the parallel performance of deblocking
filter. Eldeken et al. [15] proposed a parallel-straight process-
ing order that improved concurrency for deblocking multiple
horizontal and vertical edges. In [16] and [17], the data depen-
dency of SAO in HEVC encoder was eliminated on GPU.
Zhang and Guo [16] proposed a parallel algorithm for SAO
in HEVC on GPU, in which parallel algorithms for statisti-
cal information collection, calculation of the best offset and
minimum distortion, SAO merging were proposed. In our
preliminary work [17], we proposed an optimization algo-
rithm for SAO in HEVC encoder on GPU, in which the
first step of SAO was processed on GPU implemented with
OpenCL. De Souza et al. [18] optimized deblocking filter
and SAO by using GPU parallelization in HEVC decoder
for embedded systems. Wang et al. [19] presented a frame-
level strategy to improve the parallelism of in-loop filtering in
HEVC decoder on GPU. However, the processes of SAO in
HEVC encoder and decoder are different. For SAO in HEVC
encoder, pixel-wise constraint exists in type classification and
offset computation stages, which will cause much more diffi-
culty to jointly optimize deblocking filter and SAO in HEVC
encoder. Different from optimizing in-loop filtering in HEVC
decoder [18], [19], we propose a parallel strategy for in-loop

filtering in HEVC encoder. Specifically, CTU compression
(block partition, mode decision, transform and quantization,
and reconstruction) is processed on CPU, while in-loop filter-
ing is processed on GPU. By jointly optimizing deblocking
filter and SAO on GPU, the complexity of in-loop filtering is
reduced.

The motivations of this research are as follows:
First, the encoding complexity percentage of in-loop fil-

tering is fairly high. When in-loop filtering is processed on
GPU, it will not only improve the degree of parallelism in
HEVC encoder, but also ease the computing burden of the
CPU, especially for power-limited or low-computing capacity
devices.

Second, the processes of SAO in HEVC encoder and
decoder are different. For SAO in HEVC encoder, pixel-wise
constraint exists in type classification and offset computa-
tion stages, which will lower the parallelism of GPU. Due
to this difficulty, few existing algorithms have been proposed
to optimize SAO on GPU in HEVC encoder.

Furthermore, to the best of our knowledge, none algorithms
have been presented to jointly optimize deblocking filter and
SAO in HEVC encoder on GPU.

In this paper, we propose a parallel strategy for in-loop
filtering in HEVC encoder on GPU. Different from indi-
vidually deblocking filter optimization [13]–[15] or SAO
optimization [16], [17], we optimize deblocking filter and SAO
together on GPU, which reduces the data accessing between
CPU and GPU. Different from jointly optimizing deblock-
ing filter and SAO in HEVC decoder [18], [19], we optimize
deblocking filter and SAO in HEVC encoder. In the proposed
strategy, the pipeline structure for HEVC encoding by parallel
processing deblocking filter and SAO on GPU is described
first. Then, the joint optimization for deblocking filter and
SAO on GPU is detailed by parallel processing of deblock-
ing filter and parallel processing of SAO separately. The joint
optimization can improve the degree of parallelism and ease
the computational burden of the CPU. Experimental results
demonstrate that the proposed method can achieve about 47%
(up to 67%) time saving on average for test sequences.

The rest of this paper is organized as follows. Section II
briefly reviews the in-loop filtering in HEVC and the related
works. Section III introduces the details of joint optimization
for deblocking filter and SAO on GPU, including the
pipeline structure, the parallel processing of deblocking fil-
ter, the parallel processing of SAO, and memory management.
Experimental results and analysis are given in Section IV.
Finally, Section V concludes the paper.

II. IN-LOOP FILTERING IN HEVC ENCODER

In HEVC, in-loop filtering consists of deblocking filter and
SAO. It is applied to the reconstructed pixels just before
writing them into the decoded picture buffer within the inter
prediction loop. Similar to that in H.264/AVC, deblocking fil-
ter in HEVC aims to reduce the visibility of blocking artifacts
caused by block-based coding structure and is applied only
to samples located at block boundaries. Whereas, SAO is a
newly adopted tool in HEVC, which is intended to improve

278 IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, VOL. 64, NO. 3, AUGUST 2018

Fig. 2. In-loop filtering in HEVC encoder.

accuracy of reconstruction of the original signal. SAO is per-
formed adaptively for all samples by conditionally adding an
offset value to each sample based on values in look-up tables
defined by HEVC encoder. In this subsection, we will briefly
review the process of in-loop filtering in HEVC encoder, and
more details can be found in [1], [4], and [5].

A. Deblocking Filter

Deblocking filter is applied to the edges aligned on 8×8
sample grids. As denoted in Fig. 2, it can be split into four
steps, namely edge decision, boundary strength calculation, fil-
tering mode decision, and edge filtering. They are represented
by D.1, D.2, D.3, and D.4 respectively.

In D.1, only the edges on 8×8 grids, either prediction unit
or transform unit boundaries, are considered to be filtered.

In D.2, the boundary strength is calculated according to the
coding information. The boundary strength can take one of
three possible values: 0, 1, and 2, which indicate no filtering,
weak filtering, and strong filtering respectively.

In D.3, if the boundary strength value is 1 or 2, additional
conditions are checked to determine whether the deblocking
filtering should be applied. The weak or strong filtering mode
is decided according to values of samples near the boundaries.

In D.4, first vertical edges are filtered (horizontal filtering)
then horizontal edges are filtered (vertical filtering).

B. Sample Adaptive Offset

As denoted in Fig. 2, SAO consists of three steps, namely
statistical information collection, SAO type and offset deci-
sion, and SAO filtering. They are represented by S.1, S.2, and
S.3 respectively.

In S.1, the number of pixels and the sum of distortion of a
certain SAO type are calculated.

In S.2, the final best SAO type and offset are selected from
candidates of edge offset (EO) and band offset (BO) types and
offsets.

In S.3, pixels in the CTU are filtered by adding the
corresponding best offset values conditionally.

In SAO, each CTU is classified into one of five SAO types:
four EOs and one BO. As shown in Fig. 3 (a), EO uses four
gradient 3-pixel patterns for classification of the current pixel
C by considering the edge directional information with other
two neighboring pixels N1 and N2. As shown in Fig. 3 (b),
BO uses pixel intensity for pixel classification. BO classifies
all pixels in the CTU into 32 uniform bands (for 8-bit pixels).
Four consecutive bands are grouped together and each group
is indicated by the starting band position. Only offsets of four

Fig. 3. Edge offset and band offset in SAO.

Fig. 4. The pipeline structure by the cooperation between CPU and GPU.
The number on the block denotes the row number of CTU row.

consecutive bands and the starting band position are signaled
to the decoder. In the following, we will review the related
works on optimization for deblocking filter and SAO in HEVC
on GPU.

III. PROPOSED JOINT OPTIMIZATION FOR DEBLOCKING

FILTER AND SAO ON GPU

In this section, we will introduce the details of the proposed
joint optimization for deblocking filter and SAO in HEVC
encoder on GPU. At first, we propose a pipeline structure for
HEVC encoding process by parallel processing in-loop filter-
ing on GPU. Then the details of parallel processing designs
on deblocking filter and SAO are described in Sections III-B
and III-C. Finally, the strategy for memory management is
discussed in Section III-D.

A. Overview of the Pipeline Structure

HEVC provides a new encoding method in parallel, namely
wavefront parallel processing (WPP). When this method is
enabled, a slice is divided into multiple rows of CTUs. Each
row is encoded by a thread. The first row is processed in the
ordinary way, the second row begins to be processed after only
two CTUs in the first row have been processed, the third row
begins to be processed after only two CTUs in the second
row have been processed, etc. WPP not only improves the
degree of parallelism for current frame, but also supports the
frame-level encoding in parallel.

As shown in Fig. 2, deblocking filter is divided into D.1,
D.2, D.3, and D.4, corresponding to edge decision, boundary
strength calculation, filtering mode decision, and edge filtering.

WANG et al.: PARALLEL IN-LOOP FILTERING IN HEVC ENCODER ON GPU 279

Fig. 5. The details of HEVC encoding process by parallel processing in-loop filtering on GPU.

SAO is divided into S.1, S.2, and S.3, corresponding to statis-
tical information collection, SAO type and offset decision, and
SAO filtering. To further improve the degree of parallelism in
HEVC encoder, we propose to divide the encoding process
for each row of CTUs into four sub-tasks. The first sub-task
is CTU compression, consisting of block partition, mode deci-
sion, transform and quantization, and reconstruction for CTUs.
The second sub-task consists of D.1 and D.2. The third sub-
task consists of D.3, D.4, and S.1. The fourth sub-task consists
of S.2 and S.3. As shown in Fig. 4 (a), when HEVC encod-
ing is processed only on CPU, these four sub-tasks for a row
of CTUs are processed sequentially. The proposed pipeline
structure for HEVC encoding is shown in Fig. 4 (b) by the
cooperation between CPU and GPU. Specially, the third sub-
task, consisting of D.3, D.4, and S.1, which are the most
time-consuming steps of in-loop filtering, is jointly optimized
and processed on GPU, while the others are still processed on
CPU. The overall encoding time can be reduced by using this
pipeline structure. In order to be compatible with WPP, the
proposed HEVC encoding is also processed row by row.

Details of HEVC encoding process by parallel processing
in-loop filtering on GPU are shown in Fig. 5. In Fig. 5, a video
frame is first divided into different rows of CTUs. Then CTUs
in a row are processed one by one. The first sub-task named
CTU compression includes block partition, mode decision,
transform and quantization, and reconstruction.

The second sub-task includes D.1 and D.2 in deblocking
filter. This sub-task need to transfer data from CPU to GPU
when in-loop filtering is processed on GPU.

The third sub-task consists of D.3, D.4, and S.1, which
are processed on GPU, as shown in the right part of Fig. 5.
First, all vertical edges in the CTUs of a row are filtered.
Then all horizontal edges in the CTUs of a row are filtered.
Statistical information is collected by using original pixels

and reconstructed pixels which have been filtered by D.3 and
D.4. This joint optimization on deblocking filter and SAO can
make full use of computing resources. Data dependency exists
between deblocking filter and SAO. The deblocked pixels are
as input for SAO. Both of two filters share several data, such as
the original pixels, coding information. The details of deblock-
ing filter and SAO on GPU are introduced in Sections III-B
and III-C respectively.

The fourth sub-task includes S.2, S.3 in SAO, and entropy
coding for a row of CTUs. This sub-task needs the data
transferred from GPU.

Compute Unified Device Architecture (CUDA) is a paral-
lel computing platform and application programming interface
model. CUDA is selected as the platform for the proposed
in-loop filtering on GPU.

B. Parallel Processing of Deblocking Filter

There are four steps in the deblocking filter, namely edge
decision, boundary strength calculation, filtering mode deci-
sion, and edge filtering, which are represented by D.1, D.2,
D.3, and D.4 respectively in Fig. 2. In general, D.1 and D.2
are executed recursively, which are not suitable for parallel
processing on GPU. According to [20], D.3 and D.4 are the
most time consuming parts of deblocking filter. We propose
to process D.3 and D.4 on GPU.

For processing D.3 and D.4 on GPU, the data such as
boundary strength values, unfiltered pixels, and quantization
parameters of each CTU are need to be transferred from CPU
to GPU. On GPU, all vertical edges of the CTUs in a row
are filtered concurrently first. Then all horizontal edges of the
CTUs in a row are filtered concurrently. Fig. 6 and Fig. 7
depict the thread mapping of the horizontal filtering and the
vertical filtering on GPU respectively. All CTUs in a row are

280 IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, VOL. 64, NO. 3, AUGUST 2018

Fig. 6. Thread mapping of horizontal filtering.

processed concurrently. Each CTU is processed by threads in
a thread block on GPU. Since deblocking filter is applied on
8×8 grids, all edges aligned on 8×8 grids can be processed
simultaneously. Horizontal filtering is applied first, and then
vertical filtering is applied.

For horizontal filtering, as shown Fig. 6, all vertical edges in
a CTU are processed by the threads in the same thread block.
We take CTU of 64×64 as an example, since deblocking filter
is applied on 8×8 grid, only up to 8 vertical edges may need to
be filtered. Regarding 4 pixel lines as a unit, a vertical edge
in the CTU needs 16 threads for filtering. In this case, the
numbers of threads in horizontal and vertical directions are 8
and 16 respectively. Therefore, the total number of threads for
horizontal filtering in a CTU is 128. Note that the rightmost
4 pixel columns in current CTU, denoted by B1 in Fig. 6, are
processed by threads of next block since the rightmost vertical
edge belongs to next CTU.

For vertical filtering, as shown in Fig. 7, all horizontal
edges in a CTU are processed by the threads in the same
thread block. If we take CTU of 64×64 as an example, sim-
ilar results as horizontal filtering can also be obtained. Note
that the upmost 4 pixel lines, denoted by B2 in Fig. 7, in
previous row of CTUs are also processed, which is caused by
deblocking filter delay. In addition, the bottommost 4 pixel
lines, denoted by B3 in Fig. 7, are left to be processed by the
next row of CTUs.

C. Parallel Processing of SAO

SAO in HEVC encoder consists of three stages, namely sta-
tistical information collection, SAO type and offset decision,
and SAO filtering, represented by S.1, S.2, and S.3 respec-
tively in Fig. 2. According to [7] and [21], S.1 is the most
time consuming part of SAO, and its computational complex-
ity occupies about 80%∼90% of SAO encoding process. We
propose to process S.1 on GPU with D.3 and D.4 together.

In our preliminary work [17], we proposed a GPU-based
SAO optimization algorithm in HEVC encoder. It reduced the
processing time of SAO in HEVC encoder significantly by
implementing S.1 on GPU. In this work, we also implement

Fig. 7. Thread mapping of vertical filtering.

the S.1 on GPU using CUDA instead of OpenCL with different
data access and memory management.

Two main issues need to be considered when optimizing S.1
of SAO on GPU. First, the number of total pixels belonging to
each SAO type need to be counted, and offset values of each
pixel have to be collected to compute the overall distortion.
This loop structure cannot be straightly applied for parallel
processing on GPU. Second, when collecting statistical infor-
mation for different SAO types, different number of pixels
are utilized for computing. GPU has to perform logical judge-
ment pixel by pixel to select the correct ones for computation.
This logical judgement degrades performance of parallelism
on GPU extremely. It also leads to more data access for one
pixel line.

Similar to deblocking filter optimization on GPU, all
CTUs in a row are also processed simultaneously in SAO
optimization. The thread mapping of SAO optimization on
GPU is shown in Fig. 8. All CTUs in the row are denoted
by the index from 0 to M − 1. Since each CTU is processed
by one block, the number of thread blocks on GPU is the same
as the number of CTUs in the row, which is also M.

As shown in Fig. 8, each block contains P threads, where
P is equal to the height of CTU. The total number of threads
used for one row of CTUs is N = P ∗ M, where N denotes
the total number of threads used for one row of CTUs.

To solve the first issue, we utilize memory and threads of
GPU sufficiently. Specially, all the pixels in the same CTU are
processed by threads within a thread block. Each pixel line
within a CTU is assigned to a thread for counting the number
of total pixels for each SAO type and distortion computing. By
this means, the whole CTU can be processed simultaneously
by one block of threads. In addition, all threads in a block can
share the same local memory, which reduces the delay of data
accessing.

After all blocks of threads are finished, the statistical results
of the CTUs including 4 EOs and 1 BO are transferred back to
CPU and are used to determine the optimal one by rate distor-
tion optimization. To save data exchange overhead, all original
pixels and reconstructed pixels of one row of CTUs are pre-
loaded into GPU memory before the process of deblocking

WANG et al.: PARALLEL IN-LOOP FILTERING IN HEVC ENCODER ON GPU 281

Fig. 8. Thread mapping of SAO.

TABLE I
PIXEL EXCLUDED IN COLLECTING INFORMATION FOR SAO

filter. For the second issue, as there is a constrain condition on
pixels when collecting statistical information. Different SAO
types use different number of pixels for SAO type classifica-
tion and offset computing. Specifically, when deblocking filter
is enabled, pixels in the right 4 columns and in the bottom 5
rows of the CTU are excluded in collecting statistical infor-
mation of luma component. However, when deblocking filter
is disabled, the excluded pixels depend on SAO types, which
are shown in Table I. Please note that the excluded pixels will
still be added on corresponding offsets, although they are not
used for offset computation.

This constrain is a big burden for parallel processing. GPU
has to perform logical judgement pixel by pixel to select the
correct ones for computation, which also leads to more data
access for one pixel line. This reduces the speed of computa-
tion dramatically. To avoid the flaw, we remove this constrain,
which means all the pixels within a CTU are used for sta-
tistical information collection for all SAO types no matter
the deblocking filter is enabled or not. This change is non-
normative that will not change the syntax of SAO. There
are two advantages for this change. First, judgement on GPU
is removed so that the computational complexity is reduced.
Second, more pixels are used to calculate SAO offsets, which
increases the accuracy.

One possible mismatch may occur when deblocking filter is
enabled and CTU level processing is used. In such case, sev-
eral pixel lines in the bottom of a CTU will not be deblocked
until its lower CTU in next row is in deblocking filter. This is
to avoid adding additional line-buffers in hardware to store

TABLE II
SEQUENCES USED IN THE EXPERIMENT

the un-deblocked pixels in the upper CTU for the use of
the lower CTU. In our algorithm, these un-deblocked pixel
lines will be included in the offset computation together with
other deblocked pixels. No coding loss is observed in our
experiments.

D. Memory Management

For the in-loop filtering optimization algorithm on GPU,
apart from improvement on the algorithm itself, it is neces-
sary to optimize utilization of memories on GPU. Memories
on CUDA can be classified into three categories, namely
global memory, private memory and local memory, among
which local memory plays an important role in improving the
efficiency of the proposed parallel strategy.

In the stage of deblocking filter, local memory is used to
for storing intermediate results of D.1, D.2, and D.3. Pixels
in the same CTU are stored in local memory, and then are
filtered when horizontal filtering and vertical filtering applied.
In the stage of SAO, similar strategy is adopted to efficiently
utilize local memory. When collect statistical information for
each CTU, pixels in the same CTU are stored in local memory,
which is used for counting number of pixels belonging to each
SAO type and calculating corresponding offset. Then final
results for statistical information collection are copied from
local memory to global memory.

IV. EXPERIMENTAL RESULTS

In this section, extensive experiments are conducted in order
to evaluate the performance of the proposed parallel strategy
for in-loop filtering in HEVC encoder on GPU. Section IV-A
describes the experimental settings. The complexity reduction
is evaluated and compared in Section IV-B. The compression
performance is provided in Section IV-C.

282 IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, VOL. 64, NO. 3, AUGUST 2018

TABLE III
PROCESSING TIME (IN MILLISECONDS) OF IN-LOOP FILTERING FOR DIFFERENT METHODS

A. Experimental Settings

x265 is used as the HEVC video encoder, which is one of
the best open source HEVC encoders [22]. It has been well
optimized on coding structure and encoding modules, e.g.,
motion estimation by using fast algorithms and SSE instruc-
tion set. The experimental results are obtained under HEVC
common test conditions [23] by applying the default parameter
of x265.

Video sequences with higher resolution (Classes A and B)
in [23] are used, since they are the most computationally
demanding. An additional set of Ultra HD 4K sequences [24]
is also evaluated (Class UHD). Besides, screen content video,
is emerging as a popular video type and typified by the com-
puter and mobile display content such as, remote desktop,
video conference, distance education, cloud gaming and com-
puting. As there is no sampling noise for screen content videos,
in-loop filtering improves the visual quality significantly. A set
of screen content sequences [25] is also included in the exper-
iment (Class S). The information of video sequences used for
experiments is shown in Table II. The computer with 3.4 GHz
Octa-core processors and 64GB memory is used for simula-
tion, and the number of streaming processors on GPU is 2560.

B. Complexity Reduction

First, we evaluate the processing time of the proposed
strategy. Average time saving (ATS) is used to evaluate the
complexity reduction. ATS denotes the average time saving of
four quantization parameters (22, 27, 32, and 37), which is
defined as follows:

ATS = Tx265 − Tproposed

Tx265
× 100% (1)

where Tx265 and Tproposed denote the processing time per
frame of in-loop filtering of x265 and the proposed method
respectively.

To evaluate the performance, we compare three methods.
The first method is the baseline. It processes in-loop filter-
ing on CPU, so we call it ILFC. The second method ILFCG
processes in-loop filtering partially on CPU and partially on
GPU. Specifically, ILFCG processes deblocking on CPU and
SAO on GPU. The third method ILFG processes in-loop fil-
tering on GPU. Table III shows the processing time of these
methods respectively.

As shown in Table III, the processing time of ILFG is much
less than that of ILFC. For Class A, the processing time of
in-loop filter on CPU is about 27.6ms on average, and on the
contrary on GPU, it is only about 15.25ms on average. 45%
time saving can be achieved. Similarly, for Class B, the pro-
cessing time of in-loop filter on CPU is about 51.9ms, and
on GPU it is only about 34.5ms. 33% time saving can be
achieved. For high resolution sequences, namely Class UHD,
the processing time of in-loop filter on CPU is about 102.9ms,
and on GPU it is only about 53ms. 46.2% time saving can
be achieved. For screen content sequences, the processing
time of in-loop filter on CPU is about 96.5ms, and on GPU
it is only about 26.2ms. 63% time saving can be achieved.
Experimental results demonstrate that the proposed ILFG strat-
egy can achieve about 47% (up to 67%) time saving on average
for test sequences. Note that the experiment result of ILFC is
achieved when SAO on CPU has been optimized by SIMD,
which can accelerate the process of SAO significantly.

When deblocking filter is implemented on CPU and SAO
is implemented on GPU (ILFCG), the encoding complexity of
in-loop filter can also be reduced, it can achieve about 40%

WANG et al.: PARALLEL IN-LOOP FILTERING IN HEVC ENCODER ON GPU 283

TABLE IV
COMPARISON WITH THE STATE-OF-THE-ART METHODS

TABLE V
THE COMPRESSION PERFORMANCE OF THE PROPOSED METHOD

time saving on average for test sequences. The proposed joint
optimization of deblocking filter and SAO on GPU (ILFG)
outperforms ILFCG with about 7.0% average time saving.

It can be observed that the time saving for sequences with
higher resolution is much bigger than that for sequences with
lower resolution. This is due to that for sequences with higher
resolution, there are more CTUs in a row. The computing time
on CPU increases linearly; however, it is nearly unchanged on
GPU due to its parallel structure.

In addition, the time saving for screen content sequences
is much bigger than that for natural sequences, as the sam-
pling frequency for chroma components is the same as luma
component in screen content sequences.

In order to further evaluate the performance of ILFG, ILFG
is compared with [9] and [19]. Reference [9] optimizes SAO in
HEVC encoder. Reference [19] optimizes the in-loop filtering
in HEVC decoder. As the processes of SAO in encoder and
decoder are different, only deblocking filter in [19] is used for
comparison. As shown in Table IV, the results demonstrate the
superiority of the proposed method. The proposed method can
achieve better performance than deblocking filter or SAO sep-
arately optimized and it can save data accessing time between
CPU and GPU.

C. Compression Performance

As mentioned in Section III-C, when collecting the sta-
tistical information of SAO in the proposed strategy, all the
pixels within a CTU are used for all SAO types no matter
the deblocking filter is enabled or not, which is different from
the original process: different SAO types use different num-
ber of pixels for SAO type classification and offset computing.
Bjφntegaard distortion rate (BD-rate) [26] is used to evaluate
the compression performance, in which the negative num-
ber indicates bitrate saving and the positive number indicates
bitrate increasing for the same quality.

As shown in Table V, small coding gain can be achieved
for luma component for all test sequences, which can reach
-0.23% on average. This is due to that when collecting statis-
tical information for SAO, we use more pixels for counting
the number of total pixels for each SAO type and distortion
computing. The statistical information is more accurate, which
makes the compression efficiency better.

V. CONCLUSION

In this paper, we propose a parallel strategy for in-loop
filtering in HEVC encoder on GPU. The pipeline structure
of HEVC encoding by the cooperation between CPU and
GPU is described first. Then, the parallel implementation on
GPU for deblocking filter is provided. After that, the parallel
implementation on GPU for SAO is provided, in which the
constraint against parallelization in SAO is eliminated. The
joint optimization on deblocking filter and SAO can improve
the degree of parallelism and ease the computational burden
of CPU. The proposed method can achieve about 47% time
reduction on average for all test sequences.

REFERENCES

[1] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of the
high efficiency video coding (HEVC) standard,” IEEE Trans. Circuits
Syst. Video Technol., vol. 22, no. 12, pp. 1649–1668, Dec. 2012.

[2] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview
of the H.264/AVC video coding standard,” IEEE Trans. Circuits Syst.
Video Technol., vol. 13, no. 7, pp. 560–576, Jul. 2003.

[3] C. Rosewarne, B. Bross, M. Naccari, K. Sharman, and G. J. Sullivan,
High Efficiency Video Coding (HEVC) Test Model 16 (HM 16) Update 5
of Encoder Description, document JCTVC-W1002, JCTVC, Feb. 2016.

[4] A. Norkin et al., “HEVC deblocking filter,” IEEE Trans. Circuits Syst.
Video Technol., vol. 22, no. 12, pp. 1746–1754, Dec. 2012.

[5] C.-M. Fu et al., “Sample adaptive offset in the HEVC standard,” IEEE
Trans. Circuits Syst. Video Technol., vol. 22, no. 12, pp. 1755–1764,
Dec. 2012.

[6] R. Kang, W. Zhou, X. Huang, and B. Dong, “An efficient deblocking
filter algorithm for HEVC,” in Proc. IEEE China Summit Int. Conf.
Signal Inf. Process. (ChinaSIP), Xi’an, China, Jul. 2014, pp. 379–383.

[7] K. Yang, S. Wan, Y. Gong, Y. Yang, and Y. Feng, “Fast sample adap-
tive offset for H.265/HEVC based on temporal dependency,” in Proc.
Asia–Pac. Signal Inf. Process. Assoc. Annu. Summit Conf. (APSIPA),
Dec. 2016, pp. 1–4.

[8] J. Joo, Y. Choi, and K. Lee, “Fast sample adaptive offset encoding algo-
rithm for HEVC based on intra prediction mode,” in Proc. IEEE 3rd
Int. Conf. Consum. Electron. Berlin (ICCE-Berlin), Berlin, Germany,
Sep. 2013, pp. 50–53.

[9] J. Joo and Y. Choi, “Dominant edge direction based fast parameter
estimation algorithm for sample adaptive offset in HEVC,” in Proc.
IEEE Int. Conf. Image Process. (ICIP), Paris, France, Oct. 2014,
pp. 3749–3752.

[10] Z. Zhengyong, C. Zhiyun, and P. Peng, “A fast SAO algorithm based
on coding unit partition for HEVC,” in Proc. 6th IEEE Int. Conf. Softw.
Eng. Service Sci. (ICSESS), Beijing, China, Sep. 2015, pp. 392–395.

[11] A. M. Kotra, M. Raulet, and O. Deforges, “Comparison of different
parallel implementations for deblocking filter of HEVC,” in Proc. IEEE
Int. Conf. Acoust. Speech Signal Process., Vancouver, BC, Canada,
May 2013, pp. 2721–2725.

[12] C. Yan, Y. Zhang, F. Dai, and L. Li, “Efficient parallel framework
for HEVC deblocking filter on many-core platform,” in Proc. Data
Compression Conf., Mar. 2013, p. 530.

[13] D. F. de Souza, N. Roma, and L. Sousa, “Cooperative CPU+GPU
deblocking filter parallelization for high performance HEVC video
codecs,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process.
(ICASSP), Florence, Italy, May 2014, pp. 4993–4997.

[14] W. Jiang et al., “A novel parallel deblocking filtering strategy for
HEVC/H.265 based on GPU,” Concurrency Comput. Pract. Exp.,
vol. 28, no. 16, pp. 4264–4276, 2016.

284 IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, VOL. 64, NO. 3, AUGUST 2018

[15] A. F. Eldeken, R. M. Dansereau, M. M. Fouad, and G. I. Salama, “High
throughput parallel scheme for HEVC deblocking filter,” in Proc. IEEE
Int. Conf. Image Process. (ICIP), Quebec City, QC, Canada, Sep. 2015,
pp. 1538–1542.

[16] W. Zhang and C. Guo, “Design and implementation of parallel algo-
rithms for sample adaptive offset in HEVC based on GPU,” in
Proc. 6th Int. Conf. Inf. Sci. Technol. (ICIST), Dalian, China, May 2016,
pp. 181–187.

[17] Y. Wang, X. Guo, Y. Lu, X. Fan, and D. Zhao, “GPU-based optimization
for sample adaptive offset in HEVC,” in Proc. IEEE Int. Conf. Image
Process. (ICIP), Phoenix, AZ, USA, Sep. 2016, pp. 829–833.

[18] D. F. de Souza, A. Ilic, N. Roma, and L. Sousa, “HEVC in-loop filters
GPU parallelization in embedded systems,” in Proc. Int. Conf. Embedded
Comput. Syst. Archit. Model. Simulat. (SAMOS), Jul. 2015, pp. 123–130.

[19] B. Wang et al., “GPU parallelization of HEVC in-loop filters,” Int. J.
Parallel Program., vol. 45, no. 6, pp. 1515–1535, Dec. 2017. [Online].
Available: https://doi.org/10.1007/s10766-017-0488-z

[20] Z. Yang, W. Gao, Y. Liu, and D. Zhao, “Deeply pipelined DSP solution
to deblocking filter for H.264/AVC,” IEEE Trans. Consum. Electron.,
vol. 52, no. 4, pp. 1267–1274, Nov. 2006.

[21] Y. Choi and J. Joo, “Exploration of practical HEVC/H.265 sample adap-
tive offset encoding policies,” IEEE Signal Process. Lett., vol. 22, no. 4,
pp. 465–468, Apr. 2015.

[22] The x265 Website. [Online]. Available:
https://bitbucket.org/multicoreware/x265/wiki/Home

[23] F. Bossen, Common Test Conditions and Software Reference
Configurations, document JCTVC-L1100, JCTVC, Jan. 2013.

[24] L. Song, X. Tang, W. Zhang, X. Yang, and P. Xia, “The SJTU 4K video
sequence dataset,” in Proc. 5th Int. Workshop Qual. Multimedia Exp.
(QoMEX), Klagenfurt, Austria, Jul. 2013, pp. 34–35.

[25] H. Yu, R. Cohen, K. Rapaka, and J. Xu, Common Conditions for Screen
Content Coding Tests, document JCTVC-R1015, JCTVC, Jun. 2014.

[26] G. Bjøntegaard, Improvements of the BD-PSNR Model, document
VCEG-AI11, ITU-T Video Coding Experts Group, Geneva, Switzerland,
and Heinrich-Hertz-Inst., Berlin, Germany, Jul. 2008.

Yang Wang received the B.S. and M.S. degrees
in computer science from the Harbin Institute of
Technology, Harbin, China, in 2012 and 2014,
respectively, where he is currently pursuing the
Ph.D. degree with the School of Computer Science
and Technology.

From 2013 to 2014, he was with the School of
Electronics Engineering and Computer Science,
Peking University, Beijing, as a Research Assistant.
From 2014 to 2016, he was with the Media
Computing Group, Microsoft Research Asia,

Beijing, as an Intern. His current research interests are in image processing,
video coding, and deep learning.

Xun Guo (M’10) received the Ph.D. degree in
computer science from the Harbin Institute of
Technology, China, in 2007.

He joined Microsoft Research Asia in 2012,
where he is currently a Lead Researcher of Media
Computing Group. From 2007 to 2012, he was with
MediaTek Inc., as a Group Manager, leading the
development of core technologies on video coding
and processing for HEVC. He holds over 20 granted
U.S. patents. He has published over 50 papers and
technical contributions in the area of video coding

and multimedia. His current research interests include image and video coding,
multimedia communication, and computer vision.

Xiaopeng Fan (S’07–M’09–SM’17) received the
B.S. and M.S. degrees from the Harbin Institute
of Technology (HIT), Harbin, China, in 2001 and
2003, respectively, and the Ph.D. degree from the
Hong Kong University of Science and Technology
(HKUST), Hong Kong, in 2009.

He joined HIT in 2009, where he is currently a
Professor. From 2003 to 2005, he was with Intel
Corporation, China, as a Software Engineer. From
2011 and 2012, he was with Microsoft Research
Asia as a Visiting Researcher. From 2015 to 2016,

he was with HKUST as a Research Assistant Professor. He has authored
one book and over 100 articles in refereed journals and conference proceed-
ings. His current research interests include video coding and transmission,
image processing, and computer vision. He was a recipient of the Outstanding
Contributions Award to the Development of IEEE Standard 1857 by IEEE
in 2013. He served as the Program Chair of PCM2017, the Chair of IEEE
SGC2015, and the Co-Chair of MCSN2015. He has been an Associate Editor
of IEEE 1857 standard since 2012.

Yan Lu received the Ph.D. degree in computer
science from the Harbin Institute of Technology,
China.

He joined Microsoft Research Asia in 2004, where
he is currently the Principal Research Manager of
Media Computing Group, leading the development
of core technologies around intelligent video ana-
lytics, computer vision, natural user interface, video
coding, and communications. From 2001 to 2004,
he was a Team Lead of video coding group in the
JDL Lab, Institute of Computing Technology, China.

From 1999 to 2000, he was with the City University of Hong Kong as a
Research Assistant. He holds over 30 granted U.S. patents. He has also pub-
lished over 100 papers in refereed journals and conference proceedings in the
areas of image and video coding, multimedia, and computer vision.

Debin Zhao (M’11) received the B.S., M.S., and
Ph.D. degrees in computer science from the Harbin
Institute of Technology, China, in 1985, 1988, and
1998, respectively, where he is currently a Professor
with the Department of Computer Science. He has
published over 200 technical articles in refereed
journals and conference proceedings in the areas of
image and video coding, video processing, video
streaming and transmission, and computer vision.

Wen Gao (M’92–SM’05–F’09) received the
Ph.D. degree in electronics engineering from the
University of Tokyo, Tokyo, Japan, in 1991. He
was a Professor of computer science with the
Harbin Institute of Technology, Harbin, China,
from 1991 to 1995, and a Professor with the
Institute of Computing Technology, Chinese
Academy of Sciences, Beijing, China. He is
currently a Professor of computer science with
Peking University, Beijing. He has authored five
books and over 600 technical articles in refereed

journals and conference proceedings in image processing, video coding
and communication, pattern recognition, multimedia information retrieval,
multimodal interface, and bioinformatics.

He is a member of the Chinese Academy of Engineering.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

